Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Environ Sci Technol ; 58(13): 5832-5843, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511412

RESUMO

Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.


Assuntos
Etinilestradiol , Óxidos , Óxidos/química , Fármacos Fotossensibilizantes , Compostos de Manganês/química , Oxirredução , Água/química
2.
Environ Res ; 217: 114874, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36457240

RESUMO

Due to the increasing of industrial plastic waste and its refractory characteristics, it is extremely urgent to develop new degradation technology and environmentally friendly catalyst for industrial plastic waste. Manganese oxides are one of the most promising candidates for the catalytic degradation of plastic wastes. However, an improved understanding of the structural properties affecting their catalytic activity is required for high-efficient wastewater treatment. We herein report the surface reactivity effects of δ-MnO2 structural defects with regards to Bisphenol A (BPA) degradation/probe in the presence of peroxymonosulfate (PMS). Four δ-MnOx samples with different Mn(III) contents (different Mn(III)-deficient sample) were prepared and their structural properties as well as surface reactivity were characterized by batch test, ESR and XAFS analysis. For the Mn(III)-deficient sample, BPA removal was principally affected by direct electron transfer, with the adsorbed BPA degraded following hydroxylation. In contrast, a small fraction of Mn(III) substitution in δ-MnO2 could significantly encouraged the activation of PMS to produce SO4-☐and ☐OH, and a BPA degradation via beta scission. Moreover, the Mn(III)-rich δ-MnO2 demonstrate a high BPA removal rate even with a low sample load, which performed well following a reuse of five times. Our results provide a new way for the improvement of δ-MnO2 activity for the use of industrial plastic wastes treatment.


Assuntos
Compostos de Manganês , Óxidos , Óxidos/química , Oxirredução , Compostos de Manganês/química , Elétrons , Peróxidos
3.
J Mol Struct ; 1278: 134857, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36619309

RESUMO

In this study, polynuclear Cu(II) complex (1), Mn(II) and Mn(III) complex (2) have been prepared with a Schiff base ligand derived from 2-Hydroxy-3-methoxybenzaldehyde with 2-amino-2-methyl-1-propanol. The compounds were characterized by elemental analysis, FT-IR, and UV-Vis spectroscopy. The molecular and crystal structures of (1-2) were determined by the single-crystal x-ray diffraction technique. It turned out that Cu(II) complex (1) forms an S4 -symmetrical tetrameric cage structure, with square-planar coordinated Cu and bridging O atoms at the vertexes of the approximate cube. In the crystal structure of 1, there are large channels along the c-axis, between the tetramers; the solvent- DMSO molecules, occupies these channels. In turn, the complex (2) creates a centrosymmetric trimeric structure, with three octahedrally coordinated Mn ions bridged by O atoms from ligand molecules and acetate ions. The electrochemical behavior studies of the complexes in DMSO displayed the electronic effects of the groups on the redox potential. The redox behavior of Schiff base (1) and (2) complexes included quasi -reversible and irreversible voltammograms, respectively. Intermolecular interactions in the solid states were studied by Hirshfeld surface analysis. These studies provide a comprehensive description of these inter-contact exchanges using an attractive graphical representation using Hirshfeld surfaces and fingerprint plots, along with enrichment ratios. Furthermore, assessment of the inhibitory effect against coronavirus (main protease SARS-CoV-2) was performed by a molecular docking study for both complexes (1 and 2). Both complexes showed a good affinity for CoV-2 for PDB protein ID: 6M03 and 6Y2F.

4.
J Environ Sci (China) ; 125: 492-498, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375932

RESUMO

Nanostructured manganese oxides (nano-MnOx) have shown great promises as versatile agrochemicals in nano-enabled sustainable agriculture, owing to the coupled benefits of controlled release of dissolved Mn2+, an essential nutrient needed by plants, and oxidative destruction of environmental organic pollutants. Here, we show that three δ-MnO2 nanomaterials consisting of nanosheet-assembled flower-like nanospheres not only exhibit greater kinetics in citrate-promoted dissolution, but also are less prone to passivation, compared with three α-MnO2 nanowire materials. The better performance of the δ-MnO2 nanomaterials can be attributed to their higher abundance of surface unsaturated Mn atoms-particularly Mn(III)-that is originated from their specific exposed facets and higher abundance of surface defects sites. Our results underline the great potential of modulating nanomaterial surface atomic configuration to improve their performance in sustainable agricultural applications.


Assuntos
Poluentes Ambientais , Nanoestruturas , Compostos de Manganês , Óxidos , Manganês , Solubilidade , Ácido Cítrico , Oxirredução , Agricultura
5.
Environ Sci Technol ; 56(7): 4091-4100, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294177

RESUMO

Mn(II)-catalyzed oxidation by molecular oxygen is considered a relevant process for the environmental fate of aminopolyphosphonate chelating agents such as aminotrismethylene phosphonate (ATMP). However, the potential roles of Mn(III)ATMP-species in the underlying transformation mechanisms are not fully understood. We combined kinetic studies, compound-specific stable carbon isotope analysis, and equilibrium speciation modeling to shed light on the significance of such Mn-ATMP species for the overall ATMP oxidation by molecular oxygen. The fraction of ATMP complexed with Mn(II) inversely correlated with both (i) the Mn(II)-normalized transformation rate constants of ATMP and (ii) the observed carbon isotope enrichment factors (εc-values). These findings provide evidence for two parallel ATMP transformation pathways exhibiting distinctly different reaction kinetics and carbon isotope fractionation: (i) oxidation of ATMP present in Mn(III)ATMP complexes (εc ≈ -10 ‰) and (ii) oxidation of free ATMP by such Mn(III)ATMP species (εc ≈ -1 ‰) in a catalytic cycle. The higher reaction rate of the latter pathway implies that aminopolyphosphonates can be trapped in catalytic Mn-complexes before being transformed and suggests that Mn(III)ATMP might be a potent oxidant also for other reducible solutes in aqueous environments.


Assuntos
Organofosfonatos , Isótopos de Carbono , Catálise , Fracionamento Químico , AMP Cíclico/análogos & derivados , Cinética , Oxirredução
6.
J Environ Manage ; 320: 115891, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36056494

RESUMO

Doxycycline hydrochloride (DCH) could be continuously removed by Bacillus thuringiensis S622 with the in-situ biogenic manganese oxide (BioMnOx) via oxidizing/regenerating. The DCH removal rate was significantly increased by 3.01-fold/1.47-fold at high/low Mn loaded via the integration of biological (intracellular/extracellular electron transfer (IET/EET)) and abiotic process (BioMnOx, Mn(III) and •OH). BioMnOx accelerated IET via activating coenzyme Q to enhance electrons transfer (ET) from complex I to complex III, and as an alternative electron acceptor for respiration and provide another electron transfer transmission channel. Additionally, EET was also accelerated by stimulating to secrete flavins, cytochrome c (c-Cyt) and flavin bounded with c-Cyt (Flavins & Cyts). To our best knowledge, this is the first report about the role of BioMnOx on IET/EET during antibiotic biodegradation. These results suggested that Bacillus thuringiensis S622 incorporated with BioMnOx could adopt an alternative strategy to enhance DCH degradation, which may be of biogeochemical and technological significance.


Assuntos
Bacillus thuringiensis , Elétrons , Doxiciclina , Flavinas , Compostos de Manganês , Oxirredução , Óxidos
7.
Chemistry ; 27(70): 17609-17619, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34618383

RESUMO

Three tetraphenylborates of mononuclear Mn(III) cation complexes with hexadentate ligands, the products of the reaction between a N,N'-bis(3-aminopropyl)ethylenediamine and salicylaldehydes with the different haloid substitutions at the 5 or 3,5 positions, have been synthesized: [Mn(5-F-sal-N-1,5,8,12)]BPh4 (1), [Mn(3,5-diCl-sal-N-1,5,8,12)]BPh4 (2) and [Mn(3,5-Br,Cl-sal-N-1,5,8,12)]BPh4 (3). Their crystal structure, dielectric constant (ϵ) and magnetic properties have been studied. Ligand substituents have a dramatic effect on the structure and magnetic properties of the complexes. With decreasing temperature, the complex (1) shows a gradual spin crossover from the high-spin state (HS) to the HS:LS intermediate phase, followed by an abrupt transition to the low-spin state (LS) without changing the crystal symmetry. The complexes 2 and 3 are isostructural, but have fundamentally different properties. Complex 2 demonstrates two structural phase transitions related to sharp spin crossovers from the HS to the HS:LS intermediate phase at 137 K and from the intermediate phase to the LS at 87 K, while complex 3 exhibits only one spin transition from the HS to the HS:LS intermediate phase at 83 K.

8.
Environ Sci Technol ; 55(19): 13014-13023, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34559517

RESUMO

Bisphenol A (BPA), a high production volume chemical and potential endocrine disruptor, is found to be associated with sediments and soils due to its hydrophobicity (log KOW of 3.42). We used superfine powdered activated carbon (SPAC) with a particle size of 1.38 ± 0.03 µm as a BPA sorbent and assessed degradation of BPA by oxidized manganese (Mn) species. SPAC strongly sorbed BPA, and desorption required organic solvents. No degradation of adsorbed BPA (278.7 ± 0.6 mg BPA g-1 SPAC) was observed with synthetic, solid α-MnO2 with a particle size of 15.41 ± 1.35 µm; however, 89% mass reduction occurred following the addition of 0.5 mM soluble Mn(III). Small-angle neutron scattering data suggested that both adsorption and degradation of BPA occurred in SPAC pores. The findings demonstrate that Mn(III) mediates oxidative transformation of dissolved and adsorbed BPA, the latter observation challenging the paradigm that contaminant desorption and diffusion out of pore structures are required steps for degradation. Soluble Mn(III) is abundant near oxic-anoxic interfaces, and the observation that adsorbed BPA is susceptible to degradation has implications for predicting, and possibly managing, the fate and longevity of BPA in environmental systems.


Assuntos
Compostos de Manganês , Manganês , Adsorção , Compostos Benzidrílicos , Oxirredução , Óxidos , Fenóis
9.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641291

RESUMO

The key role of trivalent manganese (Mn(III)) species in promoting sulfate radical-based advanced oxidation processes (SR-AOPs) has recently attracted increasing attention. This review provides a comprehensive summary of Mn(III) (oxyhydr)oxide-based catalysts used to activate peroxymonosulfate (PMS) and peroxydisulfate (PDS) in water. The crystal structures of different Mn(III) (oxyhydr)oxides (such as α-Mn2O3, γ-MnOOH, and Mn3O4) are first introduced. Then the impact of the catalyst structure and composition on the activation mechanisms are discussed, as well as the effects of solution pH and inorganic ions. In the Mn(III) (oxyhydr)oxide activated SR-AOPs systems, the activation mechanisms of PMS and PDS are different. For example, both radical (such as sulfate and hydroxyl radical) and non-radical (singlet oxygen) were generated by Mn(III) (oxyhydr)oxide activated PMS. In comparison, the activation of PDS by α-Mn2O3 and γ-MnOOH preferred to form the singlet oxygen and catalyst surface activated complex to remove the organic pollutants. Finally, research gaps are discussed to suggest future directions in context of applying radical-based advanced oxidation in wastewater treatment processes.

10.
Pharmacol Res ; 157: 104851, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32423865

RESUMO

Oxidative stress induced post-translational protein modifications are associated with the development of inflammatory hypersensitivities. At least 90% of cellular reactive oxygen species (ROS) are produced in the mitochondria, where the mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), is located. MnSOD's ability to reduce ROS is enhanced by the mitochondrial NAD+-dependent deacetylase sirtuin (SIRT3). SIRT3 can reduce ROS levels by deacetylating MnSOD and enhancing its ability to neutralize ROS or by enhancing the transcription of MnSOD and other oxidative stress-responsive genes. SIRT3 can be post-translationally modified through carbonylation which results in loss of activity. The contribution of post-translational SIRT3 modifications in central sensitization is largely unexplored. Our results reveal that SIRT3 carbonylation contributes to spinal MnSOD inactivation during carrageenan-induced thermal hyperalgesia in rats. Moreover, inhibiting ROS with natural and synthetic antioxidants, prevented SIRT3 carbonylation, restored the enzymatic activity of MnSOD, and blocked the development of thermal hyperalgesia. These results suggest that therapeutic strategies aimed at inhibiting post-translational modifications of SIRT3 may provide beneficial outcomes in pain states where ROS have been documented to play an important role in the development of central sensitization.


Assuntos
Analgésicos/farmacologia , Antioxidantes/farmacologia , Hiperalgesia/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Animais , Linhagem Celular Tumoral , Humanos , Hiperalgesia/enzimologia , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Masculino , Metaloporfirinas/farmacologia , Carbonilação Proteica , Ratos Sprague-Dawley , Resveratrol/farmacologia , Transdução de Sinais , Sirtuínas/genética , Medula Espinal/fisiopatologia , Superóxido Dismutase/metabolismo
11.
Chirality ; 29(12): 798-810, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28963733

RESUMO

Enantiomerically pure secondary alcohols are essential compounds in organic synthesis and are used as chiral auxiliaries and synthetic intermediates in the pharmaceutical, agrochemical, and fine chemical industries. One of the attractive and practical approaches to achieving optically pure secondary alcohols is oxidative kinetic resolution of racemic secondary alcohols using chiral Mn(III) salen complexes. In the last decade, several chiral Mn(III) salen complexes have been reported with excellent enantioselectivity and activity in the homogeneous and heterogeneous catalysis of the oxidative kinetic resolution of racemic secondary alcohols. This review article is an overview of the literature on the recent development of chiral Mn(III) salen complexes for oxidative kinetic resolution of racemic secondary alcohols. The catalytic activity of monomeric, dimeric, macrocyclic, polymeric, and silica/resin supported chiral Mn(III) salen complexes is discussed in detail.

12.
Chirality ; 27(2): 142-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25403736

RESUMO

Two new chiral mononuclear Mn((III)) complexes, [MnL((R)) Cl (C2 H5 OH)]•C2 H5 OH () and [MnL((S)) (CH3 OH)2 ]Cl•CH3 OH (), {H2 L = (R,R)-or (S,S)-N,N'-bis-(2-hydroxy-1-naphthalidehydene)-cyclohexanediamine} were synthesized and characterized by various physicochemical techniques. Bond valence sum (BVS) calculations and the Jahn-Teller effect indicate that the Mn centers are in a +3 oxidation state. The statuses of the two complexes in the solution were confirmed as a pair of enantiomers by electrospray ionization, mass spectrometry (ESI-MS) spectrum. The binding ability of the complexes with calf thymus CT-DNA was investigated by spectroscopic and viscosity measurements. Both of the complexes could interact with CT-DNA via an intercalative mode with the order of (R-enantiomer) > (S-enantiomer). Under the physiological conditions, the two compounds exhibit efficient DNA cleavage activities without any external agent, which also follows the order of R-enantiomer > S-enantiomer. Interestingly, the concentration-dependent DNA cleavage experiments indicate an optimal concentration of 17.5 µM. In addition, the interaction of the compounds with bovine serum albumin (BSA) was also investigated, which indicated that the complexes could quench the intrinsic fluorescence of BSA by a static quenching mechanism.


Assuntos
Compostos de Manganês/química , Compostos de Manganês/farmacologia , Técnicas de Química Sintética , Dicroísmo Circular , Cristalografia por Raios X , DNA/metabolismo , Clivagem do DNA , Ligantes , Compostos de Manganês/síntese química , Compostos de Manganês/metabolismo , Modelos Moleculares , Bases de Schiff/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Estereoisomerismo , Viscosidade
13.
Biochim Biophys Acta ; 1831(11): 1600-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23867907

RESUMO

Cardiac oxidative stress has been implicated in the pathogenesis of hypertrophy, cardiomyopathy and heart failure. Systemic deletion of the gene encoding adipose triglyceride lipase (ATGL), the enzyme that catalyzes the rate-limiting step of triglyceride lipolysis, results in a phenotype characterized by severe steatotic cardiac dysfunction. The objective of the present study was to investigate a potential role of oxidative stress in cardiac ATGL deficiency. Hearts of mice with global ATGL knockout were compared to those of mice with cardiomyocyte-restricted overexpression of ATGL and to those of wildtype littermates. Our results demonstrate that oxidative stress, measured as lucigenin chemiluminescence, was increased ~6-fold in ATGL-deficient hearts. In parallel, cytosolic NADPH oxidase subunits p67phox and p47phox were upregulated 4-5-fold at the protein level. Moreover, a prominent upregulation of different inflammatory markers (tumor necrosis factor α, monocyte chemotactant protein-1, interleukin 6, and galectin-3) was observed in those hearts. Both the oxidative and inflammatory responses were abolished upon cardiomyocyte-restricted overexpression of ATGL. Investigating the effect of oxidative and inflammatory stress on nitric oxide/cGMP signal transduction we observed a ~2.5-fold upregulation of soluble guanylate cyclase activity and a ~2-fold increase in cardiac tetrahydrobiopterin levels. Systemic treatment of ATGL-deficient mice with the superoxide dismutase mimetic Mn(III)tetrakis (4-benzoic acid) porphyrin did not ameliorate but rather aggravated cardiac oxidative stress. Our data suggest that oxidative and inflammatory stress seems involved in lipotoxic heart disease. Upregulation of soluble guanylate cyclase and cardiac tetrahydrobiopterin might be regarded as counterregulatory mechanisms in cardiac ATGL deficiency.


Assuntos
Eritrodermia Ictiosiforme Congênita/metabolismo , Lipase/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Doenças Musculares/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/fisiologia , Animais , Western Blotting , Modelos Animais de Doenças , Lipase/genética , Camundongos , Camundongos Mutantes , Modelos Biológicos , Miocárdio/patologia
14.
Pharmacol Res ; 89: 29-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25174989

RESUMO

Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event in GTN tolerance, an effect counteracted both in vitro and in vivo by novel peroxynitrite decomposition catalyst.


Assuntos
Aldeído Desidrogenase/metabolismo , Tolerância a Medicamentos , Metaloporfirinas/farmacologia , Nitroglicerina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , GMP Cíclico/metabolismo , Endotélio Vascular/efeitos dos fármacos , Humanos , Hipotensão/induzido quimicamente , Dinitrato de Isossorbida/análogos & derivados , Dinitrato de Isossorbida/farmacologia , Masculino , Músculo Liso Vascular/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Nitroglicerina/antagonistas & inibidores , Agregação Plaquetária/efeitos dos fármacos , Ratos , Trombina/antagonistas & inibidores , Trombina/farmacologia , Tirosina/análogos & derivados , Tirosina/biossíntese , Vasodilatadores/farmacologia
15.
Water Res ; 263: 122198, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098158

RESUMO

The cycling processes of elemental manganese (Mn), including the redox reactions of dissolved Mn(III) (dMn(III)), directly and indirectly influences the biogeochemical processes of many elements. Though increasing evidence indicates the widespread presence of dMn(III) mediates the fate of many elements, its role may be currently underestimated. There is both a lack of clear understanding of the historical research framework of dMn(III) and a systematic overview of its geochemical properties and detection methods. Therefore, the primary aim of this review is to outline the understanding of dMn(III) in multiple fields, including soil science, analytical chemistry, biochemistry, geochemistry, and water treatment, and summarize the formation pathways, species forms, and detection methods of dMn(III) in aquatic systems. This review considers how the characteristics of dMn(III), the intermediate formed in the single-electron reaction processes of Mn(II) oxidation and Mn(IV) reduction, determines its participation in environmental geochemical processes. Its widespread presence in diverse water systems and active redox properties coupling with various elements confirm its significant role in natural elemental geochemistry cycle and artificial water treatment processes. Therefore, further investigation into the role of dissolved Mn(III) in aquatic systems is warranted to unravel unexplored coupled elemental redox reaction processes mediated by dissolved Mn(III), filling in the gaps in our understanding of manganese environmental geochemistry, and providing a theoretical basis for recognizing the role of dMn(III) role in water treatment technologies.


Assuntos
Manganês , Manganês/química , Oxirredução , Poluentes Químicos da Água/química , Meio Ambiente
16.
Water Res ; 265: 122252, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39173353

RESUMO

Dissolved Mn(III), as a potent one-electron transfer oxidant, is ubiquitous in natural waters and sediments and actively involved in the transformation of organics in biogeochemical processes and water treatment. However, the important role of Mn(III) has long been overlooked because of its short life. This study was the first to investigate the performance of Mn(III) in organoarsenic transformation and to highlight the environmental implications. Both homogeneous and heterogeneous Mn(III)-based systems were effective to remove p-arsanilic acid (p-ASA, 15 µM) with degradation efficiency approaching 40.4 %-98.3 %. Two degradation pathways of p-ASA were proposed, in which As-C bond and amino group were vulnerable sites to Mn(III) attack, leading to the formation of more toxic arsenate (As(V)) and nitarsone. Through transforming organoarsenic to inorganic arsenic species, the removal efficiency of total arsenic and dissolved organics were enhanced to 65.1 %-95.5 % and 16.6 %-36.6 %, respectively, by post-treatment of coagulation or adsorption, accompanied with significant reduction of cytotoxicity and environmental risks. Particularly, polymeric ferric sulfate and granular activated alumina showed superior performance in the total As removal. Moreover, oxidation efficiency of Mn(III) was hardly affected by common cations and anions (e.g., Ca2+, Mg2+, NH4+, NO3-, SO4-), halide ions (e.g., Cl-, Br-) and natural organic matter, showing high robustness for organoarsenic removal under complicated water matrices. Overall, this study shed light on the significance of Mn(III) to the fate of organoarsenics in manganese-rich environments, and demonstrated the promising potential of Mn(III)-based strategies to achieve targeted decontamination in water/wastewater purification.


Assuntos
Ácido Arsanílico , Arsênio , Manganês , Poluentes Químicos da Água , Purificação da Água , Manganês/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Ácido Arsanílico/química , Adsorção
17.
Sci Total Environ ; 927: 172468, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615762

RESUMO

Aqueous trivalent manganese [Mn(III)], an important reactive intermediate, is ubiquitous in natural surface water containing humic acid (HA). However, the effect of low-molecular-weight organic acids (LMWOAs) on the formation, stability and reactivity of Mn(III) intermediate is still unknown. In this study, six LMWOAs, including oxalic acid (Oxa), salicylic acid (Sal), catechol (Cat), caffeic acid (Caf), gallic acid (Gal) and ethylene diamine tetraacetic acid (EDTA), were selected to investigate the effects of LMWOAs on the degradation of BPA induced by in situ formed Mn(III)-L in the HA/Mn(II) system under light irradiation. The chromophoric constituents of HA could absorb light radiation and generate superoxide radical to promote the oxidation of Mn(II) to form Mn(III), which was further involved in transformation of BPA. Our results implied that different LMWOAs did significantly impact on Mn(III) production and its degradation of BPA due to their different functional group. EDTA, Oxa and Sal extensively increased the Mn(III) concentration from 50 to 100 µM compared to the system without LMWOAs, following the order of EDTA > Oxa > Sal, and also enhanced the degradation of BPA with the similar patterns. In contrast, Cat, Caf and Gal had an inhibitory effect on the formation of Mn(III), which is likely because they consumed the superoxide radicals generated from irradiated HA, resulting in the inhibition of Mn(II) oxidation and further BPA removal. The product identification and theoretical calculation indicated that a single electron transfer process occurred between Mn(III)-L and BPA, forming BPA radicals and subsequent self-coupling products. Our results demonstrated that the LMWOAs with different structures could alter the cycling process of Mn via complexation and redox reactions, which would provide new implications for the removal of organic pollutants in surface water.

18.
Water Res ; 255: 121486, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564895

RESUMO

This study used a simple mechanical ball milling strategy to significantly improve the ability of Mn2O3 to activate peracetic acid (PAA) for sustainable and efficient degradation of organic micropollutant (like bisphenol A, BPA). BPA was successfully removed and detoxified via PAA activation by the bm-Mn2O3 within 30 min under neutral environment, with the BPA degradation kinetic rate improved by 3.4 times. Satisfactory BPA removal efficiency can still be achieved over a wide pH range, in actual water and after reuse of bm-Mn2O3 for four cycles. The change in hydrophilicity of Mn2O3 after ball milling evidently elevated the affinity of Mn2O3 for binding to PAA, while the reduction in particle size exposed more active sites contributing partially to catalytic oxidation. Further analysis revealed that BPA oxidation in the ball mill-treated Mn2O3 (bm-Mn2O3)/PAA process mainly depends on the bm-Mn2O3-PAA complex (i.e., Mn(III)-OO(O)CCH3) mediated non-radical pathway rather than R-O• and Mn(IV). Especially, the existence of the Mn(III)-PAA complex was definitely verified by in situ Raman spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Simultaneously, density functional theory calculations determined that PAA adsorbs readily on manganese sites thereby favoring the formation of Mn(III)-OO(O)CCH3 complexes. This study advances an in-depth understanding of the underlying mechanisms involved in the manganese oxide-catalyzed activation of PAA for superior non-radical oxidation of micropollutants.

19.
Water Res ; 243: 120368, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494743

RESUMO

Mn-modified biochars (BCs) were developed by pre-treatment of feedstock (MBCs) or post-modification of biochar (BCM), for simultaneous adsorption and degradation of a model pollutant, cephalexin. The apparent removal rates of cephalexin in the presence of MBCs (2.49 - 6.39 × 10-2 h-1) and BCM (13.3 × 10-3 h-1) were significantly higher than that in the presence of biochar prepared under similar conditions (4.2 × 10-3 h-1). While the •OH generated from the activation of dissolved O2 by the persistent free radicals (PFRs) and phenolic -OH on BC could cause degradation of cephalexin, its removal was drastically enhanced through direct oxidation by the MnOx and related Mn species on Mn-modified BCs. The removal of cephalexin by MBCs decreased as the solution pH was raised from 5.0 to 9.0, which supports the critical role played by Mn3O4 in its oxidation. Removal of cephalexin in the presence of MBCs and Mn3O4 was enhanced with the introduction of Mn(II) ions, suggesting that the Mn3O4 present on MBCs facilitates the re-oxidation of Mn(II) to highly reactive Mn(III). While MnO2 anchored on BCM also enhanced the cephalexin oxidation, the active sites of BC and MnO2 were partially destroyed during post-modification of BC, compromising the redox cycling of Mn(II)/Mn(III) and the generation of •OH. As a result, the performance of BCM in oxidizing cephalexin was inferior to that of MBCs. These findings shed new light on the development of environmentally benign sorbents capable of simultaneously adsorbing and oxidizing organic pollutants.


Assuntos
Compostos de Manganês , Óxidos , Adsorção , Oxirredução , Carvão Vegetal
20.
Water Res ; 232: 119681, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736246

RESUMO

Manganese oxides (MnxOy) are critical for determining the environmental behaviors and fate of antimonite (Sb(III)). However, little is known about the qualitative/quantitative connection between MnxOy structures and Sb(III) fate. Herein, the reactions of Sb(III) and six MnxOy with different structures were systematically investigated. The initial oxidation rates of Sb(III) (rinit) on six MnxOy decreased in the order of γ-MnO2>δ-MnO2>α-MnO2>γ-MnOOH>Mn3O4>ß-MnO2 (pHinitial=7.0), from 0.32 ± 0.04 to 11.17 ± 1.61 mmol/min/mol-Mn. The amounts of antimony retained (i.e., the sum of Sb(III) and antimonate (Sb(V))) on these MnxOy followed the same trend as that of oxidation. Oxidation of Sb(III) released Mn(II) and created more sites for adsorption. Outwardly, MnxOy with higher reduction potential (E0) and specific surface area (SSA) favored faster Sb(III) oxidation. Inwardly, Mn(III) and oxygen vacancies (Ov) exhibited a synergistic effect on Sb(III) oxidation. Mn(III) can easier accept electron than Mn(IV) based on the change in Gibbs free energy calculation. Ov can adsorb free oxygen to form surface oxygen (Osur) which is much more reactive than lattice oxygen (Olatt). Moreover, Ov is in close proximity to Mn(III) in high-valent MnxOy which facilitated the reactions between Sb(III) and Mn(III) through the enhancement of Sb(III) adsorption and electron transfer. Ov in low-valent MnxOy is adjacent to Mn(II), thus it showed weaker enhancement than that in high-valent MnxOy. Part of δ-MnO2 and almost all Mn3O4 were converted to γ-MnOOH during their reaction with Sb(III), while the other four MnxOy were barely changed. The results obtained provide mechanistic insight into the reactions occurring within Sb(III) and MnxOy, which are helpful for better understanding and prediction of the fate of Sb(III) in Mn-rich environments.


Assuntos
Compostos de Manganês , Óxidos , Óxidos/química , Compostos de Manganês/química , Antimônio/química , Manganês , Oxigênio , Oxirredução , Adsorção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa