Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 814
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 453-481, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750319

RESUMO

The innate immune system detects pathogens via germline-encoded receptors that bind to conserved pathogen ligands called pathogen-associated molecular patterns (PAMPs). Here we consider an additional strategy of pathogen sensing called effector-triggered immunity (ETI). ETI involves detection of pathogen-encoded virulence factors, also called effectors. Pathogens produce effectors to manipulate hosts to create a replicative niche and/or block host immunity. Unlike PAMPs, effectors are often diverse and rapidly evolving and can thus be unsuitable targets for direct detection by germline-encoded receptors. Effectors are instead often sensed indirectly via detection of their virulence activities. ETI is a viable strategy for pathogen sensing and is used across diverse phyla, including plants, but the molecular mechanisms of ETI are complex compared to simple receptor/ligand-based PAMP detection. Here we survey the mechanisms and functions of ETI, with a particular focus on emerging insights from animal studies. We suggest that many examples of ETI may remain to be discovered, hiding in plain sight throughout immunology.


Assuntos
Reconhecimento da Imunidade Inata , Moléculas com Motivos Associados a Patógenos , Humanos , Animais , Moléculas com Motivos Associados a Patógenos/metabolismo , Virulência
2.
Annu Rev Immunol ; 40: 15-43, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34985928

RESUMO

Our understanding of the functions of the IL-1 superfamily cytokine and damage-associated molecular pattern IL-33 continues to evolve with our understanding of homeostasis and immunity. The early findings that IL-33 is a potent driver of type 2 immune responses promoting parasite expulsion, but also inflammatory diseases like allergy and asthma, have been further supported. Yet, as the importance of a type 2 response in tissue repair and homeostasis has emerged, so has the fundamental importance of IL-33 to these processes. In this review, we outline an evolving understanding of IL-33 immunobiology, paying particular attention to how IL-33 directs a network of ST2+ regulatory T cells, reparative and regulatory macrophages, and type 2 innate lymphoid cells that are fundamental to tissue development, homeostasis, and repair.


Assuntos
Hipersensibilidade , Interleucina-33 , Animais , Citocinas , Homeostase , Humanos , Imunidade Inata , Linfócitos
3.
Cell ; 182(4): 1044-1061.e18, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32795414

RESUMO

There is an unmet clinical need for improved tissue and liquid biopsy tools for cancer detection. We investigated the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. Among traditional exosome markers, CD9, HSPA8, ALIX, and HSP90AB1 represent pan-EVP markers, while ACTB, MSN, and RAP1B are novel pan-EVP markers. To confirm that EVPs are ideal diagnostic tools, we analyzed proteomes of TE- (n = 151) and plasma-derived (n = 120) EVPs. Comparison of TE EVPs identified proteins (e.g., VCAN, TNC, and THBS2) that distinguish tumors from normal tissues with 90% sensitivity/94% specificity. Machine-learning classification of plasma-derived EVP cargo, including immunoglobulins, revealed 95% sensitivity/90% specificity in detecting cancer. Finally, we defined a panel of tumor-type-specific EVP proteins in TEs and plasma, which can classify tumors of unknown primary origin. Thus, EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias/diagnóstico , Animais , Biomarcadores Tumorais/sangue , Linhagem Celular , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Aprendizado de Máquina , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Neoplasias/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Sensibilidade e Especificidade , Tetraspanina 29/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo
4.
Immunity ; 54(5): 916-930.e7, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979588

RESUMO

Macrophages initiate inflammatory responses via the transcription factor NFκB. The temporal pattern of NFκB activity determines which genes are expressed and thus, the type of response that ensues. Here, we examined how information about the stimulus is encoded in the dynamics of NFκB activity. We generated an mVenus-RelA reporter mouse line to enable high-throughput live-cell analysis of primary macrophages responding to host- and pathogen-derived stimuli. An information-theoretic workflow identified six dynamical features-termed signaling codons-that convey stimulus information to the nucleus. In particular, oscillatory trajectories were a hallmark of responses to cytokine but not pathogen-derived stimuli. Single-cell imaging and RNA sequencing of macrophages from a mouse model of Sjögren's syndrome revealed inappropriate responses to stimuli, suggestive of confusion of two NFκB signaling codons. Thus, the dynamics of NFκB signaling classify immune threats through six signaling codons, and signal confusion based on defective codon deployment may underlie the etiology of some inflammatory diseases.


Assuntos
Códon/genética , Macrófagos/fisiologia , NF-kappa B/genética , Transdução de Sinais/genética , Animais , Células Cultivadas , Citocinas/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Sjogren/genética , Fator de Transcrição RelA/genética
5.
Trends Biochem Sci ; 49(8): 717-728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906725

RESUMO

Lytic cell death culminates in cell swelling and plasma membrane rupture (PMR). The cellular contents released, including proteins, metabolites, and nucleic acids, can act as danger signals and induce inflammation. During regulated cell death (RCD), lysis is actively initiated and can be preceded by an initial loss of membrane integrity caused by pore-forming proteins, allowing small molecules and cytokines to exit the cell. A recent seminal discovery showed that ninjurin1 (NINJ1) is the common executioner of PMR downstream of RCD, resulting in the release of large proinflammatory molecules and representing a novel target of cell death-associated lysis. We summarize recent developments in understanding membrane integrity and rupture of the plasma membrane with a focus on NINJ1.


Assuntos
Moléculas de Adesão Celular Neuronais , Membrana Celular , Humanos , Membrana Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Animais , Fatores de Crescimento Neural/metabolismo , Apoptose
6.
Immunol Rev ; 321(1): 350-370, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093416

RESUMO

Dendritic cells (DCs) are myeloid cells bridging the innate and adaptive immune system. By cross-presenting tumor-associated antigens (TAAs) liberated upon spontaneous or therapy-induced tumor cell death to T cells, DCs occupy a pivotal position in the cancer immunity cycle. Over the last decades, the mechanisms linking cancer cell death to DC maturation, have been the focus of intense research. Growing evidence supports the concept that the mere transfer of TAAs during the process of cell death is insufficient to drive immunogenic DC maturation unless this process is coupled with the release of immunomodulatory signals by dying cancer cells. Malignant cells succumbing to a regulated cell death variant called immunogenic cell death (ICD), foster a proficient interface with DCs, enabling their immunogenic maturation and engagement of adaptive immunity against cancer. This property relies on the ability of ICD to exhibit pathogen-mimicry hallmarks and orchestrate the emission of a spectrum of constitutively present or de novo-induced danger signals, collectively known as damage-associated molecular patterns (DAMPs). In this review, we discuss how DCs perceive and decode danger signals emanating from malignant cells undergoing ICD and provide an outlook of the major signaling and functional consequences of this interaction for DCs and antitumor immunity.


Assuntos
Morte Celular Imunogênica , Neoplasias , Humanos , Células Dendríticas , Morte Celular , Antígenos de Neoplasias , Imunidade Adaptativa
7.
Immunity ; 48(3): 487-499.e5, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29525521

RESUMO

Although interferon-induced proteins with tetratricopeptide repeats (IFIT proteins) inhibit infection of many viruses by recognizing their RNA, the regulatory mechanisms involved remain unclear. Here we report a crystal structure of cap 0 (m7GpppN) RNA bound to human IFIT1 in complex with the C-terminal domain of human IFIT3. Structural, biochemical, and genetic studies suggest that IFIT3 binding to IFIT1 has dual regulatory functions: (1) extending the half-life of IFIT1 and thereby increasing its steady-state amounts in cells; and (2) allosterically regulating the IFIT1 RNA-binding channel, thereby enhancing the specificity of recognition for cap 0 but not cap 1 (m7GpppNm) or 5'-ppp RNA. Mouse Ifit3 lacks this key C-terminal domain and does not bind mouse Ifit1. The IFIT3 interaction with IFIT1 is important for restricting infection of viruses lacking 2'-O methylation in their RNA cap structures. Our experiments establish differences in the regulation of IFIT1 orthologs and define targets for modulation of human IFIT protein activity.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Camundongos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , RNA/química , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Especificidade da Espécie , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 121(23): e2319499121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814867

RESUMO

Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.


Assuntos
Arabidopsis , Epitopos , Solanum lycopersicum , Epitopos/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Arabidopsis/imunologia , Arabidopsis/genética , Genoma Bacteriano , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Bactérias/imunologia , Bactérias/genética , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/imunologia , Proteínas e Peptídeos de Choque Frio/metabolismo
9.
Plant Physiol ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230888

RESUMO

The mirid bug (Riptortus pedestris), a major soybean pest, migrates into soybean fields during the pod filling stage and causes staygreen syndrome, which leads to substantial yield losses. The mechanism by which R. pedestris elicits soybean (Glycine max) defenses and counter-defenses remains largely unexplored. In this study, we characterized a protein family from R. pedestris, designated Riptortus pedestris HAMP 1 (RPH1) and its putative paralogs (RPH1L1, 2, 3, 4, and 5), whose members exhibit dual roles in triggering and inhibiting plant immunity. RPH1 and RPH1L1 function as herbivore-associated molecular patterns (HAMPs), activating pattern-triggered immunity (PTI) in tobacco (Nicotiana benthamiana) and G. max. Furthermore, RPH1 stimulates jasmonic acid and ethylene biosynthesis in G. max, thereby enhancing its resistance to R. pedestris feeding. Additionally, RPH1 homologs are universally conserved across various herbivorous species, with many homologs also acting as HAMPs that trigger plant immunity. Interestingly, the remaining RPH1 putative paralogs (RPH1L2-5) serve as effectors that counteract RPH1-induced PTI, likely by disrupting the extracellular perception of RPH1. This research uncovers a HAMP whose homologs are conserved in both chewing and piercing-sucking insects. Moreover, it unveils an extracellular evasion mechanism utilized by herbivores to circumvent plant immunity using functionally differentiated paralogs.

10.
Mol Cell ; 65(6): 965-973, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306512

RESUMO

Necroptosis (programmed necrosis) occurs in response to TNF, Fas, or TRAIL, as well as certain TLR ligands, when caspase activity required for apoptosis is blocked. Necroptosis is typically considered a highly pro-inflammatory mode of cell death, due to release of intracellular "danger signals" that promote inflammation. However, because most pro-necroptotic stimuli are intrinsically highly pro-inflammatory-due to their ability to initiate the synthesis of numerous cytokines and chemokines-the inflammatory consequences of necroptosis are complex. Here, we suggest that necroptosis might have anti-inflammatory effects in certain settings, through curbing excessive TNF- or TLR-induced inflammatory cytokine production.


Assuntos
Apoptose , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Animais , Caspases/metabolismo , Genótipo , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos Knockout , Necrose , Fenótipo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Plant Cell Physiol ; 65(5): 748-761, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38372612

RESUMO

Bacillus pumilus TUAT1 acts as plant growth-promoting rhizobacteria for various plants like rice and Arabidopsis. Under stress conditions, B. pumilus TUAT1 forms spores with a thick peptidoglycan (PGN) cell wall. Previous research showed that spores were significantly more effective than vegetative cells in enhancing plant growth. In Arabidopsis, lysin motif proteins, LYM1, LYM3 and CERK1, are required for recognizing bacterial PGNs to mediate immunity. Here, we examined the involvement of PGN receptor proteins in the plant growth promotion (PGP) effects of B. pumilus TUAT1 using Arabidopsis mutants defective in PGN receptors. Root growth of wild-type (WT), cerk1-1, lym1-1 and lym1-2 mutant plants was significantly increased by TUAT1 inoculation, but this was not the case for lym3-1 and lym3-2 mutant plants. RNA-seq analysis revealed that the expression of a number of defense-related genes was upregulated in lym3 mutant plants. These results suggested that B. pumilus TUAT1 may act to reduce the defense response, which is dependent on a functional LYM3. The expression of the defense-responsive gene, WRKY29, was significantly induced by the elicitor flg-22, in both WT and lym3 mutant plants, while this induction was significantly reduced by treatment with B. pumilus TUAT1 and PGNs in WT, but not in lym3 mutant plants. These findings suggest that the PGNs of B. pumilus TUAT1 may be recognized by the LYM3 receptor protein, suppressing the defense response, which results in plant growth promotion in a trade-off between defense and growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bacillus pumilus , Regulação da Expressão Gênica de Plantas , Peptidoglicano , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Peptidoglicano/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Bacillus pumilus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Mutação , Imunidade Vegetal
12.
Biochem Biophys Res Commun ; 714: 149976, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677007

RESUMO

BACKGROUND: The systemic treatment of advanced hepatocellular carcinoma is currently facing a bottleneck. EGCG, the primary active compound in green tea, exhibits anti-tumor effects through various pathways. However, there is a lack of study on EGCG-induced immunogenic cell death (ICD) in hepatocellular carcinoma. METHODS: In a previous study, we successfully synthesized folate-modified thermosensitive nano-materials, encapsulated EGCG within nanoparticles using a hydration method, and established the EGCG nano-drug delivery system. The viability of HepG2 cells post-EGCG treatment was assessed via the MTT and EdU assays. Cell migration and invasion were evaluated through wound healing experiments, Transwell assays, and Annexin V-FITC/PI assay for apoptosis detection. Additionally, the expression levels of damage-associated molecular patterns (DAMPs) were determined using immunofluorescence, ATP measurement, RT-qPCR, and Western Blot. RESULTS: The drug sensitivity test revealed an IC50 value of 96.94 µg/mL for EGCG in HepG2 cells after 48 h. EGCG at a low concentration (50 µg/mL) significantly impeded the migration and invasion of HepG2 cells, showing a clear dose-dependent response. Moreover, medium to high EGCG concentrations induced cell apoptosis in a dose-dependent manner and upregulated DAMPs expression. Immunofluorescence analysis demonstrated a notable increase in CRT expression following low-concentration EGCG treatment. As EGCG concentration increased, cell viability decreased, leading to CRT exposure on the cell membrane. EGCG also notably elevated ATP levels. RT-qPCR and Western Blot analyses indicated elevated expression levels of HGMB1, HSP70, and HSP90 following EGCG intervention. CONCLUSION: EGCG not only hinders the proliferation, migration, and invasion of hepatocellular carcinoma cells and induces apoptosis, but also holds significant clinical promise in the treatment of malignant tumors by promoting ICD and DAMPs secretion.


Assuntos
Carcinoma Hepatocelular , Catequina , Catequina/análogos & derivados , Ácido Fólico , Neoplasias Hepáticas , Humanos , Catequina/farmacologia , Catequina/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Ácido Fólico/química , Ácido Fólico/farmacologia , Movimento Celular/efeitos dos fármacos , Morte Celular Imunogênica/efeitos dos fármacos , Nanosferas/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Temperatura , Calreticulina/metabolismo
13.
Cancer Immunol Immunother ; 73(3): 53, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353760

RESUMO

Colorectal cancer (CRC) is a major cause of cancer-related morbidity and mortality worldwide. Despite several clinical advances the survival of patients with advanced colorectal cancer remains limited, demanding newer approaches. The immune system plays a central role in cancer development, propagation, and treatment response. Within the bowel, the colorectal mucosa is a key barrier and site of immune regulation that is generally immunosuppressive. Nonetheless, within this tumour microenvironment, it is evident that anti-neoplastic treatments which cause direct cytotoxic and cytostatic effects may also induce immunogenic cell death (ICD), a form of regulated cell death that leads to an anti-tumour immune response. Therefore, novel ICD inducers and molecular biomarkers of ICD action are urgently needed to advance treatment options for advanced CRC. This article reviews our knowledge of ICD in CRC.


Assuntos
Neoplasias Colorretais , Morte Celular Imunogênica , Humanos , Neoplasias Colorretais/tratamento farmacológico , Imunossupressores , Microambiente Tumoral
14.
Mol Genet Genomics ; 299(1): 60, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801463

RESUMO

Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.


Assuntos
Diabetes Mellitus Tipo 2 , Proteína 3 Supressora da Sinalização de Citocinas , Tuberculose , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Projetos Piloto , Tuberculose/genética , Tuberculose/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Controle Glicêmico , Perfilação da Expressão Gênica , Idoso , Adulto , Redes Reguladoras de Genes , Estudos de Casos e Controles , Transcriptoma/genética , Suscetibilidade a Doenças
15.
Clin Exp Immunol ; 217(3): 263-278, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38695079

RESUMO

Neonate responses to pathogen-associated molecular patterns (PAMPS) differ from adults; such understanding is poor in Indian neonates, despite recognized significant infectious risk. Immune profiling analysis was undertaken of 10 secreted mediators contextualized with cellular source induced by six PAMPs in umbilical cord (CB; n = 21) and adult-blood (PBMC; n = 14) from a tertiary care hospital in South India. Differential cytokine expression analysis (minimum log2-fold difference; adj P-value < 0.05) identified bacterial PAMPs induced higher concentrations of IL-1ß, IL-10, TNF-α in adults versus IL-8, GM-CSF, IFN-γ, and IL-2 in CB. CB responded to poly I:C and SARS-CoV-2 lysate with a dominant IL-8 response, whereas in PBMC, CXCL-10 dominated poly I:C, but not SARS-CoV-2, responses, highlighting potential IL-8 importance, in the absence of Type I Interferons, in antiviral CB immunity. Candida albicans was the only PAMP to uniformly induce higher secretion of effectors in CB. The predominant source of IL-8/IL-6/TNF-α/IL-1ß in both CB and PBMC was polyfunctional monocytes and IFN-γ/IL-2/IL-17 from innate lymphocytes. Correlation matrix analyses revealed IL-8 to be the most differentially regulated, correlating positively in CB versus negatively in PBMC with IL-6, GM-CSF, IFN-γ, IL-2, consistent with more negatively regulated cytokine modules in adults, potentially linked to higher anti-inflammatory IL-10. Cord and adult blood from India respond robustly to PAMPs with unique effector combinations. These data provide a strong foundation to monitor, explore, mechanisms that regulate such immunity during the life course, an area of significant global health importance given infection-related infant mortality incidence.


Assuntos
COVID-19 , Quimiocina CXCL10 , Sangue Fetal , Interleucina-8 , Leucócitos Mononucleares , Monócitos , SARS-CoV-2 , Humanos , Índia , Adulto , Sangue Fetal/imunologia , Leucócitos Mononucleares/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , Monócitos/imunologia , Interleucina-8/imunologia , Quimiocina CXCL10/imunologia , Feminino , Masculino , Recém-Nascido , Poli I-C/imunologia , Interleucina-10 , Candida albicans/imunologia , Citocinas/metabolismo
16.
New Phytol ; 241(4): 1763-1779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823353

RESUMO

Perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP). PB1CP negatively regulates RBOHD and the resistance against the fungal pathogen Colletotrichum higginsianum. PB1CP competes with BIK1 for binding to RBOHD in vitro. Furthermore, PAMP treatment enhances the PB1CP-RBOHD interaction, thereby leading to the dissociation of phosphorylated BIK1 from RBOHD in vivo. PB1CP localizes at the cell periphery and PAMP treatment induces relocalization of PB1CP and RBOHD to the same small endomembrane compartments. Additionally, overexpression of PB1CP in Arabidopsis leads to a reduction in the abundance of RBOHD protein, suggesting the possible involvement of PB1CP in RBOHD endocytosis. We found PB1CP, a novel negative regulator of RBOHD, and revealed its possible regulatory mechanisms involving the removal of phosphorylated BIK1 from RBOHD and the promotion of RBOHD endocytosis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , NADPH Oxidases , Imunidade Vegetal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/metabolismo , Oxirredutases/metabolismo , Fagocitose , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Histopathology ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39428913

RESUMO

Myeloid neoplasms include myeloproliferative and myelodysplastic neoplasms and acute myeloid leukaemia. Historically, these diseases have been diagnosed based on clinicopathological features with sometimes arbitrary thresholds that have persisted even as molecular features were gradually incorporated into their classification. As such, although current diagnostic approaches can classify the majority of myeloid neoplasms accurately using a combination of molecular and clinicopathological features, some areas of overlap persist and occasionally pose diagnostic challenges. These include overlap across BCR::ABL1-negative myeloproliferative neoplasms; between clonal cytopenia of undetermined significance and myelodysplastic neoplasms; myelodysplastic/myeloproliferative neoplasms; and, detection of KIT mutations in myeloid neoplasms other than mastocytosis, raising the prospect of systemic mastocytosis. Molecular testing has become state of the art in the diagnostic work-up of myeloid neoplasms, and molecular patterns can inherently help to classify overlapping entities if considered within a framework of haematological presentations. For future development, molecular testing will likely include whole genome and transcriptome sequencing, and primarily molecular classifications of myeloid neoplasms have already been suggested. As such, genetically defined groups should still constitute the basis for our understanding of disease development from early onset to progression, while clinicopathological features could then be used to describe the stage of the disease rather than the specific type of myeloid neoplasm.

18.
Toxicol Appl Pharmacol ; 486: 116952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705399

RESUMO

The incidence of contrast-induced acute kidney injury (CI-AKI) has escalated to become the third most prevalent cause of hospital-acquired AKI, with a lack of efficacious interventions. Berberine (BBR) possesses diverse pharmacological effects and exhibits renoprotective properties; however, limited knowledge exists regarding its impact on CI-AKI. Therefore, our study aimed to investigate the protective effects and underlying mechanisms of BBR on CI-AKI in a mice model, focusing on the nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3) inflammasome and mitophagy. The CI-AKI mice model was established by administering NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg), indomethacin (10 mg/kg), and iohexol (11 g/kg) following water deprivation. A pretreatment of 100 mg/kg of BBR was orally administered to the mice for two weeks. Renal injury markers, damage-associated molecular patterns (DAMPs), renal histopathology, mitochondrial morphology, autophagosomes, and potential mechanisms were investigated. BBR effectively reduced levels of renal injury biomarkers such as serum cystatin C, urea nitrogen, and creatinine, downregulated the protein level of kidney injury molecule 1 (KIM1), and mitigated renal histomorphological damage. Moreover, BBR reduced DAMPs, including high mobility group box-1 (HMGB1), heat shock protein 70 (HSP70), and uric acid (UA). It also alleviated oxidative stress and inflammatory factors such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß). Furthermore, the activation of NLRP3 inflammasome was attenuated in the BBR pretreatment group, as evidenced by both mRNA and protein levels. Electron microscopy and western blotting examination revealed that BBR mitigated mitochondrial damage and enhanced mitophagy. Additionally, BBR increased the P-AMPK/AMPK ratio. These findings indicated that BBR exerted a protective effect against CI-AKI by suppressing NLRP3 inflammasome activation and modulating mitophagy, providing a potential therapeutic strategy for its prevention.


Assuntos
Injúria Renal Aguda , Berberina , Meios de Contraste , Modelos Animais de Doenças , Inflamassomos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Masculino , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Berberina/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
19.
BMC Cancer ; 24(1): 932, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090618

RESUMO

BACKGROUND: Esophageal carcinoma is a growing concern in regions that have a high incidence of human papillomavirus (HPV) infection such as East Africa. HPV, particularly the high-risk genotypes, is increasingly recognized as a risk factor for esophageal carcinoma. We set out to investigate the prevalence and associated factors of high-risk HPV in formalin-fixed paraffin-embedded (FFPE) tissue blocks with esophageal carcinoma at Bugando Medical Center, a tertiary referral hospital in Mwanza, Tanzania, East Africa. METHODS: A total of 118 esophageal carcinoma FFPE tissue blocks, collected from January 2021 to December 2022, were analyzed. Genomic DNA was extracted from these tissues, and multiplex polymerase chain reaction (PCR) was performed to detect HPV using degenerate primers for the L1 region and type-specific primers for detecting HPV16, HPV18, and other high-risk HPV genotypes. Data were collected using questionnaires and factors associated with high-risk HPV genotypes were analyzed using STATA version 15 software. RESULTS: Of the 118 patients' samples investigated, the mean age was 58.3 ± 13.4 years with a range of 29-88 years. The majority of the tissue blocks were from male patients 81/118 (68.7%), and most of them were from patients residing in Mwanza region 44/118 (37.3%). Esophageal Squamous Cell Carcinoma (ESCC) was the predominant histological type 107/118 (91.0%). Almost half of the tissue blocks 63/118 (53.3%) tested positive for high-risk HPV. Among these, HPV genotype 16 (HPV16) was the most common 41/63 (65.1%), followed by HPV genotype 18 (HPV18) 15/63 (23.8%), and the rest were other high-risk HPV genotypes detected by the degenerate primers 7/63 (11.1%). The factors associated with high-risk HPV genotypes were cigarette smoking (p-value < 0.001) and alcohol consumption (p-value < 0.001). CONCLUSION: A substantial number of esophageal carcinomas from Bugando Medical Center in Tanzania tested positive for HPV, with HPV genotype 16 being the most prevalent. This study also revealed a significant association between HPV status and cigarette smoking and alcohol consumption. These findings provide important insights into the role of high-risk HPV in esophageal carcinoma in this region.


Assuntos
Neoplasias Esofágicas , Genótipo , Papillomavirus Humano , Infecções por Papillomavirus , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Esofágicas/virologia , Neoplasias Esofágicas/epidemiologia , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/isolamento & purificação , Papillomavirus Humano/genética , Papillomavirus Humano/isolamento & purificação , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/complicações , Prevalência , Fatores de Risco , Tanzânia/epidemiologia
20.
Connect Tissue Res ; 65(1): 26-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898909

RESUMO

PURPOSE/AIM: Cartilage injury and subsequent osteoarthritis (OA) are debilitating conditions affecting millions worldwide. As there are no cures for these ailments, novel therapies are needed to suppress disease pathogenesis. Given that joint injuries are known to produce damage-associated molecular patterns (DAMPs), our central premise is that the Toll-like receptor 4 (TLR4) pathway is a principal driver in the early response to cartilage damage and subsequent pathology. We postulate that TLR4 activation is initiated/perpetuated by DAMPs released following joint damage. Thus, antagonism of the TLR4 pathway immediately after injury may suppress the development of joint surface defects. MATERIALS AND METHODS: Two groups were utilized: (1) 8-week-old, male C57BL6 mice treated systemically with a known TLR4 antagonist and (2) mice injected with vehicle control. A full-depth cartilage lesion on the midline of the patellofemoral groove was created in the right knee of each mouse. The left knee was used as a sham surgery control. Gait changes were evaluated over 4 weeks using a quantitative gait analysis system. At harvest, knee joints were processed for pathologic assessment, Nanostring® transcript expression, and immunohistochemistry (IHC). RESULTS: Short-term treatment with a TLR4 antagonist at 14-days significantly improved relevant gait parameters; improved cartilage metrics and modified Mankin scores were also seen. Additionally, mRNA expression and IHC showed reduced expression of inflammatory mediators in animals treated with the TLR4 antagonist. CONCLUSIONS: Collectively, this work demonstrates that systemic treatment with a TLR4 antagonist is protective to further cartilage damage 14-days post-injury in a murine model of induced disease.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Camundongos , Masculino , Animais , Receptor 4 Toll-Like , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Osteoartrite/patologia , Cartilagem/patologia , Doenças das Cartilagens/patologia , Cartilagem Articular/patologia , Osteoartrite do Joelho/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa