Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.021
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(14): 3717-3730.e24, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214471

RESUMO

Neural activity underlying short-term memory is maintained by interconnected networks of brain regions. It remains unknown how brain regions interact to maintain persistent activity while exhibiting robustness to corrupt information in parts of the network. We simultaneously measured activity in large neuronal populations across mouse frontal hemispheres to probe interactions between brain regions. Activity across hemispheres was coordinated to maintain coherent short-term memory. Across mice, we uncovered individual variability in the organization of frontal cortical networks. A modular organization was required for the robustness of persistent activity to perturbations: each hemisphere retained persistent activity during perturbations of the other hemisphere, thus preventing local perturbations from spreading. A dynamic gating mechanism allowed hemispheres to coordinate coherent information while gating out corrupt information. Our results show that robust short-term memory is mediated by redundant modular representations across brain regions. Redundant modular representations naturally emerge in neural network models that learned robust dynamics.


Assuntos
Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Envelhecimento/fisiologia , Animais , Comportamento Animal , Cérebro/fisiologia , Comportamento de Escolha , Feminino , Luz , Masculino , Camundongos , Modelos Neurológicos , Córtex Motor/fisiologia , Neurônios/fisiologia
2.
Mol Cell ; 81(17): 3468-3480.e7, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314700

RESUMO

HECT ubiquitin ligases play essential roles in metazoan development and physiology. The HECT ligase HUWE1 is central to the cellular stress response by mediating degradation of key death or survival factors, including Mcl1, p53, DDIT4, and Myc. Although mutations in HUWE1 and related HECT ligases are widely implicated in human disease, our molecular understanding remains limited. Here we present a comprehensive investigation of full-length HUWE1, deepening our understanding of this class of enzymes. The N-terminal ∼3,900 amino acids of HUWE1 are indispensable for proper ligase function, and our cryo-EM structures of HUWE1 offer a complete molecular picture of this large HECT ubiquitin ligase. HUWE1 forms an alpha solenoid-shaped assembly with a central pore decorated with protein interaction modules. Structures of HUWE1 variants linked to neurodevelopmental disorders as well as of HUWE1 bound to a model substrate link the functions of this essential enzyme to its three-dimensional organization.


Assuntos
Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica/métodos , Células HEK293 , Humanos , Estresse Fisiológico/fisiologia , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 121(27): e2314291121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923990

RESUMO

Networks involved in information processing often have their nodes arranged hierarchically, with the majority of connections occurring in adjacent levels. However, despite being an intuitively appealing concept, the hierarchical organization of large networks, such as those in the brain, is difficult to identify, especially in absence of additional information beyond that provided by the connectome. In this paper, we propose a framework to uncover the hierarchical structure of a given network, that identifies the nodes occupying each level as well as the sequential order of the levels. It involves optimizing a metric that we use to quantify the extent of hierarchy present in a network. Applying this measure to various brain networks, ranging from the nervous system of the nematode Caenorhabditis elegans to the human connectome, we unexpectedly find that they exhibit a common network architectural motif intertwining hierarchy and modularity. This suggests that brain networks may have evolved to simultaneously exploit the functional advantages of these two types of organizations, viz., relatively independent modules performing distributed processing in parallel and a hierarchical structure that allows sequential pooling of these multiple processing streams. An intriguing possibility is that this property we report may be common to information processing networks in general.


Assuntos
Encéfalo , Caenorhabditis elegans , Conectoma , Rede Nervosa , Encéfalo/fisiologia , Encéfalo/anatomia & histologia , Animais , Conectoma/métodos , Humanos , Rede Nervosa/fisiologia , Modelos Neurológicos
4.
Proc Natl Acad Sci U S A ; 121(27): e2318198121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917007

RESUMO

Establishing modular binders as diagnostic detection agents represents a cost- and time-efficient alternative to the commonly used binders that are generated one molecule at a time. In contrast to these conventional approaches, a modular binder can be designed in silico from individual modules to, in principle, recognize any desired linear epitope without going through a selection and hit-validation process, given a set of preexisting, amino acid-specific modules. Designed armadillo repeat proteins (dArmRP) have been developed as modular binder scaffolds, and we report here the generation of highly specific dArmRP modules by yeast surface display selection, performed on a rationally designed dArmRP library. A selection strategy was developed to distinguish the binding difference resulting from a single amino acid mutation in the target peptide. Our reverse-competitor strategy introduced here employs the designated target as a competitor to increase the sensitivity when separating specific from cross-reactive binders that show similar affinities for the target peptide. With this switch in selection focus from affinity to specificity, we found that the enrichment during this specificity sort is indicative of the desired phenotype, regardless of the binder abundance. Hence, deep sequencing of the selection pools allows retrieval of phenotypic hits with only 0.1% abundance in the selectivity sort pool from the next-generation sequencing data alone. In a proof-of-principle study, a binder was created by replacing all corresponding wild-type modules with a newly selected module, yielding a binder with very high affinity for the designated target that has been successfully validated as a detection agent in western blot analysis.


Assuntos
Proteínas do Domínio Armadillo , Saccharomyces cerevisiae , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ligação Proteica , Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/química , Epitopos/genética , Biblioteca de Peptídeos
5.
Proc Natl Acad Sci U S A ; 120(43): e2304891120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37851677

RESUMO

Viazovska proved that the [Formula: see text] lattice sphere packing is the densest sphere packing in [Formula: see text] dimensions. Her proof relies on two inequalities between functions defined in terms of modular and quasimodular forms. We give a direct proof of these inequalities that does not rely on computer calculations.

6.
J Biol Chem ; 300(9): 107622, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098522

RESUMO

The primary distinction between insect and bacterial chitin degradation systems lies in the presence of a multi-modular endo-acting chitinase ChtII, in contrast to a processive exo-acting chitinase. Although the essential role of ChtII during insect development and its synergistic action with processive chitinase during chitin degradation has been established, the mechanistic understanding of how it deconstructs chitin remains largely elusive. Here OfChtII from the insect Ostrinia furnacalis was investigated employing comprehensive approaches encompassing biochemical and microscopic analyses. The results demonstrated that OfChtII truncations with more carbohydrate-binding modules (CBMs) exhibited enhanced hydrolysis activity, effectively yielding a greater proportion of fibrillary fractions from the compacted chitin substrate. At the single-molecule level, the CBMs in these OfChtII truncations have been shown to primarily facilitate chitin substrate association rather than dissociation. Furthermore, a greater number of CBMs was demonstrated to be essential for the enzyme to effectively bind to chitin substrates with high crystallinity. Through real-time imaging by high-speed atomic force microscopy, the OfChtII-B4C1 truncation with three CBMs was observed to shear chitin fibers, thereby generating fibrillary fragments and deconstructing the compacted chitin structure. This work pioneers in revealing the nanoscale mechanism of endo-acting multi-modular chitinase involved in chitin degradation, which provides an important reference for the rational design of chitinases or other glycoside hydrolases.

7.
Biostatistics ; 25(2): 354-384, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881693

RESUMO

Naive estimates of incidence and infection fatality rates (IFR) of coronavirus disease 2019 suffer from a variety of biases, many of which relate to preferential testing. This has motivated epidemiologists from around the globe to conduct serosurveys that measure the immunity of individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titer values) are then used as a proxy for previous or current infection. However, statistical methods that use this data to its full potential have yet to be developed. Previous researchers have discretized these continuous values, discarding potentially useful information. In this article, we demonstrate how multivariate mixture models can be used in combination with post-stratification to estimate cumulative incidence and IFR in an approximate Bayesian framework without discretization. In doing so, we account for uncertainty from both the estimated number of infections and incomplete deaths data to provide estimates of IFR. This method is demonstrated using data from the Action to Beat Coronavirus erosurvey in Canada.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Teorema de Bayes , Incidência , SARS-CoV-2
8.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38044477

RESUMO

Volitional eyes closing would shift brain's information processing modes from the "exteroceptive" to "interoceptive" state. This transition induced by the eyes closing is underpinned by a large-scale reconfiguration of brain network, which is still not fully comprehended. Here, we investigated the eyes-closing-relevant network reconfiguration by examining the functional integration among intrinsic modules. Our investigation utilized a publicly available dataset with 48 subjects being scanned in both eyes closed and eyes open conditions. It was found that the modular integration was significantly enhanced during the eyes closing, including lower modularity index, higher participation coefficient, less provincial hubs, and more connector hubs. Moreover, the eyes-closing-enhanced integration was particularly noticeable in the hubs of network, mainly located in the default-mode network. Finally, the hub-dominant modular enhancement was positively correlated to the eyes-closing-reduced entropy of BOLD signal, suggesting a close connection to the diminished consciousness of individuals. Collectively, our findings strongly suggested that the enhanced modular integration with substantially reorganized hubs characterized the large-scale cortical underpinning of the volitional eyes closing.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Olho , Mapeamento Encefálico , Cognição , Rede Nervosa/diagnóstico por imagem
9.
Mol Cell Proteomics ; 22(1): 100451, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423812

RESUMO

Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.


Assuntos
Domínios de Homologia de src , Quinases da Família src , Quinases da Família src/metabolismo , Fosfoproteínas/metabolismo , Fosforilação
10.
Proc Natl Acad Sci U S A ; 119(41): e2210032119, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191227

RESUMO

We study the rational torsion subgroup of the modular Jacobian [Formula: see text] for N a square-free integer. We give a proof of a result of Ohta on a generalization of Ogg's conjecture: For a prime number [Formula: see text], the p-primary part of the rational torsion subgroup equals that of the cuspidal subgroup. Whereas previous proofs of this result used explicit computations of the cardinalities of these groups, we instead use their structure as modules for the Hecke algebra.

11.
Proc Natl Acad Sci U S A ; 119(23): e2111833119, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639689

RESUMO

SignificanceSmall modular reactors (SMRs), proposed as the future of nuclear energy, have purported cost and safety advantages over existing gigawatt-scale light water reactors (LWRs). However, few studies have assessed the implications of SMRs for the back end of the nuclear fuel cycle. The low-, intermediate-, and high-level waste stream characterization presented here reveals that SMRs will produce more voluminous and chemically/physically reactive waste than LWRs, which will impact options for the management and disposal of this waste. Although the analysis focuses on only three of dozens of proposed SMR designs, the intrinsically higher neutron leakage associated with SMRs suggests that most designs are inferior to LWRs with respect to the generation, management, and final disposal of key radionuclides in nuclear waste.

12.
Proc Natl Acad Sci U S A ; 119(45): e2208249119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322737

RESUMO

We give a proof of the slope classicality theorem in classical and higher Coleman theory for modular curves of arbitrary level using the completed cohomology classes attached to overconvergent modular forms. The latter give an embedding of the quotient of overconvergent modular forms by classical modular forms, which is the obstruction space for classicality in either cohomological degree, into a unitary representation of [Formula: see text]. The Up operator becomes a double coset, and unitarity yields slope vanishing.

13.
Nano Lett ; 24(37): 11590-11598, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225632

RESUMO

As a nonenzymatic DNA signal amplification technique, localized hybridization chain reaction (LHCR) was designed to improve the limitations in response speed and low sensitivity of conventional free diffusional HCR (hybridization chain reaction). However, it is still confronted with the challenges of complicated DNA scaffolds with low loading capacity and a time-consuming process of diffusion. Herein, we introduced modular assembly of a DNA minimal scaffold for coassembly of DNA hairpins for amplified fluorescence imaging of mRNA in situ. DNA hairpins were spatially bound to two Y-shaped modules to form H-shaped DNA modules, and then multiple H-shaped DNA modules can further assemble into an H-module-based hairpin scaffold (HHS). Benefiting from highly spatial localization and high loading capacity, the HHS system showed higher sensitivity and faster speed. It has also been proven to work perfectly in vitro and in vivo, which could provide a promising bioanalysis system for low abundance biomolecule detection.


Assuntos
DNA , Hibridização de Ácido Nucleico , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/análise , DNA/química , DNA/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Imagem Óptica/métodos
14.
Proteins ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078105

RESUMO

The docking of an acyl carrier protein (ACP) domain with a downstream ketosynthase (KS) domain in each module of a polyketide synthase (PKS) helps ensure accurate biosynthesis. If the polyketide chain bound to the ACP has been properly modified by upstream processing enzymes and is compatible with gatekeeping residues in the KS tunnel, a transacylation reaction can transfer it from the 18.1-Å phosphopantetheinyl arm of the ACP to the reactive cysteine of the KS. AlphaFold-Multimer predicts a general interface for these transacylation checkpoints. Half of the solutions obtained for 50 ACP/KS pairs show the KS motif TxLGDP forming the first turn of an α-helix, as in reported structures, while half show it forming a type I ß-turn not previously observed. Solutions with the latter conformation may represent how these domains are relatively positioned during the transacylation reaction, as the entrance to the KS active site is relatively open and the phosphopantetheinylated ACP serine and the reactive KS cysteine are relatively closer-17.2 versus 20.9 Å, on average. To probe the predicted interface, 20 mutations were made to KS surface residues within the model triketide lactone synthase P1-P6-P7. The activities of these mutants are consistent with the proposed interface.

15.
Proteins ; 92(6): 776-794, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258321

RESUMO

Three-dimensional (3D) structure information, now available at the proteome scale, may facilitate the detection of remote evolutionary relationships in protein superfamilies. Here, we illustrate this with the identification of a novel family of protein domains related to the ferredoxin-like superfold, by combining (i) transitive sequence similarity searches, (ii) clustering approaches, and (iii) the use of AlphaFold2 3D structure models. Domains of this family were initially identified in relation with the intracellular biomineralization of calcium carbonates by Cyanobacteria. They are part of the large heavy-metal-associated (HMA) superfamily, departing from the latter by specific sequence and structural features. In particular, most of them share conserved basic amino acids  (hence their name CoBaHMA for Conserved Basic residues HMA), forming a positively charged surface, which is likely to interact with anionic partners. CoBaHMA domains are found in diverse modular organizations in bacteria, existing in the form of monodomain proteins or as part of larger proteins, some of which are membrane proteins involved in transport or lipid metabolism. This suggests that the CoBaHMA domains may exert a regulatory function, involving interactions with anionic lipids. This hypothesis might have a particular resonance in the context of the compartmentalization observed for cyanobacterial intracellular calcium carbonates.


Assuntos
Sequência de Aminoácidos , Proteínas de Bactérias , Metais Pesados , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Metais Pesados/química , Metais Pesados/metabolismo , Domínios Proteicos , Cianobactérias/metabolismo , Cianobactérias/química , Cianobactérias/genética , Ferredoxinas/química , Ferredoxinas/metabolismo , Dobramento de Proteína
16.
BMC Genomics ; 25(1): 512, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783209

RESUMO

BACKGROUND: Bacterial RNA polymerase holoenzyme requires sigma70 factors to start transcription by identifying promoter elements. Cyanobacteria possess multiple sigma70 factors to adapt to a wide variety of ecological niches. These factors are grouped into two categories: primary sigma factor initiates transcription of housekeeping genes during normal growth conditions, while alternative sigma factors initiate transcription of specific genes under particular conditions. However, the present classification does not consider the modular organization of their structural domains, introducing therefore multiple functional and structural biases. A comprehensive analysis of this protein family in cyanobacteria is needed to address these limitations. RESULTS: We investigated the structure and evolution of sigma70 factors in cyanobacteria, analyzing their modular architecture and variation among unicellular, filamentous, and heterocyst-forming morphotypes. 4,193 sigma70 homologs were found with 59 distinct modular patterns, including six essential and 29 accessory domains, such as DUF6596. 90% of cyanobacteria typically have 5 to 17 sigma70 homologs and this number likely depends on the strain morphotype, the taxonomic order and the genome size. We classified sigma70 factors into 12 clans and 36 families. According to taxonomic orders and phenotypic traits, the number of homologs within the 14 main families was variable, with the A.1 family including the primary sigma factor since this family was found in all cyanobacterial species. The A.1, A.5, C.1, E.1, J.1, and K.1 families were found to be key sigma families that distinguish heterocyst-forming strains. To explain the diversification and evolution of sigma70, we propose an evolutionary scenario rooted in the diversification of a common ancestor of the A1 family. This scenario is characterized by evolutionary events including domain losses, gains, insertions, and modifications. The high occurrence of the DUF6596 domain in bacterial sigma70 proteins, and its association with the highest prevalence observed in Actinobacteria, suggests that this domain might be important for sigma70 function. It also implies that the domain could have emerged in Actinobacteria and been transferred through horizontal gene transfer. CONCLUSION: Our analysis provides detailed insights into the modular domain architecture of sigma70, introducing a novel robust classification. It also proposes an evolutionary scenario explaining their diversity across different taxonomical orders.


Assuntos
Cianobactérias , Evolução Molecular , Filogenia , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Variação Genética
17.
Mol Cancer ; 23(1): 53, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468291

RESUMO

BACKGROUND: Chimeric antigen receptor-T (CAR-T) cells therapy is one of the novel immunotherapeutic approaches with significant clinical success. However, their applications are limited because of long preparation time, high cost, and interpersonal variations. Although the manufacture of universal CAR-T (U-CAR-T) cells have significantly improved, they are still not a stable and unified cell bank. METHODS: Here, we tried to further improve the convenience and flexibility of U-CAR-T cells by constructing novel modular universal CAR-T (MU-CAR-T) cells. For this purpose, we initially screened healthy donors and cultured their T cells to obtain a higher proportion of stem cell-like memory T (TSCM) cells, which exhibit robust self-renewal capacity, sustainability and cytotoxicity. To reduce the alloreactivity, the T cells were further edited by double knockout of the T cell receptor (TCR) and class I human leukocyte antigen (HLA-I) genes utilizing the CRISPR/Cas9 system. The well-growing and genetically stable universal cells carrying the CAR-moiety were then stored as a stable and unified cell bank. Subsequently, the SDcatcher/GVoptiTag system, which generate an isopeptide bond, was used to covalently connect the purified scFvs of antibody targeting different antigens to the recovered CAR-T cells. RESULTS: The resulting CAR-T cells can perform different functions by specifically targeting various cells, such as the eradication of human immunodeficiency virus type 1 (HIV-1)-latenly-infected cells or elimination of T lymphoma cells, with similar efficiency as the traditional CAR-T cells did. CONCLUSION: Taken together, our strategy allows the production of CAR-T cells more modularization, and makes the quality control and pharmaceutic manufacture of CAR-T cells more feasible.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos
18.
Small ; : e2404311, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39040007

RESUMO

Microrobots show great potential in biomedical applications such as drug delivery and cell manipulations. However, current microrobots are mostly fabricated as a single entity and type and the tasks they can perform are limited. In this paper, modular microrobots, with an overall size of 120 µm × 200 µm, are proposed with responsive mating components, made from stimuli-responsive hydrogels, and application specific end-effectors for microassembly tasks. The modular microrobots are fabricated based on photolithography and two-photon polymerization together or separately. Two types of modular microrobots are created based on the location of the responsive mating component. The first type of modular microrobot has a mating component that can shrink upon stimulation, while the second type has a double bilayer structure that can realize an open and close motion. The exchange of end-effectors with an identical actuation base is demonstrated for both types of microrobots. Finally, different manipulation tasks are performed with different types of end-effectors.

19.
Small ; 20(37): e2400292, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38659378

RESUMO

Aqueous Zn batteries employing mildly acidic electrolytes have emerged as promising contenders for safe and cost-effective energy storage solutions. Nevertheless, the intrinsic reversibility of the Zn anode becomes a focal concern due to the involvement of acidic electrolyte, which triggers Zn corrosion and facilitates the deposition of insulating byproducts. Moreover, the unregulated growth of Zn over cycling amplifies the risk of internal short-circuiting, primarily induced by the formation of Zn dendrites. In this study, a class of glucose-derived monomers and a block copolymer are synthesized through a building-block assembly strategy, ultimately leading to uncover the optimal polymer structure that suppresses the Zn corrosion while allowing efficient ion conduction with a substantial contribution from cation transport. Leveraging these advancements, remarkable enhancements are achieved in the realm of Zn reversibility, exemplified by a spectrum of performance metrics, including robust cycling stability without voltage overshoot and short-circuiting during 3000 h of cycling, stable operation at a high depth of charge/discharge of 75% and a high current density, >95% Coulombic efficiency over 2000 cycles, successful translation of the anode improvement to full cell performance. These polymer designs offer a transformative path based on the modular synthesis of polymeric coatings toward highly reversible Zn anode.

20.
Small ; : e2310573, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453689

RESUMO

Electrochemical synthesis of H2 and high-value-added chemicals is an efficient and cost-effective approach that can be powered using renewable electricity. Compared to a conventional electrochemical production system, the modular electrochemical production system (MEPS) based on a solid redox mediator (SRM) can separate the anodic and cathodic reactions in time and space. The MEPS can avoid the use of membranes and formation of useless products, as well as eliminate the mutual dependence of production rates at anode and cathode. The SRM can temporarily store or release electrons and ions to pair with cathodic and anodic reactions, respectively, in MEPS. Designing of SRMs with large charge capacity and good cyclability is of great significance for constructing a high-performance MEPS. This work summarizes the design principles, recent advances in MEPS based on SRM, and application in redox flow cells. Moreover, structure design strategies as well as in situ characterization techniques and theoretical calculations for SRM is also proposed. It is expected to promote the vigorous development of MEPS based on SRM. Finally, the challenges and perspectives of MEPS based on SRM are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa