Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Bacteriol ; : e0020424, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320104

RESUMO

Cell growth in mycobacteria involves cell wall expansion that is restricted to the cell poles. The DivIVA homolog Wag31 is required for this process, but the molecular mechanism and protein partners of Wag31 have not been described. In this study of Mycobacterium smegmatis, we identify a connection between wag31 and trehalose monomycolate (TMM) transporter mmpl3 in a suppressor screen and show that Wag31 and polar regulator PlrA are required for MmpL3's polar localization. In addition, the localization of PlrA and MmpL3 is responsive to nutrient and energy deprivation and inhibition of peptidoglycan metabolism. We show that inhibition of MmpL3 causes delocalized cell wall metabolism but does not delocalize MmpL3 itself. We found that cells with an MmpL3 C-terminal truncation, which is defective for localization, have only minor defects in polar growth but are impaired in their ability to downregulate cell wall metabolism under stress. Our work suggests that, in addition to its established function in TMM transport, MmpL3 has a second function in regulating global cell wall metabolism in response to stress. Our data are consistent with a model in which the presence of TMMs in the periplasm stimulates polar elongation and in which the connection between Wag31, PlrA, and the C-terminus of MmpL3 is involved in detecting and responding to stress in order to coordinate the synthesis of the different layers of the mycobacterial cell wall in changing conditions. IMPORTANCE: This study is performed in Mycobacterium smegmatis, which is used as a model to understand the basic physiology of pathogenic mycobacteria such as Mycobacterium tuberculosis. In this work, we examine the function and regulation of three proteins involved in regulating cell wall elongation in mycobacterial cells, which occurs at the cell tips or poles. We find that Wag31, a regulator of polar elongation, works partly through the regulation of MmpL3, a transporter of cell wall constituents and an important drug target. Our work suggests that, beyond its transport function, MmpL3 has another function in controlling cell wall synthesis broadly in response to stress.

2.
Antimicrob Agents Chemother ; : e0103724, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324799

RESUMO

We investigated the mechanism of action of an arylsulfonamide with whole-cell activity against Mycobacterium tuberculosis. We newly synthesized the molecule and confirmed it had activity against both extracellular and intracellular bacilli. The molecule had some activity against HepG2 cells but maintained some selectivity. Bacterial cytological profiling suggested that the mechanism of action was via disruption of cell wall synthesis, with similarities to an inhibitor of the mycolic acid exporter MmpL3. The compound induced expression from the IniB promoter and caused a boost in ATP production but did not induce reactive oxygen species. A mutation in MmpL3 (S591I) led to low-level resistance. Taken together, these data confirm the molecule targets cell wall biosynthesis with MmpL3 as the most probable target.

3.
Bioorg Chem ; 153: 107823, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39317038

RESUMO

We present the development of a phenyl oxazole methyl (POM) core structure with spirocyclic derivatives as part of our efforts to discover innovative anti-tuberculosis agents. Derivatives of spirocyclic POM were synthesized and evaluated for their inhibitory effects on M.tuberculosis (M. tb) H37Rv. Notably, compound 5c displayed potent anti-tubercular activity with MIC value of 0.206 µM in culture broth medium. Furthermore MIC values of compound 5c against DS/MDR/pre-XDR clinical isolates ranged from 0.34 to 0.68 µg/mL, 0.17 to 0.68 µg/mL, and 0.17 to 0.34 µg/mL, respectively. Also, compound 5c with favorable ADME and PK properties was not cytotoxic to THP-1 human cells. Based on the spontaneous mutant generation, we have identified the target of compound 5c to be MmpL3. The computational docking study suggested its plausible binding mode against MmpL3. There is no approved drug targeting this target yet, and the outcomes of the presented research will contribute to the future discovery of novel anti-tuberculosis drugs.

4.
Ann Clin Microbiol Antimicrob ; 23(1): 87, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342331

RESUMO

BACKGROUND: SQ109 is a promising candidate drug for the treatment of patients with drug-resistant tuberculosis (DR-TB). The purpose of this study was to investigate the activity of SQ109 against clinical isolates of Mycobacterium tuberculosis (MTB) from patients with multidrug-resistant TB (MDR-TB) and pre-extensively drug-resistant TB (pre-XDR-TB), and to explore new drug-resistant mechanisms of SQ109. METHODS: We evaluated the in vitro activity of SQ109 against clinical isolates from patients with MDR-TB and pre-XDR-TB using minimal inhibitory concentration (MIC) assay. The drug-resistant gene, mmpL3 of SQ109-resistant strains was sequenced, and a quantitative real-time PCR assay was used to analyze 28 efflux pump genes in SQ109-resistant strains without mmpL3 mutations. The role of candidate efflux pumps mmpL5 and mmpL7 on the MIC of SQ109 was evaluated using recombinantly cloned MmpL5 and MmpL7 expressed in Mycobacterium smegmatis. RESULTS: The MIC90, MIC95 and MIC99 values of SQ109 for 225 clinical isolates of MTB were 0.25 mg/L, 0.5 mg/L and 1.0 mg/L, respectively. Among the pre-XDR strains, six showed resistance to SQ109 despite the absence of gene mutations in mmpL3. In six resistant pre-XDR strains, the MIC of SQ109 decreased with the use of an efflux pump inhibitor, and there was significant upregulation of mmpL5 and mmpL7 in two strains after exposure to SQ109. The presence of MmpL7 in Mycobacterium smegmatis resulted in decreased susceptibility to SQ109, with the MIC increasing from 16 mg/L to 32 mg/L. CONCLUSIONS: Our data demonstrated that SQ109 exhibited excellent levels of in vitro activity against MTB. MmpL7 may be a potential gene for MTB resistance to SQ109, providing a useful target for detecting SQ109 resistance in MTB.


Assuntos
Antituberculosos , Proteínas de Bactérias , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Humanos , Antituberculosos/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Adamantano/farmacologia , Adamantano/análogos & derivados , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Etilenodiaminas
5.
Microb Pathog ; 185: 106384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838146

RESUMO

Mycobacterium tuberculosis is a leading cause of human mortality worldwide, and the emergence of drug-resistant strains demands the discovery of new classes of antimycobacterial that can be employed in the therapeutic pipeline. Previously, a secondary metabolite, chrysomycin A, isolated from Streptomyces sp. OA161 displayed potent bactericidal activity against drug-resistant clinical isolates of M. tuberculosis and different species of mycobacteria. The antibiotic inhibits mycobacterial topoisomerase I and DNA gyrase, leading to bacterial death, but the mechanisms that could cause resistance to this antibiotic are currently unknown. To further understand the resistance mechanism, using M. smegmatis as a model, spontaneous resistance mutants were isolated and subjected to whole-genome sequencing. Mutation in a TetR family transcriptional regulator MSMEG_1380 was identified in the resistant isolates wherein the gene was adjacent to an operon encoding membrane proteins MSMEG_1381 and MSMEG_1382. Sequence analysis and modeling studies indicated that MSMEG_1381 and MSMEG_1382 are components of the Mmp family of efflux pumps and over-expression of either the operon or individual genes conferred resistance to chrysomycin A, isoniazid, and ethambutol. Our study highlights the role of membrane transporter proteins in conferring multiple drug resistance and the utility of recombinant strains overexpressing membrane transporters in the drug screening pipeline.


Assuntos
Mycobacterium smegmatis , Mycobacterium tuberculosis , Humanos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Mycobacterium tuberculosis/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
J Comput Aided Mol Des ; 37(5-6): 245-264, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37129848

RESUMO

N-geranyl-N΄-(2-adamantyl)ethane-1,2-diamine (SQ109) is a tuberculosis drug that has high potency against Mycobacterium tuberculosis (Mtb) and may function by blocking cell wall biosynthesis. After the crystal structure of MmpL3 from Mycobacterium smegmatis in complex with SQ109 became available, it was suggested that SQ109 inhibits Mmpl3 mycolic acid transporter. Here, we showed using molecular dynamics (MD) simulations that the binding profile of nine SQ109 analogs with inhibitory potency against Mtb and alkyl or aryl adducts at C-2 or C-1 adamantyl carbon to MmpL3 was consistent with the X-ray structure of MmpL3 - SQ109 complex. We showed that rotation of SQ109 around carbon-carbon bond in the monoprotonated ethylenediamine unit favors two gauche conformations as minima in water and lipophilic solvent using DFT calculations as well as inside the transporter's binding area using MD simulations. The binding assays in micelles suggested that the binding affinity of the SQ109 analogs was increased for the larger, more hydrophobic adducts, which was consistent with our results from MD simulations of the SQ109 analogues suggesting that sizeable C-2 adamantyl adducts of SQ109 can fill a lipophilic region between Y257, Y646, F260 and F649 in MmpL3. This was confirmed quantitatively by our calculations of the relative binding free energies using the thermodynamic integration coupled with MD simulations method with a mean assigned error of 0.74 kcal mol-1 compared to the experimental values.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Simulação de Dinâmica Molecular , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Etilenodiaminas/metabolismo , Etilenodiaminas/farmacologia
7.
Bioorg Med Chem ; 81: 117212, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36804747

RESUMO

Among the various bacterial infections, tuberculosis continues to hold center stage. Its causative agent, Mycobacterium tuberculosis, possesses robust defense mechanisms against most front-line antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. It is now well-established that bacteria change their membrane composition to optimize their environment to survive and elude drug action. Thus targeting membrane or membrane components is a promising avenue for exploiting the chemical space focussed on developing novel membrane-centric anti-bacterial small molecules. These approaches are more effective, non-toxic, and can attenuate resistance phenotype. We present the relevance of targeting the mycobacterial membrane as a practical therapeutic approach. The review highlights the direct and indirect targeting of membrane structure and function. Direct membrane targeting agents cause perturbation in the membrane potential and can cause leakage of the cytoplasmic contents. In contrast, indirect membrane targeting agents disrupt the function of membrane-associated proteins involved in cell wall biosynthesis or energy production. We discuss the chronological chemical improvements in various scaffolds targeting specific membrane-associated protein targets, their clinical evaluation, and up-to-date account of their ''mechanisms of action, potency, selectivity'' and limitations. The sources of anti-TB drugs/inhibitors discussed in this work have emerged from target-based identification, cell-based phenotypic screening, drug repurposing, and natural products. We believe this review will inspire the exploration of uncharted chemical space for informing the development of new scaffolds that can inhibit novel mycobacterial membrane targets.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Proteínas de Membrana/metabolismo , Tuberculose/tratamento farmacológico , Proteínas de Bactérias/metabolismo
8.
Mol Divers ; 27(1): 357-369, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35477825

RESUMO

Tuberculosis is a chronic communicable disease caused by Mycobacterium tuberculosis (Mtb) and spreads from lungs to lymphatic system. The cell wall of mycobacterium plays a prominent role in maintaining the virulence and pathogenicity and also acts as prime target for drug discovery. Hence, this study has put into emphasis with target MmpLs (Mycobacterial membrane proteins Large) which are significant for the growth and survival of Mycobacterium tuberculosis. MmpLs belongs to the resistance, nodulation and division (RND) protein superfamily. MmpL3 is the only MmpL deemed essential for the replication and viability of mycobacterial cells. For the study, we have selected SQ109 derivatives as Mmpl3 inhibitor, which holds non-covalent property. Structure-based pharmacophore model of MmpL3 target protein with SQ109 as co-crystallized ligand (PDB: 6AJG) was generated to screen the ligand database. Compounds with decent fitness score and pharmacophoric features were compared with standard drug and taken for molecular docking studies. Further prime molecular mechanics-Poisson-Boltzmann surface area (MM-GBSA) and induced fit calculations identified potential molecules for further drug-likeness screening. Overall computational calculations identified ZINC000000016638 and ZINC000000003594 as potential in silico MmpL3 inhibitors. Molecular dynamics simulations integrated with MM-PBSA free energy calculations identified that MmpL3-ZINC000000016638 complex was more stable. Study can be further extended for synthesis and biological evaluation, derivatization of active compound to identify potential and safe lead compounds for effective tuberculosis therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Membrana Transportadoras , Simulação de Acoplamento Molecular , Ligantes , Tuberculose/tratamento farmacológico , Proteínas de Bactérias/metabolismo
9.
Mol Divers ; 27(5): 2037-2052, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36282413

RESUMO

In our continued efforts to find potential chemotherapeutics active against drug-resistant (DR) Mycobacterium tuberculosis (Mtb), causative agent of Tuberculosis (TB) and to curb the current burdensome treatment regimen, herein we describe the synthesis and biological evaluation of urea and thiourea variants of 5-phenyl-3-isoxazolecarboxylic acid methyl esters as promising anti-TB agent. Majority of the tested compounds displayed potent in vitro activity not only against drug-susceptible (DS) Mtb H37Rv but also against drug-resistant (DR) Mtb. Cell viability test against Vero cells deemed these compounds devoid of significant toxicity. 3,4-Dichlorophenyl derivative (MIC 0.25 µg/mL) and 4-chlorophenyl congener (MIC 1 µg/mL) among urea and thiourea libraries respectively exhibited optimum potency. Lead optimization resulted in the identification of 1,4-linked analogue of 3,4-dichlorophenyl urea derivative demonstrating improved selectivity. Further, in silico study complemented with previously proposed prodrug like attributes of isoxazole esters. Taken together, this molecular hybridization approach presents a new chemotype having potential to be translated into an alternate anti-Mtb agent.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Animais , Chlorocebus aethiops , Antituberculosos/farmacologia , Ureia/farmacologia , Células Vero , Relação Estrutura-Atividade , Ácidos Carboxílicos/farmacologia , Ésteres/farmacologia , Tioureia/farmacologia , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana
10.
Proteins ; 90(3): 776-790, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34739144

RESUMO

Lipid transporters play an important role in most if not all organisms, ranging from bacteria to humans. For example, in Mycobacterium tuberculosis, the trehalose monomycolate transporter MmpL3 is involved in cell wall biosynthesis, while in humans, cholesterol transporters are involved in normal cell function as well as in disease. Here, using structural and bioinformatics information, we propose that there are proteins that also contain "MmpL3-like" (MMPL) transmembrane (TM) domains in many protozoa, including Trypanosoma cruzi, as well as in the bacterium Staphylococcus aureus, where the fatty acid transporter FarE has the same set of "active-site" residues as those found in the mycobacterial MmpL3s, and in T. cruzi. We also show that there are strong sequence and predicted structural similarities between the TM proton-translocation domain seen in the X-ray structures of mycobacterial MmpL3s and several human as well as fungal lipid transporters, leading to the proposal that there are similar proteins in apicomplexan parasites, and in plants. The animal, fungal, apicomplexan, and plant proteins have larger extra-membrane domains than are found in the bacterial MmpL3, but they have a similar TM domain architecture, with the introduction of a (catalytically essential) Phe > His residue change, and a Ser/Thr H-bond network, involved in H+ -transport. Overall, the results are of interest since they show that MMPL-family proteins are present in essentially all life forms: archaea, bacteria, protozoa, fungi, plants and animals and, where known, they are involved in "lipid" (glycolipid, phospholipid, sphingolipid, fatty acid, cholesterol, ergosterol) transport, powered by transmembrane molecular pumps having similar structures.


Assuntos
Proteínas de Bactérias/química , Fatores Corda/química , Proteínas de Membrana Transportadoras/química , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Domínio Catalítico , Colesterol/química , Fungos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Staphylococcus aureus , Relação Estrutura-Atividade , Trypanosoma cruzi
11.
Mol Microbiol ; 115(2): 208-221, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32985735

RESUMO

The Mycobacterium tuberculosis cell envelope is a critical interface between the host and pathogen and provides a protective barrier against the immune response and antibiotics. Cell envelope lipids are also mycobacterial virulence factors that influence the host immune response. The mycobacterial membrane protein large (MmpL) proteins transport cell envelope lipids and siderophores that are important for the basic physiology and pathogenesis of M. tuberculosis. We recently identified MmpL11 as a conserved transporter of mycolic acid-containing lipids including monomeromycolyl diacylglycerol (MMDAG), mycolate wax ester (MWE), and long-chain triacylglycerols (LC-TAGs). These lipids contribute to biofilm formation in M. tuberculosis and M. smegmatis, and non-replicating persistence in M. tuberculosis. In this report, we identified domains and residues that are essential for MmpL11TB lipid transporter activity. Specifically, we show that the D1 periplasmic loop and a conserved tyrosine are essential for the MmpL11 function. Intriguingly, we found that MmpL11 levels are regulated by the phosphorylation of threonine in the cytoplasmic C-terminal domain, providing the first direct evidence of the phospho-regulation of MmpL11 transporter activity in M. tuberculosis and M. smegmatis. Our results offer further insight into the function of MmpL transporters and regulation of mycobacterial cell envelope biogenesis.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Ácidos Micólicos/metabolismo , Periplasma/metabolismo , Fosforilação , Sideróforos/metabolismo , Tuberculose/microbiologia , Fatores de Virulência/metabolismo
12.
Protein Expr Purif ; 191: 106014, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767949

RESUMO

Mycobacteria possess a complex and waxy cell wall comprising a large panel of glycolipids. Among these, trehalose monomycolate (TMM) represents abundant and crucial components for the elaboration of the mycomembrane. TMM is synthesized in the cytoplasmic compartment and translocated across the inner membrane by the MmpL3 transporter. Inhibitors impeding TMM transport by targeting MmpL3 show great promises as new antimycobacterials. The recent X-ray or Cryo-EM structures of MmpL3 complexed to TMM or its inhibitors have shed light on the mechanisms of TMM transport and inhibition. So far, purification procedures mainly involved the use of n-Dodecyl-ß-d-Maltopyranoside to solubilize and stabilize MmpL3 from Mycobacterium smegmatis (MmpL3Msm) or Lauryl Maltose Neopentyl Glycol for MmpL3 from Mycobacterium tuberculosis. Herein, we explored the possibility to solubilize and stabilize MmpL3 with other detergents. We demonstrate that several surfactants from the ionic, non-ionic and zwitterionic classes are prone to solubilize MmpL3Msm expressed in Escherichia coli. The capacity of these detergents to stabilize MmpL3Msm was evaluated by size-exclusion chromatography and thermal stability. This study unraveled three new detergents DM, LDAO and sodium cholate that favor solubilization and stabilization of MmpL3Msm in solution. In addition, we report a protocol that allows reconstitution of MmpL3Msm into peptidiscs.


Assuntos
Proteínas de Bactérias/química , Detergentes/química , Proteínas de Membrana Transportadoras/química , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
Proc Natl Acad Sci U S A ; 116(23): 11241-11246, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113875

RESUMO

The cell envelope of Mycobacterium tuberculosis is notable for the abundance of mycolic acids (MAs), essential to mycobacterial viability, and of other species-specific lipids. The mycobacterial cell envelope is extremely hydrophobic, which contributes to virulence and antibiotic resistance. However, exactly how fatty acids and lipidic elements are transported across the cell envelope for cell-wall biosynthesis is unclear. Mycobacterial membrane protein Large 3 (MmpL3) is essential and required for transport of trehalose monomycolates (TMMs), precursors of MA-containing trehalose dimycolates (TDM) and mycolyl arabinogalactan peptidoglycan, but the exact function of MmpL3 remains elusive. Here, we report a crystal structure of Mycobacterium smegmatis MmpL3 at a resolution of 2.59 Å, revealing a monomeric molecule that is structurally distinct from all known bacterial membrane proteins. A previously unknown MmpL3 ligand, phosphatidylethanolamine (PE), was discovered inside this transporter. We also show, via native mass spectrometry, that MmpL3 specifically binds both TMM and PE, but not TDM, in the micromolar range. These observations provide insight into the function of MmpL3 and suggest a possible role for this protein in shuttling a variety of lipids to strengthen the mycobacterial cell wall.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores Corda/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidiletanolaminas/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Mycobacterium smegmatis/metabolismo , Ácidos Micólicos/metabolismo
14.
Chem Biodivers ; 19(9): e202200160, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35969844

RESUMO

Mycobacterial membrane proteins Large (MmpLs), which belong to the resistance, nodulation, and division (RND) protein superfamily, play critical roles in transporting polymers, lipids, and immunomodulators. MmpLs have become one of the important therapeutic drug targets to emerge in recent times. In this study, two homology modelling techniques, Modeller and SWISS-MODEL, were used in modelling the three-dimensional protein structure of the MmpL3 of Mycobacterium tuberculosis using that of M. smegmatis as template. MmpL3 inhibitors, namely BM212, NITD304, SPIRO, and NITD349, in addition to the co-crystalized ligands AU1235, ICA38, SQ109 and rimonabant, were screened against the modelled structure and the Mmpl3 of M. smegmatis using molecular docking techniques. Protein-ligand interactions were analysed using molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann surface area computations. Novel residues Gln32, Leu165, Ile414, and Phe35 were identified as critical for binding to M. tuberculosis MmpL3, and conformational dynamics upon inhibitor binding were discussed.


Assuntos
Mycobacterium tuberculosis , Ácidos Micólicos , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Simulação de Acoplamento Molecular , Ácidos Micólicos/metabolismo , Polímeros , Rimonabanto/metabolismo
15.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296721

RESUMO

Tuberculosis remains an important cause of morbidity and mortality throughout the world. Notably, an important number of multi drug resistant cases is an increasing concern. This problem points to an urgent need for novel compounds with antimycobacterial properties and to improve existing therapies. Whole-cell-based screening for compounds with activity against Mycobacterium tuberculosis complex strains in the presence of linezolid was performed in this study. A set of 15 bioactive compounds with antimycobacterial activity in vitro were identified with a minimal inhibitory concentration of less than 2 µg/mL. Among them, compound 1 is a small molecule with a chemical structure consisting of an adamantane moiety and a hydrazide-hydrazone moiety. Whole genome sequencing of spontaneous mutants resistant to the compounds suggested compound 1 to be a new inhibitor of MmpL3. This compound binds to the same pocket as other already published MmpL3 inhibitors, without disturbing the proton motive force of M. bovis BCG and M. smegmatis. Compound 1 showed a strong activity against a panel ofclinical strains of M. tuberculosis in vitro. This compound showed no toxicity against mammalian cells and protected Galleria mellonella larvae against M. bovis BCG infection. These results suggest that compound 1 is a promising anti-TB agent with the potential to improve TB treatment in combination with standard TB therapies.


Assuntos
Adamantano , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Antituberculosos/uso terapêutico , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Linezolida/metabolismo , Vacina BCG/metabolismo , Vacina BCG/uso terapêutico , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Adamantano/farmacologia , Adamantano/metabolismo , Mamíferos/metabolismo
16.
Bioorg Chem ; 106: 104486, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276981

RESUMO

The treacherous nature of tuberculosis (TB) combined with the ubiquitous presence of the drug-resistant (DR) forms pose this disease as a growing public health menace. Therefore, it is imperative to develop new chemotherapeutic agents with a novel mechanism of action to circumvent the cross-resistance problems. The unique architecture of the Mycobacterium tuberculosis (M. tb) outer envelope plays a predominant role in its pathogenesis, contributing to its intrinsic resistance against available therapeutic agents. The mycobacterial membrane protein large 3 (MmpL3), which is a key player in forging the M. tb rigid cell wall, represents an emerging target for TB drug development. Several indole-2-carboxamides were previously identified in our group as potent anti-TB agents that act as inhibitor of MmpL3 transporter protein. Despite their highly potent in vitro activities, the lingering Achilles heel of these indoleamides can be ascribed to their high lipophilicity as well as low water solubility. In this study, we report our attempt to improve the aqueous solubility of these indole-2-carboxamides while maintaining an adequate lipophilicity to allow effective M. tb cell wall penetration. A more polar adamantanol moiety was incorporated into the framework of several indole-2-carboxamides, whereupon the corresponding analogues were tested for their anti-TB activity against drug-sensitive (DS) M. tb H37Rv strain. Three adamantanol derivatives 8i, 8j and 8l showed nearly 2- and 4-fold higher activity (MIC = 1.32 - 2.89 µM) than ethambutol (MIC = 4.89 µM). Remarkably, the most potent adamantanol analogue 8j demonstrated high selectivity towards DS and DR M. tb strains over mammalian cells [IC50 (Vero cells) ≥ 169 µM], evincing its lack of cytotoxicity. The top eight active compounds 8b, 8d, 8f, 8i, 8j, 8k, 8l and 10a retained their in vitro potency against DR M. tb strains and were docked into the MmpL3 active site. The most potent adamantanol/adamantane-based indoleamides 8j/8k displayed a two-fold surge in potency against extensively DR (XDR) M. tb strains with MIC values of 0.66 and 0.012 µM, respectively. The adamantanol-containing indole-2-carboxamides exhibited improved water solubility both in silico and experimentally, relative to the adamantane counterparts. Overall, the observed antimycobacterial and physicochemical profiles support the notion that adamantanol moiety is a suitable replacement to the adamantane scaffold within the series of indole-2-carboxamide-based MmpL3 inhibitors.


Assuntos
Adamantano/farmacologia , Antituberculosos/farmacologia , Desenho de Fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adamantano/análogos & derivados , Adamantano/química , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
17.
Proc Natl Acad Sci U S A ; 115(43): E10147-E10156, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30301802

RESUMO

Mycobacterium abscessus is a peculiar rapid-growing Mycobacterium (RGM) capable of surviving within eukaryotic cells thanks to an arsenal of virulence genes also found in slow-growing mycobacteria (SGM), such as Mycobacterium tuberculosis A screen based on the intracellular survival in amoebae and macrophages (MΦ) of an M. abscessus transposon mutant library revealed the important role of MAB_0855, a yet uncharacterized Mycobacterial membrane protein Large (MmpL). Large-scale comparisons with SGM and RGM genomes uncovered MmpL12 proteins as putative orthologs of MAB_0855 and a locus-scale synteny between the MAB_0855 and Mycobacterium chelonae mmpL8 loci. A KO mutant of the MAB_0855 gene, designated herein as mmpL8MAB , had impaired adhesion to MΦ and displayed a decreased intracellular viability. Despite retaining the ability to block phagosomal acidification, like the WT strain, the mmpL8MAB mutant was delayed in damaging the phagosomal membrane and in making contact with the cytosol. Virulence attenuation of the mutant was confirmed in vivo by impaired zebrafish killing and a diminished propensity to induce granuloma formation. The previously shown role of MmpL in lipid transport prompted us to investigate the potential lipid substrates of MmpL8MAB Systematic lipid analysis revealed that MmpL8MAB was required for the proper expression of a glycolipid entity, a glycosyl diacylated nonadecyl diol (GDND) alcohol comprising different combinations of oleic and stearic acids. This study shows the importance of MmpL8MAB in modifying interactions between the bacteria and phagocytic cells and in the production of a previously unknown glycolipid family.


Assuntos
Proteínas de Bactérias/metabolismo , Glicolipídeos/metabolismo , Mycobacterium abscessus/metabolismo , Fatores de Virulência/metabolismo , Virulência/fisiologia , Amoeba/microbiologia , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Citosol/metabolismo , Humanos , Lipídeos , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Camundongos , Fagossomos/microbiologia , Peixe-Zebra/microbiologia
18.
Int J Mol Sci ; 22(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34445239

RESUMO

Some nontuberculous mycobacteria (NTM) are considered opportunistic pathogens. Nevertheless, NTM infections are increasing worldwide, becoming a major public health threat. Furthermore, there is no current specific drugs to treat these infections, and the recommended regimens generally lack efficacy, emphasizing the need for novel antibacterial compounds. In this paper, we focused on the essential mycolic acids transporter MmpL3, which is a well-characterized target of several antimycobacterial agents, to identify new compounds active against Mycobacterium abscessus (Mab). From the crystal structure of MmpL3 in complex with known inhibitors, through an in silico approach, we developed a pharmacophore that was used as a three-dimensional filter to identify new putative MmpL3 ligands within databases of known drugs. Among the prioritized compounds, mefloquine showed appreciable activity against Mab (MIC = 16 µg/mL). The compound was confirmed to interfere with mycolic acids biosynthesis, and proved to also be active against other NTMs, including drug-resistant clinical isolates. Importantly, mefloquine is a well-known antimalarial agent, opening the possibility of repurposing an already approved drug, which is a useful strategy to reduce the time and cost of disclosing novel drug candidates.


Assuntos
Antibacterianos/farmacologia , Antimaláricos/farmacologia , Mefloquina/farmacologia , Mycobacterium abscessus/metabolismo , Ácidos Micólicos/metabolismo
19.
J Biol Chem ; 294(46): 17512-17523, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562241

RESUMO

Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a major human pathogen, and current treatment options to combat this disease are under threat because of the emergence of multidrug-resistant and extensively drug-resistant tuberculosis. High-throughput whole-cell screening of an extensive compound library has recently identified a piperidinol-containing molecule, PIPD1, as a potent lead compound against M. tuberculosis Herein, we show that PIPD1 and related analogs exert in vitro bactericidal activity against the M. tuberculosis strain mc26230 and also against a panel of multidrug-resistant and extensively drug-resistant clinical isolates of M. tuberculosis, suggesting that PIPD1's mode of action differs from those of most first- and second-line anti-tubercular drugs. Selection and DNA sequencing of PIPD1-resistant mycobacterial mutants revealed the presence of single-nucleotide polymorphisms in mmpL3, encoding an inner membrane-associated mycolic acid flippase in M. tuberculosis Results from functional assays with spheroplasts derived from a M. smegmatis strain lacking the endogenous mmpL3 gene but harboring the M. tuberculosis mmpL3 homolog indicated that PIPD1 inhibits the MmpL3-driven translocation of trehalose monomycolate across the inner membrane without altering the proton motive force. Using a predictive structural model of MmpL3 from M. tuberculosis, docking studies revealed a PIPD1-binding cavity recently found to accommodate different inhibitors in M. smegmatis MmpL3. In conclusion, our findings have uncovered bactericidal activity of a new chemical scaffold. Its anti-tubercular activity is mediated by direct inhibition of the flippase activity of MmpL3 rather than by inhibition of the inner membrane proton motive force, significantly advancing our understanding of MmpL3-targeted inhibition in mycobacteria.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Micólicos/metabolismo , Piperidinas/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Fatores Corda/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Piperidinas/química , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
20.
Proteins ; 88(6): 809-815, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31833106

RESUMO

Trehalose monomycolate (TMM) represents an essential element of the mycobacterial envelope. While synthesized in the cytoplasm, TMM is transported across the inner membrane by MmpL3 but, little is known regarding the MmpL3 partners involved in this process. Recently, the TMM transport factor A (TtfA) was found to form a complex with MmpL3 and to participate in TMM transport, although its biological role remains to be established. Herein, we report the crystal structure of the Mycobacterium smegmatis TtfA core domain. The phylogenetic distribution of TtfA homologues in non-mycolate containing bacteria suggests that TtfA may exert additional functions.


Assuntos
Proteínas de Bactérias/química , Parede Celular/química , Fatores Corda/química , Proteínas de Membrana Transportadoras/química , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Parede Celular/metabolismo , Clonagem Molecular , Fatores Corda/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/classificação , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa