Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.314
Filtrar
1.
Small ; : e2403320, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113348

RESUMO

The diagnosis of diabetes mellitus (DM) affecting 537 million adults worldwide relies on invasive and costly enzymatic methods that have limited stability. Electroactive polypyrrole (PPy)-based molecularly imprinted polymer nanoparticles (eMIPs) have been developed that rival the affinity of enzymes whilst being low-cost, highly robust, and facile to produce. By drop-casting eMIPs onto low-cost disposable screen-printed electrodes (SPEs), sensors have been manufactured that can electrochemically detect glucose in a wide dynamic range (1 µm-10 mm) with a limit of detection (LOD) of 26 nm. The eMIPs sensors exhibit no cross reactivity to similar compounds and negligible glucose binding to non-imprinted polymeric nanoparticles (eNIPs). Measurements of serum samples of diabetic patients demonstrate excellent correlation (>0.93) between these eMIPs sensor and the current gold standard Roche blood analyzer test. Finally, the eMIPs sensors are highly durable and reproducible (storage >12 months), showcasing excellent robustness and thermal and chemical stability. Proof-of-application is provided via measuring glucose using these eMIPs sensor in a two-electrode configuration in spiked artificial interstitial fluid (AISF), highlighting its potential for non-invasive wearable monitoring. Due to the versatility of the eMIPs that can be adapted to virtually any target, this platform technology holds high promise for sustainable healthcare applications via providing rapid detection, low-cost, and inherent robustness.

2.
J Mol Recognit ; 37(4): e3087, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38686731

RESUMO

Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.


Assuntos
Eletrodos , Epitopos , Ouro , Impressão Molecular , Neisseria meningitidis , Técnicas de Microbalança de Cristal de Quartzo , Epitopos/imunologia , Epitopos/química , Humanos , Neisseria meningitidis/imunologia , Ouro/química , Técnicas Biossensoriais/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Nanopartículas Metálicas/química , Porinas/química , Porinas/imunologia
3.
Electrophoresis ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034741

RESUMO

Detection of florfenicol (FF) residues in animal-derived foods, as one of the most widely used antibiotics, is critically important to food safety. The fluorescent molecularly imprinted polymer (MIP) was synthesized by surface-initiated atom transfer radical polymerization technique with poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, 4-vinylpyridine, ethylene glycol dimethacrylate, and FF as the matrix, functional monomer, crosslinker, and template molecule, respectively. Meanwhile, N-S co-doped carbon dot (CD) was synthesized with triammonium citrate and thiourea as precursors under microwave irradiation at 400 W for 2.5 min and then integrated into FF-MIP to obtain CD@FF-MIP. For comparison, non-imprinted polymer (NIP) without FF was also prepared. The adsorption capacity of CD@FF-MIP to FF reached 53.1 mg g-1, which was higher than that of FF-MIP (34.7 mg g-1), whereas the adsorption capacity of NIP was only 17.3 mg g-1. The adsorption equilibrium of three materials was reached within 50 min. Particularly, CD@FF-MIP exhibited an excellent fluorescence quenching response to FF in the concentration range of 3-50 µmol L-1. As a result, CD@FF-MIP was successfully utilized to extract FF in milk samples, which were analyzed by high-performance liquid chromatography. The standard recoveries were 95.8%-98.2%, and the relative standard deviation was 1.6%-4.2%. The method showed the advantages of simple operation, high sensitivity, excellent selectivity, and low cost, and also demonstrated a great application prospect in food detection.

4.
Anal Bioanal Chem ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289201

RESUMO

Upadacitinib (UPA) is a selective and reversible oral Janus kinase (JAK) 1 inhibitor and is of great importance in treating inflammatory bowel disease (Zheng et al., Int Immunopharmacol 126:111229, 2024; Foy et al., JAAD Case Rep 42:20-22, 2023). Although there are limitations to the effectiveness of UPA, it has received positive responses in clinical trials and is approved for the treatment of atopy dermatitis (AD) (Li et al., Int Immunopharmacol 125:111193, 2023). In this study, a nanoparticle-doped molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for sensitive and selective detection of UPA. The developed sensor was designed as a thin film layer using the photopolymerization method on the surface of the prepared nanoparticle-doped polymerization solution glassy carbon electrode (GCE). Various nanoparticles, such as multi-walled carbon nanotube, titanium dioxide, oxide, and zinc oxide (ZnO) nanoparticles, were the most suitable for UPA. Surface characterization of the developed sensor was done by scanning electron microscopy (SEM), and electrochemical characterization was done by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The quantitative analysis of UPA was performed in 5.0 mM [Fe (CN)6]3-/4- solution using the differential pulse voltammetry (DPV) technique. Under optimum conditions, the calibration range was between 0.1 and 1 pM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated as 0.005 pM and 0.017 pM, respectively. The sensor's accuracy was proven by performing a recovery study in serum. The sensor's selectivity was also evaluated using common interfering substances such as KNO3, CaCl2, Na2SO4, uric acid, ascorbic acid, dopamine, and paracetamol. According to the results obtained, the performance of the designed sensor was found to be quite sensitive and selective in determining UPA. The developed UPA-ZnO/3-APBA@MIP-GCE sensor showed high sensitivity and selectivity towards UPA. In addition, the selectivity, the most important feature of the MIP-based sensor, was confirmed by imprinting factor (IF) calculations using tofacitinib (TOF) and ruxolitinib (RUX). The sensor's unique selectivity is demonstrated by its successful performance even in the presence of UPA impurities.

5.
Anal Bioanal Chem ; 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39465410

RESUMO

A handheld smartphone-compatible molecularly imprinted polymer (MIP)-based sensor was developed for the analysis of bisphenol A (BPA) in wastewater samples. Sensing elements based on ethylene glycol methacrylate phosphate (EGMP)-containing MIP films were designed and optimized using molecular dynamics simulations. The highly porous MIP films were synthesized via in situ polymerization, employing a fragment-based approach. The colorimetric response was based on the 4-aminoantipyrine method, while the MIP films were further utilized to detect BPA with a smartphone. The proposed sensor exhibited a wide linear range from 5 to 250 µM, with a limit of detection (LOD) of 5 µM (S/N = 3). Furthermore, the designed analytical system demonstrated excellent analytical performance in terms of selectivity, stability, and reproducibility. During sensor validation, real wastewater samples were successfully tested for BPA, showcasing the feasibility of the smartphone-compatible MIP-based sensor. Recovery values of 87.1-114.6% underscored the efficacy and reliability of the developed sensor system.

6.
Anal Bioanal Chem ; 416(9): 2261-2275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117322

RESUMO

Molecularly imprinted polymers (MIPs) rely on synthetic engineered materials able to selectively bind and intimately recognise a target molecule through its size and functionalities. The way in which MIPs interact with their targets, and the magnitude of this interaction, is closely linked to the chemical properties derived during the polymerisation stages, which tailor them to their specific target. Hence, MIPs are in-deep studied in terms of their sensitivity and cross-reactivity, further being used for monitoring purposes of analytes in complex analytical samples. As MIPs are involved in sensor development within different approaches, a systematic optimisation and rational data-driven sensing is fundamental to obtaining a best-performant MIP sensor. In addition, the closer integration of MIPs in sensor development requires that the inner properties of the materials in terms of sensitivity and selectivity are maintained in the presence of competitive molecules, which focus is currently opened. Identifying computational models capable of predicting and reporting the best-performant configuration of electrochemical sensors based on MIPs is of immense importance. The application of chemometrics using design of experiments (DoE) is nowadays increasingly adopted during optimisation problems, which largely reduce the number of experimental trials. These approaches, together with the emergent machine learning (ML) tool in sensor data processing, represent the future trend in design and management of point-of-care configurations based on MIP sensing. This review provides an overview on the recent application of chemometrics tools in optimisation problems during development and analytical assessment of electrochemical sensors based on MIP receptors. A comprehensive discussion is first presented to cover the recent advancements on response surface methodologies (RSM) in optimisation studies of MIPs design. Therefore, the recent advent of machine learning in sensor data processing will be focused on MIPs development and analytical detection in sensors.

7.
Anal Bioanal Chem ; 416(14): 3335-3347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38661944

RESUMO

Stanozolol, a synthetic derivative of testosterone, is one of the common doping drugs among athletes and bodybuilders. It is metabolized to a large extent and metabolites are detected in urine for a longer duration than the parent compound. In this study, a novel dummy molecularly imprinted polymer (DMIP) is developed as a sorbent for solid-phase extraction of stanozolol metabolites from spiked human urine samples. The optimized DMIP is composed of stanozolol as the dummy template, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker in a ratio of 1:10:80. The extracted analytes were quantitively determined using a newly developed and validated ultrahigh-performance liquid chromatography tandem mass spectrometry method, where the limits of detection and quantitation were 0.91 and 1.81 ng mL-1, respectively, fulfilling the minimum required performance limit decided on by the World Anti-Doping Agency. The mean percentage extraction recoveries for 3'-hydroxystanozolol, 4ß-hydroxystanozolol, and 16ß-hydroxystanozolol are 97.80% ± 13.80, 83.16% ± 7.50, and 69.98% ± 2.02, respectively. As such, the developed DMISPE can serve as an efficient cost-effective tool for doping and regulatory agencies for simultaneous clean-up of the stanozolol metabolites prior to their quantification.


Assuntos
Dopagem Esportivo , Limite de Detecção , Polímeros Molecularmente Impressos , Extração em Fase Sólida , Estanozolol , Estanozolol/urina , Extração em Fase Sólida/métodos , Humanos , Polímeros Molecularmente Impressos/química , Dopagem Esportivo/prevenção & controle , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Detecção do Abuso de Substâncias/métodos , Anabolizantes/urina , Anabolizantes/metabolismo , Impressão Molecular/métodos
8.
Anal Bioanal Chem ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367909

RESUMO

In this study, a new molecularly imprinted polymer (MIP)-based sensor platform was developed for the electrochemical determination of gallic acid (GAL) in plant extracts, wine, and herbal supplements. Gallic acid is known for its natural antioxidant properties, which play an important role in preventing cell deterioration that can lead to various diseases. In addition, gallic acid has therapeutic potential due to its anticancer, antiinflammatory, antimicrobial, and neuroprotective properties. Accurate analysis of gallic acid in complex matrices, in mixed samples where different components coexist, is necessary to evaluate the efficacy and safety of this compound. Cobalt ferrite-zinc-dihydro caffeic acid (CFO_Zn_DHCA) nanoparticles, sphere-like in shape and 5 ± 1 nm in size, were incorporated into the MIP-based electrochemical sensor design to enhance the active surface area and porosity of the glassy carbon electrode (GCE) surface. The functional monomer chosen for this study was aminophenyl boronic acid (3-APBA). In the GAL/CFO_Zn_DHCA/3-APBA@MIP-GCE sensor, which was developed using photopolymerization (PP), 3-APBA as a functional monomer was designed, and obtained in the presence of basic monomer (HEMA), cross-linker (EGDMA), and initiator (2-hydroxy-2-methyl propiophenone) by keeping it under a UV lamp at 365 nm. It aims to detect GAL in real samples such as Punica granatum (pomegranate) peel, Camellia sinensis (green and black tea leaves), wine, and herbal supplements. Morphological and electrochemical characterizations of the designed GAL/CFO_Zn_DHCA/3-APBA@MIP-GCE sensor were carried out using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The linear range for the determination of GAL using the indirect method (5.0 mM [Fe(CN)6]-3/-4) was found to be 1.0 × 10-13 M-1.0 × 10-12 M, and the limit of detection (LOD) and limit of quantification (LOQ) for standard solutions were calculated as 1.29 × 10-14 and 4.29 × 10-14 M, respectively. As a result of the study, the developed MIP-based electrochemical sensor was suitable for detecting GAL with high specificity, selectivity, and sensitivity. Recovery studies were performed to determine the practical applicability of the sensor, and the results were satisfactory. This innovative sensor platform stands out as a reliable and sensitive analytical tool for determining GAL.

9.
Environ Res ; 262(Pt 2): 119924, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276838

RESUMO

Tetracycline (TC), a commonly utilized broad-spectrum antibiotic, is frequently detected in water and soil, posing a significant risk to the natural environment and human health. In the present study, the composite hydrogel beads based on chitosan (CS) and halloysite-supported molecularly imprinted polymers, synthesized by two procedures with significantly different solvent volumes (Hal@MIPa(b)), were obtained and used to adsorb the antibiotic. The presence of Hal improved the thermal stability of the hydrogel beads. The system with a thinner polymer layer (CS_Hal@MIPb), containing polymers produced under conditions of significantly higher reagent dilution, was more resistant to higher temperatures than CS_Hal@MIPa. The adsorptive properties were compared with pure CS beads, those containing incorporated Hal, and free polymers obtained by different protocols (MIPa(b)). In the optimized pH 5.0, the maximum adsorption capacities were 175.24 and 178.05 mg g-1 for CS_Hal@MIPa and CS_Hal@MIPb, respectively. The values were slightly lower compared to the systems with free polymers, but the materials achieved equilibrium more rapidly (12 h). The adsorption process was spontaneous and exothermic. Freundlich isotherm and pseudo-second-order kinetic models most accurately described the experimental data. The hydrogel beads retained high selectivity in the presence of other antibiotics, and their high efficiency in the TC removal from real water samples was maintained. Their addition to soil enhanced adsorption capacities, surpassing that of chitosan-based beads containing free polymers. Significantly, the quantity of TC desorption diminished due to the halloysite's presence, which limited its penetration into groundwater. The primary mechanism of tetracycline adsorption on the hydrogel beads studied is pore filling, but other interactions (hydrogen bonding, π-π stacking, electrostatic attraction) are also involved.

10.
Environ Res ; 262(Pt 1): 119843, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39182752

RESUMO

Metal-organic frameworks (MOFs) are used as novel adsorption materials owing to their large surface area and tunable pore size. However, the lack of selectivity considerably limits their application. Consequently, designing functionalized MOFs with specific recognition abilities is essential for enhancing their adsorption performance. Herein, we synthesized a functionalized NH2-UiO-66 composite modified by molecularly imprinted polymers (MIP@NH2-UiO-66) via a one-step polymerization process in which NH2-UiO-66 and MIP were formed simultaneously. Results demonstrate that MIP@NH2-UiO-66 effectively recognized sulfamethoxazole (SMX) in complex matrices. The adsorption equilibrium was reached in only 30 min, and this fast SMX adsorption on MIP@NH2-UiO-66 was described by the Avrami kinetic model, which indicates a spontaneous and exothermic adsorption process. Within the pH range of 3.0-10.0, MIP@NH2-UiO-66 exhibited an optimal binding capacity for SMX, and the maximum adsorption of SMX was 68.36 mg g-1 at 25°C, which exceeded those of existing adsorption materials (< 60.10 mg g-1). Additionally, MIP@NH2-UiO-66 was regenerated for ∼17 cycles compared to less than eight cycles for the other adsorbents. MIP@NH2-UiO-66 effectively removed 90.58%-99.60% of SMX from river water, rainwater, soil, sediment, chicken, pork, and milk samples, with a relative standard deviation of less than 4.43%. The superior adsorption of SMX on MIP@NH2-UiO-66 was primarily driven by the synergistic effects of the imprinting sites, hydrogen bonding, and electrostatic forces. The one-step polymerization method substantially simplified the synthesis process and reduced the costs, which are promising factors for the synthesis of MOFs with high selectivity.

11.
J Sep Sci ; 47(14): e2400003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034895

RESUMO

Furosemide (FUR), banned in sports events by the World Anti-Doping Agency, is a key target in drug tests, necessitating a pretreatment material capable of selectively, rapidly, and sufficiently separating/enriching analytes from complex matrices. Herein, a metal-mediated magnetic molecularly imprinted polymer (mMIP) was rationally designed and synthesized for the specific capture of FUR. The preparations involved the utilization of chromium (III) as the binding pivot, (3-aminopropyl)triethoxysilane as functional monomer, and Fe3O4 as core, all assembled via free radical polymerization. Both the morphologies and adsorptive properties of the mMIP were characterized using multiple methods. The resulting Cr(III)-mediated mMIP (ChM-mMIP) presented excellent selectivity and specificity toward FUR. Under optimized conditions, the adsorption capacity reached 128.50 mg/g within 10 min, and the imprinting factor was 10.41. Moreover, it was also successfully applied as a dispersive solid-phase extraction material, enabling the detection of FUR concentration as low as 20 ng/mL in human urine samples when coupled with a high-performance liquid chromatography/photodiode array. Overall, this study offers a valuable strategy for the development of novel recognition material.


Assuntos
Furosemida , Polímeros Molecularmente Impressos , Humanos , Furosemida/urina , Furosemida/química , Polímeros Molecularmente Impressos/química , Adsorção , Impressão Molecular , Extração em Fase Sólida , Propriedades de Superfície , Cromatografia Líquida de Alta Pressão , Tamanho da Partícula , Dopagem Esportivo/prevenção & controle , Polímeros/química , Polímeros/síntese química
12.
J Artif Organs ; 27(1): 77-81, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37060519

RESUMO

Although direct oral anticoagulants (DOACs) are generally safe and TDM is not required, blood levels of the drug are important information for response decisions in emergency care. In this study, an attempt was made to develop a disposable sensor chip for the rapid detection of edoxaban in blood, a type of DOAC. Molecularly imprinted polymers with edoxaban tosilate as a template and sodium p-styrene sulfonate as a functional monomer were grafted onto the surface of graphite particles, mixed with silicon oil dissolved in ferrocene to form a paste, and filled onto a substrate made of plastic film. Sensor chips were fabricated. The current obtained from this sensor by voltammetry within 150 s depended on the edoxaban concentration. Sensitivity to edoxaban was also confirmed in bovine whole blood. The potential of disposable sensors to rapidly detect edoxaban in whole blood was demonstrated in this study, although selectivity, reproducibility, and sensitivity need to be improved for practical use.


Assuntos
Carbono , Polímeros Molecularmente Impressos , Piridinas , Tiazóis , Animais , Bovinos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas , Polímeros , Eletrodos
13.
Mikrochim Acta ; 191(3): 140, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363397

RESUMO

A sandwich-structured composite nanoenzyme (NH2-MIL-101(Fe)@Au@MIP) was prepared using molecularly imprinted polymers, metal-organic frameworks, and gold nanoparticles and a highly selective glutathione (GSH) colorimetric sensor was constructed. The inner part of the composite nanoenzymes is a metal-organic framework loaded with gold nanoparticles (AuNPs), NH2-MIL-101(Fe)@Au, which has superior peroxidase-like activity compared with  NH2-MIL-101(Fe). This is due to the surface plasmon resonance effect of AuNPs. GSH can form strong Au-S bonds with AuNPs, which can significantly reduce the enzymatic activity of NH2-MIL-101(Fe)@Au, thereby changing the absorbance at 450 nm of the sensing system. The degree of change in absorbance is correlated with the concentration of GSH. In the outer part, the molecularly imprinted polymer with oxidized glutathione (GSSG) as a dummy template provided specific pores, which significantly improved the selectivity of the sensing system. The sensor showed good GSH sensing performance in the range 1 ~ 50 µM with a lower limit of detection (LOD) of 0.231 µM and good sensing performance in fetal bovine serum, indicating its high potential for clinical diagnostic applications.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Ouro/química , Colorimetria , Nanopartículas Metálicas/química , Glutationa
14.
Mikrochim Acta ; 191(11): 688, 2024 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436464

RESUMO

A novel voltammetric sensor designed for dopamine (DA) detection is presented utilizing a combination of zeolitic imidazolate framework (ZIF-67) derived cobalt and nitrogen-doped carbon on reduced graphene oxide (Co-N-C/rGO). ZIF-67 cubic crystals were synthesized in situ and deposited onto the graphene oxide (GO) surface through room-temperature reactions. High-temperature calcination resulted in partially collapsed cubic and spherical carbon, while simultaneously reducing GO to rGO. A molecular imprinting resorcinol polymer (MIP) membrane was also in situ applied to the Co-N-C/rGO/glassy carbon electrode (GCE) via electropolymerization. Analyses using cyclic voltammetry, electrochemical impedance, and pulse voltammetry reveal that the modified MIP/Co-N-C/rGO/GCE electrodes show improved electroconductivity and notable electrochemical reactivity towards dopamine. After optimizing detection parameters, the sensor demonstrates a wide linear detection range of 0.01-0.5 and 0.5-100 µmol/L, with a limit of detection (LOD) of 3.33 nmol/L (S/N = 3). Additionally, the sensor displays strong robustness, including excellent selectivity, significant resistance to interference, and long-term stability. It also shows satisfactory recovery in detecting spiked real samples.


Assuntos
Cobalto , Dopamina , Técnicas Eletroquímicas , Eletrodos , Grafite , Imidazóis , Limite de Detecção , Zeolitas , Grafite/química , Dopamina/análise , Dopamina/química , Zeolitas/química , Cobalto/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Imidazóis/química , Impressão Molecular , Carbono/química , Nitrogênio/química , Polímeros Molecularmente Impressos/química , Estruturas Metalorgânicas/química , Oxirredução
15.
Mikrochim Acta ; 191(11): 675, 2024 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414650

RESUMO

Monitoring the concentration of antibiotics rapidly and cost-effectively is crucial for accurate clinical medication and timely identification of drug-induced illnesses. Here, we constructed a novel fluorescent assay kit to monitor Zavicefta, an effective antibiotic composed of avibactam (AVI) and ceftazidime (CFZ) to treat carbapenem-resistant gram-negative bacteria infections. AVI can emit fluorescence, but CFZ cannot. To enable simultaneous measurement of both in one kit, we designed molecularly imprinted polymer (MIP) modified quantum dots (QDs) for CFZ determination. MIPs have received significant attention as an artificial antibody due to their exceptional specificity for various targets, particularly drugs with small molecular weight. Under the excitation wavelength of 350 nm, the detection process involves a decrease in QDs' fluorescence signal at 600 nm owing to the "gate effect" between MIP and CFZ and the internal filtration effect between CFZ and QDs. Simultaneously, a fluorescence emission characteristic peak at 420 nm for AVI emerges. In addition, to simplify the operation procedure and improve determination throughput, the detection agents were incorporated into a hydrogel and placed in a 96-well plate, enabling concurrent quantification of AVI and CFZ within the respective range of 80-1000 µM and 1-1000 µM. The developed assay kit successfully determined AVI and CFZ in human serums and therapeutic drug monitoring in a live rabbit model. Recoveries of AVI and CFZ were 92.7-114%, with relative standard deviations below 6.0%. Moreover, a smartphone was employed to read the fluorescence signals, which was beneficial for cost reduction and out-of-lab analysis. This study will deliver a pragmatic resolution to developing high-throughput assay kits for drug determination.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Hidrogéis , Pontos Quânticos , Compostos Azabicíclicos/química , Compostos Azabicíclicos/sangue , Compostos Azabicíclicos/análise , Ceftazidima/sangue , Ceftazidima/análise , Pontos Quânticos/química , Antibacterianos/análise , Antibacterianos/sangue , Hidrogéis/química , Espectrometria de Fluorescência/métodos , Combinação de Medicamentos , Polímeros Molecularmente Impressos/química , Animais , Limite de Detecção , Humanos , Fluorescência
16.
Mikrochim Acta ; 191(5): 270, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630200

RESUMO

A comparative analysis of molecularly imprinted polymers based on different synthesis techniques was performed for the recognition of molnupiravir (MOL). The polymerizations were performed with 3-thienyl boronic acid (3-TBA) as a functional monomer by electropolymerization (EP) and with guanine methacrylate (GuaM) as a functional monomer by photopolymerization (PP). Morphological and electrochemical characterizations of the developed sensors were investigated to verify the constructed sensors. Moreover, quantum chemical calculations were used to evaluate changes on the electrode surface at the molecular and electronic levels. The dynamic linear range of both designed sensors under optimized experimental conditions was found to be 7.5 × 10-12-2.5 × 10-10 M and 7.5 × 10-13-2.5 × 10-11 M for EP and PP, respectively. The effect of various interfering agents on MOL peak current was assessed for the selectivity of the study. In the presence of 100 times more interfering agents, the RSD and recovery values were determined. The RSD values of GuaM/MOL@MIP/GCE and poly(Py-co-3-PBA)/MOL@MIP/GCE sensors were found to be 1.99% and 1.72%, respectively. Furthermore, the recovery values of the MIP-based sensors were 98.18-102.69% and 98.05-103.72%, respectively. In addition, the relative selectivity coefficient (k') of the proposed sensor was evaluated, and it exhibited good selectivity for MOL with respect to the NIP sensor. The prepared sensor was successfully applied to determine MOL in commercial serum samples and capsule form. In conclusion, the developed sensors provided excellent reproducibility, repeatability, high sensitivity, and selectivity against the MOL molecule.


Assuntos
Ácidos Borônicos , Citidina/análogos & derivados , Hidroxilaminas , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Eletrodos , Guanina , Metacrilatos
17.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748375

RESUMO

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Assuntos
Carbono , Dopamina , Corantes Fluorescentes , Limite de Detecção , Polímeros Molecularmente Impressos , Nifedipino , Pontos Quânticos , Espectrometria de Fluorescência , Pontos Quânticos/química , Nifedipino/química , Nifedipino/análise , Corantes Fluorescentes/química , Polímeros Molecularmente Impressos/química , Dopamina/urina , Dopamina/análise , Carbono/química , Espectrometria de Fluorescência/métodos , Humanos , Polimerização , Impressão Molecular , Comprimidos/análise
18.
Mikrochim Acta ; 191(5): 277, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647714

RESUMO

Widely used organophosphorus pesticide triazophos (TAP) can easily cumulate in aquatic system due to its high stability chemically and photochemically and thus posing significant threat to aquatic creatures and humans' health. Urging demand for rapid determining TAP in water has risen. Photoelectrochemical (PEC) sensing turns out to be a good candidate for its simplicity in fabrication and swiftness in detection. Nevertheless, traditional PEC sensors often lack selectivity as their signal generation primarily relies on the oxidation of organic compounds in the electrolyte by photo-induced holes. To address this limitation, molecularly imprinted polymers (MIPs) can be in combined with PEC sensors to significantly enhance the selectivity. Here, we present a novel approach utilizing a PEC sensor enhanced by carbon-modified titanium dioxide molecularly imprinted polymers (MIP/C/TiO2 NTs). Carbon quantum dot (CQD) modification of titanium dioxide nanotube arrays (C/TiO2 NTs) was achieved through a one-step anodization process, effectively enhancing visible light absorption by narrowing the band gap of TiO2, and CQDs also function as sensitizer accelerating charge transfer for improved and stable photocurrent signals during detection. Our method further incorporates MIPs to heighten the selectivity of the PEC sensor. Electro-polymerization using cyclic voltammetry was employed to polymerize MIPs with pyrrole as the functional monomer and triazophos as the target molecule. The resultant MIP/C/TiO2 NT sensor exhibited remarkable sensitivity, with a detection limit of 0.03 nM (S/N = 3), alongside exceptional selectivity and stability for triazophos detection in water. This offers a promising avenue for efficient, cost-effective, and rapid monitoring of pesticide contaminants in aquatic environments, contributing to the broader goals of environmental preservation and public health.

19.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38955823

RESUMO

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos , Ouro , Análise Espectral Raman , Ácidos Borônicos/química , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Análise Espectral Raman/métodos , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Transferrina/análise , Transferrina/química , Impressão Molecular , Polímeros Molecularmente Impressos/química , Glicoproteínas/sangue , Glicoproteínas/química , Materiais Biomiméticos/química , Dopamina/sangue , Dopamina/análise , Compostos de Sulfidrila
20.
Mikrochim Acta ; 191(4): 172, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433173

RESUMO

A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa