Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Small ; 20(6): e2306387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771189

RESUMO

4D printing recently emerges as an exciting evolution of conventional 3D printing, where a printed construct can quickly transform in response to a specific stimulus to switch between a temporary variable state and an original state. In this work, a photocrosslinkable polyethylene-glycol polyurethane ink is synthesized for light-assisted 4D printing of smart materials. The molecular weight distribution of the ink monomers is tunable by adjusting the copolymerization reaction time. Digital light processing (DLP) technique is used to program a differential swelling response in the printed constructs after humidity variation. Bioactive microparticles are embedded into the ink and the improvement of biocompatibility of the printed constructs is demonstrated for tissue engineering applications. Cell studies reveal above 90% viability in 1 week and ≈50% biodegradability after 4 weeks. Self-folding capillary scaffolds, dynamic grippers, and film actuators are made and activated in a humid environment. The approach offers a versatile platform for the fabrication of complex constructs. The ink can be used in tissue engineering and actuator applications, making the ink a promising avenue for future research.


Assuntos
Tinta , Alicerces Teciduais , Poliuretanos , Engenharia Tecidual/métodos , Hidrogéis , Impressão Tridimensional
2.
Mar Drugs ; 21(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999411

RESUMO

The rest raw materials of whitefish have great potential for increased utilisation and value creation. Whitefish heads have a high protein content and should be considered a healthy protein source for the growing population's demands for sustainable protein. In this study, the heads of four different species of whitefish were processed via enzymatic hydrolysis, namely cod (Gadus morhua), cusk (Brosme bromse), haddock (Melanogrammus aeglefinus), and saithe (Pollachius virens), using three commercially available enzymes. Trials were conducted after 0, 3, and 6 months of the frozen storage of heads. A proximate analysis, molecular weight distribution, and protein solubility were evaluated for each of the products. The results show that, although the enzymatic hydrolysis of rest raw materials from different species of whitefish yielded products of slightly different characteristics, this process is viable for the production of high-quality protein from cod, cusk, haddock, and saithe heads. Six months of frozen storage of heads had a minimal effect on the yield and proximate composition of hydrolysates.


Assuntos
Gadiformes , Gadus morhua , Salmonidae , Animais , Hidrolisados de Proteína/química , Alimentos Marinhos
3.
Angew Chem Int Ed Engl ; 62(48): e202314729, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37814139

RESUMO

The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.

4.
Angew Chem Int Ed Engl ; 62(31): e202304033, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263979

RESUMO

The development of novel polymerization capable of yielding polymers with low molecular weight distribution (D) is essential and significant in polymer chemistry, where monofunctional initiator contains only one initiation site in these polymerizations generally. Here, ketyl radical anion species is introduced to develop a novel Ketyl Mediated Polymerization (KMP), which enables radical polymerization at carbon radical site and anionic ring-opening polymerization at oxygen anion site, respectively. Meanwhile, polymerization and corresponding organic synthesis generally couldn't be performed simultaneously in one pot. Through KMP, organic synthesis and polymerization are achieved in one pot, where small molecules (cyclopentane derivates) and polymers with low D are successfully prepared under mild condition simultaneously. At the initiation step, both organic synthesis and polymerization are initiated by single electron transfer reaction with ketyl radical anion formation. Cyclopentane derivates are synthesized through 3-3 coupling reaction and cyclization. Polystyrene and polycaprolactone with low D and a full monomer conversion are prepared by KMP via radical polymerization and anionic ring-opening polymerization, respectively. This work therefore enables both organic synthesis and two different polymerizations from same initiation system, which saves time, labour, resource and energy and expands the reaction mode and method libraries of organic chemistry and polymer chemistry.

5.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430872

RESUMO

Ethylene polymerization with bis(imino)pyridlyiron precatalysts generally produces linear polyethylene (PE) even with the presence of α-olefins because α-olefins are not incorporated into polymeric products. Interestingly, α-olefins, such as hexene-1 or butene-1, have been found to act as effective chain transfer agents in the ethylene polymerization promoted by nonsymmetrical bis(imino)pyridyliron complexes with modified methylalumoxane (MMAO), resulting in higher catalytic activities with higher amounts of polymers with lower molecular weights, and, more importantly, narrower molecular weight distributions of the resultant polyethylenes (PE). This phenomenon confirms the assistance of α-olefins in the chain-termination reaction of iron-initiated polymerization and regeneration of the active species for further polymerization. Besides higher activities of the catalytic system, the formation of linear PE with trans-vinylene terminal groups and lower molecular weights are explained. The observation will provide a new pathway for enhancing catalytic activity and improving the quality of polyethylenes obtained by regulation of molecular weights and molecular weight distribution.


Assuntos
Alcenos , Etilenos , Polimerização , Piridinas , Polietileno , Polímeros , Compostos Ferrosos
6.
J Environ Manage ; 301: 113945, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731956

RESUMO

Conversion of keratin waste to value-added products not only reduces waste volumes but also creates new revenue streams for the animal production industry. In the present study, combination of alkaline pretreatment of cattle hair with enzymatic hydrolysis was studied to produce keratin hydrolysates with relatively high antioxidant activities. Firstly, the effect of pretreatment conditions at a high solid/liquid mass ratio of 1:2 with different NaOH loadings and temperatures was studied. Increasing NaOH concentration from 1.0% to 2.5% and temperature from room temperature to 110 °C increased hair hydrolysis by keratinase and protein recovery in hydrolysates. Mild pretreatment with 1.5% NaOH at 70 °C for 30 min led to a protein recovery of 30% in the enzymatic hydrolysate. The resulting hydrolysate showed a high antioxidant activity, scavenging 69% of the ABTS radical with a low EC50 of 0.8 mg/mL. Severe pretreatment with 2.5% NaOH at 110 °C for 30 min resulted in a higher protein recovery of 45%, but a lower ABTS radical scavenging activity of 56% and a higher EC50 of 1.3 mg/mL. The reduced antioxidant activity was attributed to the reduced proportion of small peptides (<3 kDa) and the increased extent of amino acid chemical modification. This study demonstrated that controlling alkali pretreatment conditions could lead to the production of enzymatic hydrolysates with higher antioxidant activities for potential value-adding applications. The information generated from this study will aid scale-up and commercialisation of processes with optimised antioxidant peptide production.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Animais , Bovinos , Hidrólise , Queratinas , Peptídeos
7.
Molecules ; 27(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35011498

RESUMO

Spruce (Piceaabies) wood hemicelluloses have been obtained by the noncatalytic and catalytic oxidative delignification in the acetic acid-water-hydrogen peroxide medium in a processing time of 3-4 h and temperatures of 90-100 °C. In the catalytic process, the H2SO4, MnSO4, TiO2, and (NH4)6Mo7O24 catalysts have been used. A polysaccharide yield of up to 11.7 wt% has been found. The hemicellulose composition and structure have been studied by a complex of physicochemical methods, including gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The galactose:mannose:glucose:arabinose:xylose monomeric units in a ratio of 5:3:2:1:1 have been identified in the hemicelluloses by gas chromatography. Using gel permeation chromatography, the weight average molar mass Mw of hemicelluloses has been found to attain 47,654 g/mol in noncatalytic delignification and up to 42,793 g/mol in catalytic delignification. Based on the same technique, a method for determining the α and k parameters of the Mark-Kuhn-Houwink equation for hemicelluloses has been developed; it has been established that these parameters change between 0.33-1.01 and 1.57-472.17, respectively, depending on the catalyst concentration and process temperature and time. Moreover, the FTIR spectra of the hemicellulose samples contain all the bands characteristic of heteropolysaccharides, specifically, 1069 cm-1 (C-O-C and C-O-H), 1738 cm-1 (ester C=O), 1375 cm-1 (-C-CH3), 1243 cm-1 (-C-O-), etc. It has been determined by the thermogravimetric analysis that the hemicelluloses isolated from spruce wood are resistant to heating to temperatures of up to ~100 °C and, upon further heating, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses has been examined using the compounds simulating the 2,2-diphenyl-2-picrylhydrazyl free radicals.


Assuntos
Antioxidantes , Picea/química , Polissacarídeos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Catálise , Temperatura Alta , Lignina/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Xilose/química
8.
Entropy (Basel) ; 24(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35455162

RESUMO

The molecular weight distribution is an important factor that affects the properties of polymers. A control algorithm based on the moment-generating function was proposed to regulate the molecular weight distribution for polymerization processes in this work. The B-spline model was used to approximate the molecular weight distribution, and the weight state space equation of the system was identified by the subspace state space system identification method based on the paired date of B-spline weights and control inputs. Then, a new performance criterion mainly consisting of the moment-generating function was constructed to obtain the optimal control input. The effectiveness of the proposed control method was tested in a styrene polymerization process. The molecular weight distribution of the styrene polymers can be approximated by the B-spline model effectively, and it can also be regulated towards the desired one under the proposed control method.

9.
Environ Sci Technol ; 55(22): 15172-15180, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34730943

RESUMO

Humic acid (HA), a fraction of humic substances, can strongly complex with metal ions to form a supramolecular assembly via coordination binding and other intermolecular forces. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecules and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu2+ and Tb3+ ions using unique PAGE for the separation and quantification of HA complexes and metal ions bound, followed by UV-vis spectroscopy and excitation-emission matrix-parallel factor analysis. By determining the concentrations of HA and metal ions, it was possible to estimate the stoichiometry of the HA unit molecule to metal ions in supramolecular complexes. It was found that the supramolecular behaviors of Cu2+ and Tb3+ complexes with HA collected from peat (PAHA) and deep groundwater (HHA) differed. For example, two HHA unit molecules form a supramolecule via cross-linking by a Cu2+ ion in the case of Cu2+-HHA. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our experimental results and analysis provide new insights into HA supramolecules formed via metal complexation.


Assuntos
Substâncias Húmicas , Metais , Eletroforese , Substâncias Húmicas/análise , Íons , Solo
10.
Macromol Rapid Commun ; 42(18): e2100212, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34121259

RESUMO

A series of poly(N-isopropylacrylamide) (PNIPAm) homopolymers with narrow molecular weight distributions (MWDs) is prepared via photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The thermal transition temperature of these polymer samples is analyzed via turbidity measurements in water/N,N'-dimethylformamide mixtures, which show that the cloud point temperatures are inversely proportional to the weight average molecular weight (Mw ). Binary mixtures of the narrowly distributed PNIPAm samples are also prepared and the statistical parameters for the MWDs of these blends are determined. Very interestingly, for binary blends of the PNIPAm samples, the thermoresponsive transition is not only dependent on the Mw , which has been shown previously, but also on higher order statistical parameters of the MWDs. Specifically, at very high values of skewness and kurtosis, the polymer blends deviate from a single sharp thermoresponsive transition toward a broader thermal response, and eventually to a regime of two more distinct transitions. This work highlights the importance of in-depth characterization of polymer MWDs for thermoresponsive polymers.


Assuntos
Resinas Acrílicas , Polímeros , Peso Molecular , Polimerização , Temperatura
11.
Macromol Rapid Commun ; 42(7): e2000624, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33543520

RESUMO

Different types of polymer chains generated during the nitroxide-mediated polymerization of styrene are separated for the first time, and their molecular weight distribution (MWD) is investigated. Living and dead chains are monitored during the reaction; specifically, two types of living chains derived from the initiation of the alkoxyamine (RT) and the self-initiation of styrene and dead chains present in the as-prepared polystyrene (PS). To distinguish between each polymer species, different numbers of hydroxyl groups are introduced onto the T and R groups of the alkoxyamine (one and two groups, respectively). Each living and dead chains is resolved according to the distinct number of hydroxyl groups on its chain-end using high-performance liquid chromatography. Molecular structures of the fractionated PS are characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 1 H nuclear magnetic resonance spectroscopy, and the results of which show two distinct initiation paths: one originating from RT and the other from the self-initiation of styrene. Molecular weight and MWD are measured using size-exclusion chromatography and reveal a narrow MWD for the living chains derived from RT. Contrastingly, a broad and skewed MWD is observed for the other living chains derived from the self-initiation of styrene and the dead chains.


Assuntos
Óxidos de Nitrogênio , Poliestirenos , Peso Molecular , Polimerização
12.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500793

RESUMO

The hyaluronic acid (HA) global market growth can be attributed to its use in medical, cosmetic, and pharmaceutical applications; thus, it is important to have validated, analytical methods to ensure confidence and security of its use (and to save time and resources). In this work, a size-exclusion chromatography method (HPLC-SEC) was validated to determine the concentration and molecular distribution of HA simultaneously. Analytical curves were developed for concentration and molecular weight in the ranges of 100-1000 mg/L and 0.011-2.200 MDa, respectively. The HPLC-SEC method showed repeatability and reproducibility greater than 98% and limits of detection and quantification of 12 and 42 mg/L, respectively, and was successfully applied to the analysis of HA from a bacterial culture, as well as cosmetic, and pharmaceutical products.


Assuntos
Cromatografia em Gel , Ácido Hialurônico/análise , Peso Molecular , Tamanho da Partícula
13.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500801

RESUMO

The process of sulfation of arabinogalactan-a natural polysaccharide from Larix sibirica Ledeb.-with sulfamic acid in 1,4-dioxane using different activators has been studied for the first time. The dynamics of the molecular weight of sulfated arabinogalactan upon variation in the temperature and time of sulfation of arabinogalactan with sulfamic acid in 1,4-dioxane has been investigated. It has been found that, as the sulfation time increases from 10 to 90 min, the molecular weights of the reaction products grow due to the introduction of sulfate groups without significant destruction of the initial polymer and sulfation products. Sulfation at 95 °C for 20 min yields the products with a higher molecular weight than in the case of sulfation at 85 °C, which is related to an increase in the sulfation rate; however, during the further process occurring under these conditions, sulfation is accompanied by the destruction and the molecular weight of the sulfated polymer decreases. The numerical optimization of arabinogalactan sulfation process has been performed. It has been shown that the optimal parameters for obtaining a product with a high sulfur content are a sulfamic acid amount of 20 mmol per 1 g of arabinogalactan, a process temperature of 85 °C, and a process time of 2.5 h.


Assuntos
Galactanos/isolamento & purificação , Larix/química , Sulfatos/química , Configuração de Carboidratos , Galactanos/química , Modelos Moleculares , Peso Molecular , Temperatura
14.
Angew Chem Int Ed Engl ; 60(36): 19705-19709, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34189823

RESUMO

Polymer molecular weight distribution (MWD) is a key parameter of polymers. Here we present a robust method for controlling polymer MWD in controlled cationic polymerizations. A latent mediator strategy was designed and combined with temporal programming to regenerate mediators at different times during polymerization. Both the breadths and shapes of MWD curves were tuned easily by adjusting an external light source. Bimodal, trimodal, and tetramodal distributions were obtained, and the breadths could be varied from 1.06 to 2.09. Polymers with different MWDs prepared by this method had good chain end fidelity, which was demonstrated with successful chain-extension experiments. In addition, the introduction of temporal programming with a computer-controlled single chip for the light source opened an avenue for the use of artificial intelligence in polymer synthesis.

15.
Angew Chem Int Ed Engl ; 60(35): 19383-19388, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34133078

RESUMO

The breadth and the shape of molecular weight distributions can significantly influence fundamental polymer properties that are critical for various applications. However, current approaches require the extensive synthesis of multiple polymers, are limited in dispersity precision and are typically incapable of simultaneously controlling both the dispersity and the shape of molecular weight distributions. Here we report a simplified approach, whereby on mixing two polymers (one of high D and one of low D), any intermediate dispersity value can be obtained (e.g. from 1.08 to 1.84). Unrivalled precision is achieved, with dispersity values obtained to even the nearest 0.01 (e.g. 1.37→1.38→1.39→1.40→1.41→1.42→1.43→1.44→1.45), while maintaining fairly monomodal molecular weight distributions. This approach was also employed to control the shape of molecular weight distributions and to obtain diblock copolymers with high dispersity accuracy. The straightforward nature of our methodology alongside its compatibility with a wide range of polymerisation protocols (e.g. ATRP, RAFT), significantly expands the toolbox of tailored polymeric materials and makes them accessible to all researchers.

16.
Angew Chem Int Ed Engl ; 60(36): 19671-19678, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196076

RESUMO

A highly versatile new strategy for manipulating the molecular weight profiles, including breadth, asymmetry (skewness) and modal nature (mono-, bi-, and multimodal), of a variety of different polyolefins is reported. It involves temporal control over two- and three-state living coordinative chain transfer polymerization (LCCTP) of olefins in a programmable way. By changing the identity of the R' groups of the chain transfer agent, ER'n , with time, different populations of chains within a bi- or multimodal polyolefin product can be selectively tagged with different end-groups. By changing the nature of the main-group metal of the CTA, programmed manipulation of the relative magnitudes of the dispersities of the different maxima that make up the final MWD profile can be achieved. This strategy can be implemented with existing LCCTP materials and conventional reactor methods to provide access to scalable and practical quantities of an unlimited array of new polyolefin materials.

17.
J Sci Food Agric ; 100(3): 1072-1079, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31650550

RESUMO

BACKGROUND: Acid-induced hydrolysis of proteins has been used to improve the solubility and functional properties of various proteins, and could be a promising tool to facilitate the use of currently underutilized insoluble microalgae protein-rich fractions in food applications. However, the results of a prior study showed an unusual resistance of an insoluble microalgae protein-rich fraction to acid hydrolysis at room temperature. RESULTS: In the present study, the insoluble protein-rich fraction extracted from microalgae Chlorella prothothecoides was treated with 0.5 mol L-1 hydrochloric acid at 25, 45, 65 or 85 °C for 0-4 h. The results showed that hydrolysis of the fraction at 85 °C for 4 h led to decreases in the amount of insoluble protein-rich aggregates and the formation of fragments with a lower molecular weight, as well as an increase in protein solubility by approximately 40%. Nevertheless, some aggregated insoluble protein-rich particles remained, even after hydrolysis at 85 °C for 4 h. CONCLUSION: The higher temperature improved the efficiency of the acid hydrolysis of the insoluble protein fraction from microalgae Chlorella prothothecoides, which is highly acid-resistant. Overall, an erosion-based mechanism was suggested for the acid hydrolysis of insoluble microalgae protein fraction. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Chlorella/química , Proteínas/química , Fracionamento Químico , Temperatura Alta , Ácido Clorídrico/química , Hidrólise , Microalgas/química , Peso Molecular , Proteínas/isolamento & purificação , Solubilidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-31698987

RESUMO

The objective of this research was to evaluate the distribution of the molecular weights of the recalcitrant organic matter contained in kraft mill effluents and identify microbial consortia responsible for an anaerobic biodegradable fraction. As a result, the average removal efficiencies of chemical organic demand (COD) and biological oxygen demand (BOD5) during the entire period of operation were 28% and 53%, respectively. The non-biodegradable organic matter was detected at molecular weights less than 1000 Da. However, most of the organic matter was in the molecular weight fraction higher than 10000 Da with 32 ± 11.6% COD as well as color (42.3 ± 8.7%), total phenolic compounds (35.9 ± 7.9%) and adsorbable organic compounds (AOX) (13.0 ± 2.7%). Methanogenic acetoclastic archaea of the genera Methanomethylovorans and Methanosarcina were found in the surface and middle zones of the reactor. Moreover, Methanosaeta and Methanolinea were identified in the low zone of the reactor. In all zones of the reactor, Desulfomicrobium and Desulfovibrio were found to be the most dominant genera of sulfate-reducing bacteria (SRB).


Assuntos
Resíduos Industriais/análise , Consórcios Microbianos , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Papel , Anaerobiose , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Consórcios Microbianos/genética , Peso Molecular , Eliminação de Resíduos Líquidos
19.
Vopr Pitan ; 89(1): 64-68, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32083826

RESUMO

Reducing the manifestations of food allergy by the inclusion of specialized foods in the nutrition of children and adults suffering from this disease is an important problem. The aim was to obtain and characterize in vitro food protein hydrolysates to evaluate their use in specialized foods with reduced potential allergenicity. MATERIAL AND METHODS: Whey protein concentrate (WPC) and chicken egg protein (CEP) and enzymes such as pancreatin and alkalase have been used. Proteolysis of proteins was carried out in an FA-10 fermenter for 3 hours at an enzyme : substrate ratio of 1:50 in dry matter, at optimal pH and temperature for pancreatin and alkalase. Enzymes were inactivated at +75 °C and fermentolizate was ultrafiltered. The solutions were concentrated by reverse osmosis and freeze-dried. The molecular weight distribution of the peptide fractions was evaluated by HPLC. Residual antigenicity was determined by the method of indirect enzyme-linked immunosorbent assay and expressed as the fold of antigenicity reduction relative to the original protein. RESULTS AND DISCUSSION: During WPC proteolysis with pancreatin the hydrolyzate was obtained with a fold reduction of antigenicity of 2.3×103 relative to the initial WPC. A decrease in antigenicity of 4.7×104 times was achieved with proteolysis of WPC by alkalase. The combination of WPC fermentolysis with pancreatin or alkalase followed by ultrafiltration reduced the content of high molecular weight peptides with a mass more than 8.7 kDa. The multiplicity of decrease in antigenicity with respect to the starting protein was 1.64×105 and 1.90×105, respectively. After repeated ultrafiltration the reduction in antigenicity of the obtained WPC alkalase or pancreatin hydrolysate was more than 1.0×106 and more than 5.0×105, respectively. The decrease in antigenicity of the CEP hydrolyzate obtained with proteolysis by alkalase and ultrafiltration compared to the initial CEP was 1.0×105 times, and 5.0×105 times when we used repeated ultrafiltration. CONCLUSION: A significant decrease in the content of high molecular weight peptides and a decrease in the antigenicity of peptide mixtures based on WPC and CEP to the values that permit their use in hypoallergenic products is achieved by combining proteolysis and double ultrafiltration through a UF10 membrane.


Assuntos
Proteínas Dietéticas do Ovo/química , Alimentos Especializados , Hidrolisados de Proteína/química , Proteínas do Soro do Leite/química , Animais , Galinhas , Peptídeos
20.
J Comput Chem ; 40(2): 421-429, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30351517

RESUMO

We have realized the microscopic simulation of olefin polymerization, that is, the simulation of the catalytic polymerization (CP) reaction system composed of (pyridylamido)hafnium(IV) complex as the catalyst. For this purpose, we adopted Red Moon (RM) method, a novel molecular simulation method to simulate the complex reaction system. First, according to the previous research, with the help of the QM calculation, we proposed a model system and elementary processes and explained the theoretical treatment of the simulation by the RM method (the RM simulation). In addition, we also proposed a macroscopic simulation based on chemical kinetics simulation. Then, we performed two simulations and compared them in terms of the effective time evolution of the three macroscopic physical quantities, the number-average molecular weight Mn , the mass-average molecular weight Mw , and the molar-mass dispersity DM . The comparison showed that the two simulations are in quantitative or partially qualitative agreement with each other. Therefore, it is concluded that the RM simulation could not only simulate the CP reaction process microscopically, but also it is connected essentially to reproduce the time evolution of the macroscopic physical quantities on the basis of its microscopic simulation data. © 2018 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa