Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542073

RESUMO

Modulated electro-hyperthermia (mEHT) is an adjuvant cancer therapy that enables tumor-selective heating (+2.5 °C). In this study, we investigated whether mEHT accelerates the tumor-specific delivery of doxorubicin (DOX) from lyso-thermosensitive liposomal doxorubicin (LTLD) and improves its anticancer efficacy in mice bearing a triple-negative breast cancer cell line (4T1). The 4T1 cells were orthotopically injected into Balb/C mice, and mEHT was performed on days 9, 12, and 15 after the implantation. DOX, LTLD, or PEGylated liposomal DOX (PLD) were administered for comparison. The tumor size and DOX accumulation in the tumor were measured. The cleaved caspase-3 (cC3) and cell proliferation were evaluated by cC3 or Ki67 immunohistochemistry and Western blot. The LTLD+mEHT combination was more effective at inhibiting tumor growth than the free DOX and PLD, demonstrated by reductions in both the tumor volume and tumor weight. LTLD+mEHT resulted in the highest DOX accumulation in the tumor one hour after treatment. Tumor cell damage was associated with cC3 in the damaged area, and with a reduction in Ki67 in the living area. These changes were significantly the strongest in the LTLD+mEHT-treated tumors. The body weight loss was similar in all mice treated with any DOX formulation, suggesting no difference in toxicity. In conclusion, LTLD combined with mEHT represents a novel approach for DOX delivery into cancer tissue.


Assuntos
Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias , Camundongos , Animais , Lipossomos , Antígeno Ki-67 , Hipertermia Induzida/métodos , Doxorrubicina/farmacologia , Hipertermia , Linhagem Celular Tumoral , Polietilenoglicóis
2.
BMC Cancer ; 20(1): 603, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600429

RESUMO

BACKGROUND: Modulated electro-hyperthermia (mEHT) is a form of hyperthermia used in cancer treatment. mEHT has demonstrated the ability to activate host immunity by inducing the release of heat shock proteins, triggering apoptosis, and destroying the integrity of cell membranes to enhance cellular uptake of chemo-drugs in tumor cells. Both curcumin and resveratrol are phytochemicals that function as effective antioxidants, immune activators, and potential inhibitors of tumor development. However, poor bioavailability is a major obstacle for use in clinical cancer treatment. METHODS: This purpose of this study was to investigate whether mEHT can increase anti-cancer efficacy of nanosized curcumin and resveratrol in in vitro and in vivo models. The in vitro study included cell proliferation assay, cell cycle, and apoptosis analysis. Serum concentration was analyzed for the absorption of curcumin and resveratrol in SD rat model. The in vivo CT26/BALB/c animal tumor model was used for validating the safety, tumor growth curve, and immune cell infiltration within tumor tissues after combined mEHT/curcumin/resveratrol treatment. RESULTS: The results indicate co-treatment of mEHT with nano-curcumin and resveratrol significantly induced cell cycle arrest and apoptosis of CT26 cells. The serum concentrations of curcumin and resveratrol were significantly elevated when mEHT was applied. The combination also inhibited the growth of CT26 colon cancer by inducing apoptosis and HSP70 expression of tumor cells while recruiting CD3+ T-cells and F4/80+ macrophages. CONCLUSIONS: The results of this study have suggested that this natural, non-toxic compound can be an effective anti-tumor strategy for clinical cancer therapy. mEHT can enable cellular uptake of potential anti-tumor materials and create a favorable tumor microenvironment for an immunological chain reaction that improves the success of combined treatments of curcumin and resveratrol.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Colorretais/terapia , Curcumina/administração & dosagem , Terapia por Estimulação Elétrica/métodos , Hipertermia Induzida/métodos , Resveratrol/administração & dosagem , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Disponibilidade Biológica , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Linhagem Celular Tumoral/transplante , Neoplasias Colorretais/patologia , Terapia Combinada/métodos , Curcumina/efeitos adversos , Curcumina/farmacocinética , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Nanopartículas/administração & dosagem , Ratos , Resveratrol/efeitos adversos , Resveratrol/farmacocinética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
3.
Int J Hyperthermia ; 37(1): 263-272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180481

RESUMO

Introduction: HIV infection is associated with increased treatment-related toxicity and worse outcomes in locally advanced cervical cancer patients (LACC), especially in resource-constrained settings. Local control (LC) in a phase III randomized, controlled trial investigating modulated electro-hyperthermia (mEHT) on LACC patients in South Africa (ethics registration: M120477/M190295), was significantly higher in participants randomized to receive chemoradiotherapy (CRT) with mEHT compared to CRT alone (stratum: HIV status, accounting for age and stage). This analysis investigates whether mEHT adds to the toxicity profile of CRT in HIV-positive LACC participants.Methods: Inclusion criteria: signed informed consent; International Federation of Gynecology and Obstetrics stages IIB to IIIB squamous cell carcinoma of the cervix; HIV-positive patients: CD4 count >200 cell/µL/on antiretroviral treatment for >6 months; eligible for CRT with radical intent. Recruitment: January 2014 to November 2017 (ClinicalTrials.gov: NCT03332069). Acute toxicity (evaluated using CTCAE v4 criteria) and quality of life (according to EORTC forms) in 206 participants randomized for treatment were evaluated alongside the LC results to determine safety and efficacy in HIV-positive participants.Results: Compliance to mEHT treatment was high (97% completed ≥8 treatments) with no significant differences in CRT-related toxicity between treatment groups or between HIV-positive and -negative participants. Adverse events attributed to mEHT were minor, even in obese patients, and did not affect CRT compliance. Participants treated with mEHT reported improved fatigue, pain, emotional and cognitive functioning.Conclusion: mEHT did not cause unexpected CRT-related toxicities and is a safe treatment modality for HIV-positive patients, with minor limitations regarding body weight, even in a low-resource setting.


Assuntos
Infecções por HIV/terapia , Hipertermia Induzida/métodos , Qualidade de Vida/psicologia , Neoplasias do Colo do Útero/terapia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade
4.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872532

RESUMO

The benefits of high-fever range hyperthermia have been utilized in medicine from the Ancient Greek culture to the present day. Amplitude-modulated electro-hyperthermia, induced by a 13.56 MHz radiofrequency current (mEHT, or Oncothermia), has been an emerging means of delivering loco-regional clinical hyperthermia as a complementary of radiation-, chemo-, and molecular targeted oncotherapy. This unique treatment exploits the metabolic shift in cancer, resulting in elevated oxidative glycolysis (Warburg effect), ion concentration, and electric conductivity. These promote the enrichment of electric fields and induce heat (controlled at 42 °C), as well as ion fluxes and disequilibrium through tumor cell membrane channels. By now, accumulating preclinical studies using in vitro and in vivo models of different cancer types have revealed details of the mechanism and molecular background of the oncoreductive effects of mEHT monotherapy. These include the induction of DNA double-strand breaks, irreversible heath and cell stress, and programmed cells death; the upregulation of molecular chaperones and damage (DAMP) signaling, which may contribute to a secondary immunogenic tumor cell death. In combination therapies, mEHT proved to be a good chemosensitizer through increasing drug uptake and tumor reductive effects, as well as a good radiosensitizer by downregulating hypoxia-related target genes. Recently, immune stimulation or intratumoral antigen-presenting dendritic cell injection have been able to extend the impact of local mEHT into a systemic "abscopal" effect. The complex network of pathways emerging from the published mEHT experiments has not been overviewed and arranged yet into a framework to reveal links between the pieces of the "puzzle". In this paper, we review the mEHT-related damage mechanisms published in tumor models, which may allow some geno-/phenotype treatment efficiency correlations to be exploited both in further research and for more rational clinical treatment planning when mEHT is involved in combination therapies.


Assuntos
Terapia por Estimulação Elétrica/métodos , Hipertermia Induzida/métodos , Neoplasias/terapia , Hipóxia Celular , Terapia Combinada , Dano ao DNA , Glicólise , Humanos
5.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707717

RESUMO

The poor outcome of pancreas ductal adenocarcinomas (PDAC) is frequently linked to therapy resistance. Modulated electro-hyperthermia (mEHT) generated by 13.56 MHz capacitive radiofrequency can induce direct tumor damage and promote chemo- and radiotherapy. Here, we tested the effect of mEHT either alone or in combination with radiotherapy using an in vivo model of Panc1, a KRAS and TP53 mutant, radioresistant PDAC cell line. A single mEHT shot of 60 min induced ~50% loss of viable cells and morphological signs of apoptosis including chromatin condensation, nuclear shrinkage and apoptotic bodies. Most mEHT treatment related effects exceeded those of radiotherapy, and these were further amplified after combining the two modalities. Treatment related apoptosis was confirmed by a significantly elevated number of annexin V single-positive and cleaved/activated caspase-3 positive tumor cells, as well as sub-G1-phase tumor cell fractions. mEHT and mEHT+radioterapy caused the moderate accumulation of γH2AX positive nuclear foci, indicating DNA double-strand breaks and upregulation of the cyclin dependent kinase inhibitor p21waf1 besides the downregulation of Akt signaling. A clonogenic assay revealed that both mono- and combined treatments affected the tumor progenitor/stem cell populations too. In conclusion, mEHT treatment can contribute to tumor growth inhibition and apoptosis induction and resolve radioresistance of Panc1 PDAC cells.


Assuntos
Carcinoma Ductal Pancreático/terapia , Hipertermia Induzida/métodos , Neoplasias Pancreáticas/terapia , Apoptose , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Terapia Combinada , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Humanos , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tolerância a Radiação , Terapia por Radiofrequência
6.
Int J Hyperthermia ; 36(1): 9-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30428738

RESUMO

PURPOSE: Modulated electro-hyperthermia (mEHT), known as oncothermia, is an anticancer therapy that induces radiofrequency thermal damage to the cancer tissues. This study aimed to evaluate the potential effectiveness of mEHT as a therapeutic tool in ovarian and cervical cancer. MATERIALS AND METHODS: We used both tumor-bearing mice and ovarian and cervical OVCAR-3, SK-OV-3, HeLa and SNU-17 cancer cell lines to investigate the effects of mEHT in vivo and in vitro, respectively, and determine whether it was enhanced by cotreatment with an autophagy inhibitor. RESULTS: We discovered that phosphorylation of p38, a stress-dependent kinase, was induced at the Thr180/Tyr182 residue in cancer cells exposed to mEHT. Apoptotic markers such as cleaved caspase-3 and poly-ADP ribose polymerase (PARP) were increased in OVCAR-3 and SNU-17 cells. Fluorescence-activated cell sorting (FACS) analysis showed a significant increase in the population of sub-G1 mEHT-exposed cells, which are dying and apoptotic cells. mEHT also reduced both weight and volume of xenograft tumors in mice transplanted with ovarian and cervical cancer cells and patient-derived cancer tissues. We determined that mEHT-induced cellular damage recovery was mediated by autophagy and, therefore, expectedly, cotreatment with mEHT and 3-methyladenine (3-MA), an autophagy inhibitor, more effectively inhibited cancer cell growth than individual treatment did. CONCLUSIONS: mEHT treatment alone was sufficient to inhibit cancer growth, while a combined treatment with mEHT and an autophagy inhibitor amplified this inhibition effect.


Assuntos
Terapia Combinada/métodos , Hipertermia Induzida/métodos , Neoplasias Ovarianas/terapia , Neoplasias do Colo do Útero/terapia , Animais , Autofagia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos
7.
Int J Hyperthermia ; 34(7): 953-960, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29297234

RESUMO

INTRODUCTION: Mild hyperthermia has been known to enhance the response of tumours to radiotherapy or chemotherapy by increasing tumour blood flow, thereby increasing tumour oxygenation or drug delivery. The purpose of this study was to assess the changes in temperature and blood flow in human cervical cancer in response to regional heating with modulated electro-hyperthermia (mEHT). METHODS: The pelvic area of 20 patients with cervical carcinoma was heated with mEHT. The peri-tumour temperature was measured using an internal organ temperature probe. The tumour blood flow was measured using 3D colour Doppler ultrasound by determining the peak systolic velocity/end-diastolic velocity ratio (S/D ratio) and the resistance index (RI) within blood vessels. RESULTS: The mean peri-tumour temperature was 36.7 ± 0.2 °C before heating and increased to 38.5 ± 0.8 °C at the end of heating for 60 min. The marked declines in RI and S/D values strongly demonstrated that heating significantly increased tumour blood perfusion. CONCLUSIONS: Regional heating of the pelvic area with mEHT significantly increased the peri-tumour temperature and improved the blood flow in cervical cancer. This is the first demonstration that the blood flow in cervical cancer is increased by regional hyperthermia. Such increases in temperature and blood flow may account for the clinical observations that hyperthermia improves the response of cervical cancer to radiotherapy or chemotherapy.


Assuntos
Hipertermia Induzida/métodos , Fluxo Sanguíneo Regional/fisiologia , Neoplasias do Colo do Útero/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Temperatura , Neoplasias do Colo do Útero/patologia
8.
Int J Hyperthermia ; 31(8): 869-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26507458

RESUMO

PURPOSE: Nefopam is a widely available analgesic for the management of pain. The aim of this study was to reveal the effect of regional hyperthermia of the abdominal area on the pharmacokinetics of nefopam. MATERIALS AND METHODS: A randomised, single-dose, crossover, open-label study was conducted to reveal the effect of hyperthermia using modulated electro-hyperthermia on the pharmacokinetics of nefopam. The pharmacokinetics of orally administered nefopam without hyperthermia was studied in 12 healthy volunteers and then 7 days later they were treated with nefopam plus modulated electro-hyperthermia to the abdominal area for 1 h. Blood samples were collected up to 24 h after the drug administration. From the blood concentration-time curve, the maxinum plasma concentration (C(max)), time to C(max) (T(max)) and the area under the curve (AUC) were obtained. The safety and tolerability of these treatments were also assessed. RESULTS: The geometric mean ratios (GMRs) ((nefopam + modulated electro-hyperthermia)/nefopam) and the associated 90% confidence intervals (CIs) for C(max), AUC(last) and AUC(inf) were 1.2804 (1.1155∼1.4696), 1.0512 (0.9555∼1.1566) and 1.0612 (0.9528∼1.1819), respectively. The increase in C(max) was statistically significant, and T(max) was significantly shortened. CONCLUSIONS: The significant increase in C(max) and decrease in T(max) indicated that modulated electro-hyperthermia increased the absorption of the orally administered nefopam, thereby transitionally increasing the blood concentration of the drug. The AUC is an important parameter that contributes to the therapeutic effect of drugs. The lack of significant change in AUC suggests that modulated electro-hyperthermia may increases the absorption of orally administered drugs without increasing the systemic adverse effect of the drugs.


Assuntos
Analgésicos não Narcóticos/farmacocinética , Hipertermia Induzida/métodos , Nefopam/farmacocinética , Abdome , Administração Oral , Adulto , Analgésicos não Narcóticos/sangue , Estudos Cross-Over , Eletrodos , Feminino , Voluntários Saudáveis , Humanos , Hipertermia Induzida/efeitos adversos , Absorção Intestinal , Masculino , Pessoa de Meia-Idade , Nefopam/sangue , Adulto Jovem
9.
Mol Oncol ; 18(4): 1012-1030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217262

RESUMO

Triple-negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks modern therapy options. Modulated electro-hyperthermia (mEHT) is an adjuvant therapy with demonstrated clinical efficacy for the treatment of various cancer types. In this study, we report that mEHT monotherapy stimulated interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) expression, and consequently cyclooxygenase 2 (COX-2), which may favor a cancer-promoting tumor microenvironment. Thus, we combined mEHT with nonsteroid anti-inflammatory drugs (NSAIDs): a nonselective aspirin, or the selective COX-2 inhibitor SC236, in vivo. We demonstrate that NSAIDs synergistically increased the effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor destruction ratio was observed in the combination SC236 + mEHT groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3, suggesting that apoptosis played an important role. IL-1ß and COX-2 expression were significantly reduced by the combination therapies. In addition, a custom-made nanostring panel demonstrated significant upregulation of genes participating in the formation of the extracellular matrix. Similarly, in the B16F10 melanoma model, mEHT and aspirin synergistically reduced the number of melanoma nodules in the lungs. In conclusion, mEHT combined with a selective COX-2 inhibitor may offer a new therapeutic option in TNBC.


Assuntos
Benzenossulfonamidas , Hipertermia Induzida , Melanoma , Pirazóis , Neoplasias de Mama Triplo Negativas , Humanos , Melanoma/tratamento farmacológico , Ciclo-Oxigenase 2 , Neoplasias de Mama Triplo Negativas/terapia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Microambiente Tumoral
10.
Sci Rep ; 14(1): 8241, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589452

RESUMO

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Assuntos
Aminopiridinas , Hipertermia Induzida , Indazóis , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , RNA Mensageiro , Fatores de Transcrição de Choque Térmico/genética
11.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765840

RESUMO

BACKGROUND: Glioblastoma is one of the most difficult to treat and most aggressive brain tumors, having a poor survival rate. The use of non-invasive modulated electro-hyperthermia (mEHT) and Tumor Treating Fields (TTF) devices has been introduced in the last few decades, both of which having proven anti-tumor effects. METHODS: A meta-analysis of randomized and observational studies about mEHT and TTF was conducted. RESULTS: A total of seven and fourteen studies about mEHT and TTF were included, with a total number of 450 and 1309 cases, respectively. A 42% [95% confidence interval (95% CI): 25-59%] 1-year survival rate was found for mEHT, which was raised to 61% (95% CI: 32-89%) if only the studies conducted after 2008 were investigated. In the case of TTF, 1-year survival was 67% (95% CI: 53-81%). Subgroup analyses revealed that newly diagnosed patients might get extra benefits from the early introduction of the devices (mEHT all studies: 73% vs. 37%, p = 0.0021; mEHT studies after 2008: 73% vs. 54%, p = 0.4214; TTF studies: 83% vs. 52%, p = 0.0083), compared with recurrent glioblastoma. CONCLUSIONS: Our meta-analysis showed that both mEHT and TTF can improve glioblastoma survival, and the most benefit may be achieved in newly diagnosed cases.

12.
World J Clin Oncol ; 14(6): 215-226, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37398545

RESUMO

BACKGROUND: Several studies report the useful therapeutic results of regional hyperthermia in association with chemotherapy (CHT) and radiotherapy for the treatment of pancreatic cancer. Modulated electro-hyperthermia (mEHT) is a new hyperthermia technique that induces immunogenic death or apoptosis of pancreatic cancer cells in laboratory experiments and increases tumor response rate and survival in pancreatic cancer patients, offering beneficial therapeutic effects against this severe type of cancer. AIM: To assess survival, tumor response and toxicity of mEHT alone or combined with CHT compared with CHT for the treatment of locally advanced or metastatic pancreatic cancer. METHODS: This was a retrospective data collection on patients affected by locally advanced or metastatic pancreatic cancer (stage III and IV) performed in 9 Italian centers, members of International Clinical Hyperthermia Society-Italian Network. This study included 217 patients, 128 (59%) of them were treated with CHT (no-mEHT) and 89 (41%) patients received mEHT alone or in association with CHT. mEHT treatments were performed applying a power of 60-150 watts for 40-90 min, simultaneously or within 72 h of administration of CHT. RESULTS: Median patients' age was 67 years (range 31-92 years). mEHT group had a median overall survival greater than non-mEHT group (20 mo, range 1.6-24, vs 9 mo, range 0.4-56.25, P < 0.001). mEHT group showed a higher number of partial responses (45% vs 24%, P = 0.0018) and a lower number of progressions (4% vs 31%, P < 0.001) than the no-mEHT group, at the three months follow-up. Adverse events were observed as mild skin burns in 2.6% of mEHT sessions. CONCLUSION: mEHT seems safe and has beneficial effects on survival and tumor response of stage III-IV pancreatic tumor treatment. Further randomized studies are warranted to confirm or not these results.

13.
Cancers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205649

RESUMO

(1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue's natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly "nonthermally" excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39-41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.

14.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158924

RESUMO

(1) Background: Modulated electro-hyperthermia (mEHT) is a mild to moderate, capacitive-coupled heating technology that uses amplitude modulation to enhance the cell-killing effects of the treatment. We present three year survival results and a cost effectiveness analysis from an ongoing randomised controlled Phase III trial involving 210 participants evaluating chemoradiotherapy (CRT) with/without mEHT, for the management of locally advanced cervical cancer (LACC) in a resource constrained setting (Ethics Approval: M120477/M704133; ClinicalTrials.gov ID: NCT033320690). (2) Methods: We report hazard ratios (HR); odds ratio (OR), and 95% confidence intervals (CI) for overall survival and disease free survival (DFS) at two and three years in the ongoing study. Late toxicity, quality of life (QoL), and a cost effectiveness analysis (CEA) using a Markov model are also reported. (3) Results: Disease recurrence at two and three years was significantly reduced by mEHT (HR: 0.67, 95%CI: 0.48-0.93, p = 0.017; and HR: 0.70, 95%CI: 0.51-0.98, p = 0.035; respectively). There were no significant differences in late toxicity between the groups, and QoL was significantly improved in the mEHT group. In the CEA, mEHT + CRT dominated the model over CRT alone. (4) Conclusions: CRT combined with mEHT improves QoL and DFS rates, and lowers treatment costs, without increasing toxicity in LACC patients, even in resource-constrained settings.

16.
Cells ; 11(11)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35681533

RESUMO

The role of Heat Shock Proteins (HSPs) is a "double-edged sword" with regards to tumors. The location and interactions of HSPs determine their pro- or antitumor activity. The present review includes an overview of the relevant functions of HSPs, which could improve their antitumor activity. Promoting the antitumor processes could assist in the local and systemic management of cancer. We explore the possibility of achieving this by manipulating the electromagnetic interactions within the tumor microenvironment. An appropriate electric field may select and affect the cancer cells using the electric heterogeneity of the tumor tissue. This review describes the method proposed to effect such changes: amplitude-modulated radiofrequency (amRF) applied with a 13.56 MHz carrier frequency. We summarize the preclinical investigations of the amRF on the HSPs in malignant cells. The preclinical studies show the promotion of the expression of HSP70 on the plasma membrane, participating in the immunogenic cell death (ICD) pathway. The sequence of guided molecular changes triggers innate and adaptive immune reactions. The amRF promotes the secretion of HSP70 also in the extracellular matrix. The extracellular HSP70 accompanied by free HMGB1 and membrane-expressed calreticulin (CRT) form damage-associated molecular patterns encouraging the dendritic cells' maturing for antigen presentation. The process promotes CD8+ killer T-cells. Clinical results demonstrate the potential of this immune process to trigger a systemic effect. We conclude that the properly applied amRF promotes antitumor HSP activity, and in situ, it could support the tumor-specific immune effects produced locally but acting systemically for disseminated cells and metastatic lesions.


Assuntos
Proteínas de Choque Térmico , Neoplasias , Apresentação de Antígeno , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Imunoterapia , Neoplasias/metabolismo , Microambiente Tumoral
17.
Diseases ; 9(4)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34842668

RESUMO

Our present oncological treatment arsenal has limited treatment options for pancreatic ductal adenocarcinoma (PDAC). Extended reviews have shown the benefits of hyperthermia for PDAC, supporting the perspectives with the improvements of the treatment possibilities. METHODS: A retrospective single-center case-control study was conducted with the inclusion of 78 inoperable PDAC patients. Age-, sex-, chemotherapy-, stage-, and ascites formation-matched patients were assigned to two equal groups based on the application of modulated electro-hyperthermia (mEHT). The EHY2030 mEHT device was used. RESULTS: A trend in favor of mEHT was found in overall survival (p = 0.1420). To further evaluate the potential beneficial effects of mEHT, the presence of distant metastasis or ascites in the patients' oncological history was investigated. Of note, mEHT treatment had a favorable effect on patients' overall survival in metastatic disease (p = 0.0154), while less abdominal fluid responded to the mEHT treatment in a more efficient way (p ≤ 0.0138). CONCLUSION: mEHT treatment was associated with improved overall survival in PDAC in our single-center retrospective case-control study. The outcome measures encourage us to design a randomized prospective clinical study to further confirm the efficiency of mEHT in this patient cohort.

18.
World J Clin Oncol ; 12(11): 1064-1071, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34909400

RESUMO

BACKGROUND: An increasing number of studies report the beneficial effects of regional hyperthermia in association with chemotherapy (CHT) and radiotherapy for the treatment of pancreatic cancer; in particular, the use of modulated electro-hyperthermia (mEHT) results in increased survival and tumor response. AIM: To compare outcomes of CHT alone or in association with mEHT for the treatment of stage III and IV pancreatic cancer. METHODS: This was an observational retrospective study; data were collected for patients with stage III-IV pancreatic cancer that were treated with CHT alone or in combination with mEHT from 2003 to 2019. A total of 158 patients were included in the study out 270 patients screened in four Italian hospitals; 58 (37%) of these received CHT + mEHT and 100 (63%) CHT. CHT was mainly gemcitabine-based regimens in both groups. RESULTS: Overall (19.5 mo vs 11.02 mo, P < 0.001) and progression-free (12 mo vs 3 mo, P < 0.001) survival were better for the CHT + mEHT group compared to the CHT group. The association of mEHT resulted also in an improvement of tumor response with disease control rate 95% vs 58% (P < 0.001) at 3 mo. Toxicity was comparable in the two study groups, and mEHT related adverse events were limited in 8 patients presenting G1-2 skin burns. CONCLUSION: The addition of mEHT to systemic CHT improved overall and progression-free survival and local tumor control with comparable toxicity.

19.
Pathol Oncol Res ; 27: 1610048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955688

RESUMO

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is frequently associated to high treatment resistance. Gemcitabine (GEM) alone or in combination is the most used chemotherapy for unresecable PDACs. Here we studied whether modulated electro-hyperthermia (mEHT), a non-invasive complementary treatment, can support the effect of GEM on PDAC cells in vitro. The LD20 for the GEM-resistant Panc1 cells proved to be 200× higher than for the drug-sensitive Capan1. The mEHT alone caused significant apoptosis in Capan1 cultures as confirmed by the elevated SubG1 phase cell fraction and increased number of cleaved Caspase-3 positive cells 48 h after treatment, with an additive effect when GEM was used after hyperthermia. These were accompanied by reduced number of G1, S, and G2/M phase cells and elevated expression of the cyclin-dependent kinase inhibitor p21waf1 protein. In GEM-resistant Panc1 cells, an initial apoptosis was detected by flow cytometry 24 h after mEHT ± GEM treatment, which however diminished by 48 h at persistent number of cleaved Caspase-3 positive tumor cells. Though GEM monotherapy reduced the number of tumor progenitor colonies in Capan1 cell line, an additive colony inhibitory effect of mEHT was observed after mEHT + GEM treatment. The heat shock induced Hsp27 and Hsp70 proteins, which are known to sensitize PDAC cells to GEM were upregulated in both Capan1 and Panc1 cells 24 h after mEHT treatment. The level of E-Cadherin, a cell adhesion molecule, increased in Capan1 cells after mEHT + GEM treatment. In conclusion, in GEM-sensitive PDAC cells mEHT treatment alone induced cell death and cell cycle inhibition and improved GEM efficiency in combination, which effects were milder and short-term up to 24 h in the GEM-resistant Panc1 cells. Our data further support the inclusion of hyperthermia, in particular of mEHT, into the traditional oncotherapy regimens of PDAC.


Assuntos
Carcinoma Ductal Pancreático/terapia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hipertermia Induzida , Neoplasias Pancreáticas/terapia , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Adesão Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Proteínas de Choque Térmico/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Gencitabina
20.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917524

RESUMO

Modulated electro-hyperthermia (mEHT) is a selective cancer treatment used in human oncology complementing other therapies. During mEHT, a focused electromagnetic field (EMF) is generated within the tumor inducing cell death by thermal and nonthermal effects. Here we investigated molecular changes elicited by mEHT using multiplex methods in an aggressive, therapy-resistant triple negative breast cancer (TNBC) model. 4T1/4T07 isografts inoculated orthotopically into female BALB/c mice were treated with mEHT three to five times. mEHT induced the upregulation of the stress-related Hsp70 and cleaved caspase-3 proteins, resulting in effective inhibition of tumor growth and proliferation. Several acute stress response proteins, including protease inhibitors, coagulation and heat shock factors, and complement family members, were among the most upregulated treatment-related genes/proteins as revealed by next-generation sequencing (NGS), Nanostring and mass spectrometry (MS). pathway analysis demonstrated that several of these proteins belong to the response to stimulus pathway. Cell culture treatments confirmed that the source of these proteins was the tumor cells. The heat-shock factor inhibitor KRIBB11 reduced mEHT-induced complement factor 4 (C4) mRNA increase. In conclusion, mEHT monotherapy induced tumor growth inhibition and a complex stress response. Inhibition of this stress response is likely to enhance the effectiveness of mEHT and other cancer treatments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa