Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Environ Sci Technol ; 58(8): 3726-3736, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353258

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP), as a highly toxic and biologically active phthalate metabolite, poses considerable risks to the environment and humans. Despite the existence of in vitro studies, there is a lack of in vivo experiments assessing its toxicity, particularly thyroid toxicity. Herein, we investigated the thyroid-disrupting effects of MEHP and the effects on growth and development of maternal exposure to MEHP during pregnancy and lactation on the offspring modeled by SD rats. We found that thyroid hormone (TH) homeostasis was disrupted in the offspring, showing a decrease in total TH levels, combined with an increase in free TH levels. Nonhomeostasis ultimately leads to weight loss in female offspring, longer anogenital distance in male offspring, prolonged eye-opening times, and fewer offspring. Our findings indicate that maternal exposure to MEHP during pregnancy and lactation indirectly influences the synthesis, transport, transformation, and metabolism of THs in the offspring. Meanwhile, MEHP disrupted the morphology and ultrastructure of the thyroid gland, leading to TH disruption. This hormonal disruption might ultimately affect the growth and development of the offspring. This study provides a novel perspective on the thyroid toxicity mechanisms of phthalate metabolites, emphasizing the health risks to newborns indirectly exposed to phthalates and their metabolites.


Assuntos
Dietilexilftalato , Dietilexilftalato/análogos & derivados , Ácidos Ftálicos , Humanos , Gravidez , Masculino , Feminino , Animais , Ratos , Ratos Sprague-Dawley , Hormônios Tireóideos , Ácidos Ftálicos/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Lactação , Homeostase , Crescimento e Desenvolvimento
2.
Environ Toxicol ; 39(7): 3967-3979, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598732

RESUMO

Mono-(2-ethylhexyl) phthalate (MEHP) can accumulate in the liver and then lead to hepatic steatosis, while the underlying mechanism remains unclear. Inflammation plays an important role in the disorder of hepatic lipid metabolism. This study aims to clarify the role of the inflammatory response mediated by formyl peptide receptor 2 (FPR2) in steatosis of L02 cells exposed to MEHP. L02 cells were exposed to MEHP of different concentrations and different time. A steatosis model of L02 cells was induced with oleic acid and the cells were exposed to MEHP simultaneously. In addition, L02 cells were incubated with FPR2 antagonist and then exposed to MEHP. Lipid accumulation was determined by oil red O staining and extraction assay. The indicators related to lipid metabolism and inflammatory response were measured with appropriate kits. The relative expression levels of FPR2 and its ligand were determined by Western blot, and the interaction of them was detected by co-immunoprecipitation. As a result, MEHP exposure could promote the occurrence and progression of steatosis and the secretion of chemokines and inflammatory factors in L02 cells. MEHP could also affect the expression and activation of FPR2 and the secretion of FPR2 ligands. In addition, the promotion effect of MEHP on the secretion of total cholesterol and interleukin 1ß in L02 cells could be significantly inhibited by the FPR2 antagonist. We concluded that FPR2 might affect the promotion effect of MEHP on steatosis of L02 cells by mediating inflammatory response.


Assuntos
Dietilexilftalato , Fígado Gorduroso , Receptores de Formil Peptídeo , Receptores de Lipoxinas , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Humanos , Receptores de Formil Peptídeo/metabolismo , Linhagem Celular , Receptores de Lipoxinas/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos
3.
Environ Toxicol ; 38(7): 1628-1640, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36988346

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) can induce hepatic lipid metabolism disorders, while the molecular mechanism still remain unknown. We aim to explore the underlying mechanism of Notch signaling pathway on hepatic lipid accumulation induced by DEHP/MEHP. A total of 40 male wistar rats were exposed to DEHP (0, 5, 50, and 500 mg/kg/d) for 8 weeks, BRL-3A hepatocytes were exposed to MEHP (0, 10, 50, 100, and 200 µM) for 24 h. About 50 µM DAPT and 100 µg/mL Aspirin were used to inhibit Notch pathway and prevent inflammation, respectively. Real-Time PCR was performed to detect the mRNA expression, western blot and immunofluorescence were used to detect the protein expression. Lipids and inflammatory factors levels were determined by commercial kits. The results showed that DEHP/MEHP promoted the expression of Notch pathway molecules and lipids accumulation in rat livers/BRL-3A cells. The up-regulated Notch receptors were correlated with the TG levels in the rat liver. MEHP increased the levels of IL-8 and IL-1ß. The lipids levels were reduced after anti-inflammation. The inhibition of Notch pathway reversed the elevation of inflammation and lipid accumulation caused by MEHP. In conclusion, this study demonstrated that DEHP/MEHP led to lipid accumulation in hepatocytes by up-regulating Notch pathway and the inflammation might play a key role in the process.


Assuntos
Dietilexilftalato , Ratos , Animais , Masculino , Dietilexilftalato/metabolismo , Fígado/metabolismo , Ratos Wistar , Transdução de Sinais , Inflamação , Lipídeos
4.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630558

RESUMO

Mono-(2-ethylhexyl) phthalate (MEHP) is one of the main active metabolites of di-(2-ethylhexyl) phthalate (DEHP). In our previous works, by using rat and Drosophila models, we showed a disruption of neural function due to DEHP. However, the exact neural effects of MEHP are still unclear. To explore the effects of MEHP on the central nervous system, the electrophysiological properties of spontaneous action potential (sAP), mini-excitatory postsynaptic currents (mEPSCs), ion channels, including Na+, Ca2+, and K+ channels from rat CA3 hippocampal neurons area were assessed. Our data showed that MEHP (at the concentrations of 100 or 300 µM) decreased the amplitude of sAP and the frequency of mEPSCs. Additionally, MEHP (100 or 300 µM) significantly reduced the peak current density of Ca2+ channels, whereas only the concentration of 300 µM decreased the peak current density of Na+ and K+ channels. Therefore, our results indicate that exposure to MEHP could affect the neuronal excitability and synaptic plasticity of rat CA3 hippocampal neurons by inhibiting ion channels' activity, implying the distinct role of MEHP in neural transmission.


Assuntos
Dietilexilftalato , Animais , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Hipocampo/metabolismo , Canais Iônicos/metabolismo , Neurônios/metabolismo , Ácidos Ftálicos , Ratos , Transmissão Sináptica
5.
J Appl Toxicol ; 41(5): 755-764, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33159713

RESUMO

Mono (2-ethylhexyl) phthalate (MEHP) is a major metabolite of di (2-ethylhexyl) phthalate (DEHP). This study aimed to observe the toxic effect of MEHP on human endometrial microvascular endothelial cells (HEMECs) and its potential molecular mechanism. HEMECs were exposed to different concentrations of MEHP (0, 50, 100, and 200 nM). Cell viability and apoptosis were assessed by cell counting kit-8 (CCK-8) and flow cytometry assays. Western blot was performed to examine the expression of apoptosis-related proteins (Bcl-2, Bax, and Caspase-3). Moreover, the expression of pyroptosis-related Caspase-1 was detected by western blot and immunofluorescence assays. Lactate dehydrogenase (LDH) release levels were evaluated in HEMECs treated with MEHP and/or Caspase-1 inhibitor Ac-YVAD-CHO. After exposure to MEHP, NLRP3 expression was examined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. LDH release and apoptosis levels were tested in HEMECs induced by MEHP and/or siNLRP3. MEHP significantly induced cell viability and inhibited apoptosis for HEMECs, with a concentration-dependent manner. Furthermore, Bcl-2/Bax ratio was distinctly reduced and Caspase-3 expression was increased in HEMECs after exposure to MEHP. Western blot and immunofluorescence results confirmed that MEHP markedly augmented Caspase-1 expression in HEMECs. Furthermore, LDH release levels were fortified in HEMECs treated with MEHP, which were improved following cotreatment with Ac-YVAD-CHO. At the mRNA and protein levels, NLRP3 expression was prominently increased in HEMECs exposed to MEHP. NLRP3 knockdown markedly ameliorated the increase in LDH release and apoptosis induced by MEHP exposure in HEMECs. Our findings suggested that exposure to MEHP facilitates apoptosis and pyroptosis of HEMECs through NLRP3 inflammasome.


Assuntos
Dietilexilftalato/análogos & derivados , Substâncias Perigosas/toxicidade , Inflamassomos/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3 , Caspases , Sobrevivência Celular/efeitos dos fármacos , Dietilexilftalato/toxicidade , Células Endoteliais/efeitos dos fármacos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácidos Ftálicos , Proteínas Proto-Oncogênicas c-bcl-2 , Piroptose/fisiologia , Proteína X Associada a bcl-2/metabolismo
6.
Reprod Domest Anim ; 55(10): 1418-1424, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32744352

RESUMO

Phthalates, including di-(2-ethylhexyl)phthalate (DEHP), are common industrial chemicals in the environment. Recent evidence indicates that DEHP and its active metabolite mono-(2-ethylhexyl)phthalate (MEHP) negatively modulate reproductive functions and induce reactive oxygen species. Ascorbic acid (AA) is a dietary requirement for primates, and it acts as a potent free radical scavenger to protect tissues against oxidative stress. In this study, to investigate the toxic effects of MEHP on the follicle development and the beneficial role of AA, neonatal mouse ovaries were treated with different concentrations of MEHP with or without AA for 6 days. Then, the follicle constitution and oxidative status were compared in different groups. Results showed MEHP accelerated primordial follicle recruitment by increasing the percentage of primary and secondary follicles and decreasing the percentage of primordial follicles in the ovaries. Moreover, MEHP-induced ovarian oxidative stress by significantly increasing malondialdehyde (MDA) concentration and the expression of GSS and SOD1. When ovaries were co-administrated with MEHP and AA, follicle constitution was normalized, and the oxidative status was significantly decreased. These results suggested that AA ameliorated MEHP-induced ovarian oxidative stress and follicular dysregulation, which attested the clinical significance of AA for ovary protection in the case of MEHP exposure.


Assuntos
Ácido Ascórbico/farmacologia , Dietilexilftalato/análogos & derivados , Folículo Ovariano/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Dietilexilftalato/toxicidade , Feminino , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Malondialdeído/análise , Camundongos Endogâmicos ICR , Técnicas de Cultura de Órgãos , Ovário/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
Environ Res ; 173: 165-173, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30909102

RESUMO

The di(2-ethylhexyl) phthalate (DEHP) is a plasticizer incorporated to plastic matrices of widely used consumer products. However, it is gradually released from these products, resulting in a chronic exposure for humans. Although DEHP, similar to other members of the phthalates family, is generally considered as an endocrine disruptor, the mechanisms implicated in its toxicity are yet poorly understood. Our objective was to determine the effects of an exposure to DEHP and to one of its major metabolite, the mono(2-ethylhexyl) phthalate (MEHP) on markers involved in breast carcinogenesis. T-47D cells were exposed to environmentally relevant and higher doses of DEHP and MEHP (0.1-10 000 nM) for 4 days. Our results showed that an exposure to 10 000 nM of DEHP and 0.1 nM of MEHP significantly increased the proliferation of T-47D cells, without inducing apoptosis. In addition, a significant increase in the protein levels of the isoform A of the progesterone receptor (PR) and of nuclear levels of PR were observed in T-47D cells exposed to 10 000 nM of DEHP. Importantly, the increased proliferation and nuclear levels of PR were totally and partially inhibited, respectively, by Mifepristone, a PR antagonist. These results suggest that an exposure to DEHP or MEHP increase cell proliferation by activating PR signaling, which could potentially increase the risks to develop breast cancer. The mechanism of activation of the progesterone pathway by DEHP and the long-term consequences of this activation remained to be elucidated.


Assuntos
Neoplasias da Mama , Dietilexilftalato/toxicidade , Receptores de Progesterona/metabolismo , Proliferação de Células , Humanos , Ácidos Ftálicos
8.
Ecotoxicol Environ Saf ; 184: 109611, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31491605

RESUMO

Mono-2-ethylhexyl phthalate (MEHP), as the major metabolite of Di-(2-ethylhexyl) phthalate (DEHP), can induce lipid accumulation in hepatocytes and further leads to non-alcoholic fatty liver disease (NAFLD), while the underlying mechanism is unclear. We aim to clarify the effects of JAK2/STAT5 pathway on lipid accumulation induced by MEHP and the role of oxidation stress in NAFLD. BRL-3A hepatocytes were exposed to MEHP (0, 10, 50, 100 and 200 µM) for 24 h and 48 h. Then the lipid droplets in cells were observed by Oil-Red-O staining and quantified by isopropyl alcohol. The levels of TG, SOD, TBARS, AST and ALT were all detected by commercial kits. RT-PCR was used to detect mRNA expression, and western blotting was used to detect the expression of proteins encoded by JAK2/STAT5 pathway genes and lipid metabolism-related genes. As a result, MEHP promoted the lipid synthesis and accumulation in BRL-3A cells. MEHP down-regulated the expression and inhibited the activation of JAK2/STAT5. Moreover, the lipid metabolism-related kinases levels were elevated after MEHP exposure. In addition, the SOD levels were gradually decreased and the TBARS levels were increased in MEHP-treated groups. The lipid metabolism-related proteins levels were correlated with the oxidation stress levels. Furthermore, the ALT and AST levels were elevated after MEHP exposure. Therefore, we concluded that MEHP led to lipid accumulation through inhibiting JAK2/STAT5 pathway, resulted in damaging liver parenchyma and NAFLD by aggravating oxidation stress.


Assuntos
Dietilexilftalato/análogos & derivados , Janus Quinase 2/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Dietilexilftalato/toxicidade , Regulação para Baixo/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Janus Quinase 2/genética , Metabolismo dos Lipídeos/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética
9.
Ecotoxicol Environ Saf ; 173: 37-44, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30753939

RESUMO

Cross-sectional studies have described an association between exposure to phthalate esters and cardiovascular risk factors. However, the association with coronary heart disease (CHD) is still unclear. A total of 180 subjects randomly selected from 336 CHD patients, and 360 age- and sex-matched non-CHD controls were included from 2008 to 2011. Urinary metabolites of phthalate esters were measured by liquid chromatography-tandem mass spectrometry. The geometric means of urinary phthalates metabolites were significantly higher for the three Di-(2-ethylhexyl)-phthalate (DEHP) metabolites, mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate, and mono-(2-ethyl-5-oxohexyl) phthalate among CHD patients in-hospital than those of being discharged. Excluding 89 CHD patients of in-hospital and hospital discharge within 2 days, we found the urinary concentrations of MEHP, mono-n-butyl phthalate (MnBP), and mono-isobutyl phthalate (MiBP) of 91 CHD patients discharged ≥ 3 days were higher than those of controls. Among 451 participants, those with higher tertile levels of urinary MEHP, MnBP, and MiBP showed an increased risk for CHD compared to those with lowest tertile levels; the corresponding odds ratios (95% CI) were 2.77 (1.22-6.28), 2.90 (1.32-6.4), and 3.19 (1.41-7.21), respectively, after adjustment for confounders. Higher levels of hs-CRP, fibrinogen, and D-dimer were linked with increased levels of all DEHP metabolites in CHD patients. In conclusion, exposure to DEHP and dibutyl phthalates was positively associated with CHD and this relationship may be probably mediated via atherothrombosis.


Assuntos
Doença das Coronárias/sangue , Doença das Coronárias/urina , Exposição Ambiental/análise , Poluentes Ambientais/urina , Ácidos Ftálicos/urina , Adulto , Biomarcadores/sangue , Estudos Transversais , Poluentes Ambientais/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ácidos Ftálicos/química , Fatores de Risco
10.
J Cell Physiol ; 233(4): 3629-3637, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29034469

RESUMO

This study aimed to examine the proliferation of and secretion by rat ovarian granulosa cells (GCs) treated with mono-(2-ethylhexyl) phthalate (MEHP). Ovarian GCs were incubated with MEHP at concentration of 0, 25, 50, 100, and 200 µM for 24 hr. Cell viability was determined using the MTT Cell Proliferation Assay. Progesterone and estradiol production was evaluated by radioimmunoassay (RIA) and the expression of FSHR, PR, and ER was measured by immunocytochemistry. StAR, P450scc, 3ß-HSD, 17ß-HSD, and P450 arom mRNA levels were determined by RT-PCR. MEHP markedly attenuated proliferation of GCs, increased expression of sex hormone receptors and key enzymes in progesterone production, and stimulated steroid hormone secretion. The result of these analyses demonstrates that MEHP exposure of GCs may have effects on rat ovarian functions.


Assuntos
Proliferação de Células/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Hormônios Esteroides Gonadais/biossíntese , Células da Granulosa/efeitos dos fármacos , Progesterona/biossíntese , Animais , Aromatase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dietilexilftalato/farmacologia , Estradiol/biossíntese , Feminino , Células da Granulosa/metabolismo , Ratos
11.
Indian J Med Res ; 148(6): 734-742, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30778008

RESUMO

BACKGROUND & OBJECTIVES: Bisphenol-A (BPA) and phthalates are utilized widely in consumer products. Due to their ubiquitous presence in the environment, a concern is expressed worldwide about their possible effect on human reproductive health. This study was conducted to compare the internal exposure of BPA and phthalates (using their metabolites as biomarkers) in plasma samples of infertile and fertile women. METHODS: A sensitive gas chromatographic-mass spectrometric (GC-MS) method was developed to simultaneously quantify BPA and four phthalate monoester metabolites [namely mono-methyl phthalate (MMP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP) and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP)] in human plasma. The method was validated using charcoal-stripped human plasma. Activated charcoal was also utilized to reduce contamination from reagents. The method was designed to account for and/or eliminate background contamination from all sources. RESULTS: The limit of quantification for the method was 5 ng/ml for MMP and MBzP, while 1 ng/ml for BPA, MEHP and MEHHP, respectively. The precision and accuracy were well within the acceptable range. BPA was detectable in 77 per cent of plasma samples of infertile women and 29 per cent of fertile women. All the four phthalate metabolites were detected in plasma samples of both fertile and infertile women. INTERPRETATION & CONCLUSIONS: A GC-MS was developed and validated to estimate the BPA and four phthalate monoester metabolites in human plasma. It was utilised to analyse the plasma samples from fertile and infertile women. The infertile women showed significantly higher plasma concentrations of MBzP, BPA and MEHHP as compared to fertile women. The levels of MMP and MEHP were not significantly different between the two groups. Further studies need to be done to confirm these preliminary findings.


Assuntos
Compostos Benzidrílicos/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Infertilidade Feminina/sangue , Fenóis/sangue , Ácidos Ftálicos/sangue , Adulto , Estudos de Casos e Controles , Dietilexilftalato/análogos & derivados , Dietilexilftalato/sangue , Feminino , Fertilidade , Humanos , Adulto Jovem
12.
Environ Res ; 158: 566-575, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28715785

RESUMO

Prenatal exposure to Endocrine disruptors (EDs), such as Bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP), has been associated with obesity and diabetes diseases in childhood, as well as reproductive, behavioral and neurodevelopment problems. The aim of this study was to estimate the prenatal exposure to BPA and DEHP through food consumption for pregnant women living in Tarragona County (Spain). Probabilistic calculations of prenatal exposure were estimated by integrated external and internal dosimetry modelling, physiologically based pharmacokinetic (PBPK) model, using a Monte-Carlo simulation. Physical characteristic data from the cohort, along with food intake information from the questionnaires (concentrations of BPA and DEHP in different food categories and the range of the different food ratios), were used to estimate the value of the total dietary intake for the Tarragona pregnancy cohort. The major contributors to the total dietary intake of BPA were canned fruits and vegetables, followed by canned meat and meat products. In turn, milk and dairy products, followed by ready to eat food (including canned dinners), were the most important contributors to the total dietary intake of DEHP. Despite the dietary variations among the participants, the intakes of both chemicals were considerably lower than their respective current tolerable daily intake (TDI) values established by the European Food Safety Authority (EFSA). Internal dosimetry estimates suggest that the plasma concentrations of free BPA and the most important DEHP metabolite, mono (2-ethylhexyl) phthalate (MEHP), in pregnant women were characterized by transient peaks (associated with meals) and short half-lives (< 2h). In contrast, fetal exposure was characterized by a low and sustained basal BPA and MEHP concentration due to a lack of metabolic activity in the fetus. Therefore, EDs may have a greater effect on developing organs in young children or in the unborn child.


Assuntos
Compostos Benzidrílicos/farmacocinética , Dieta , Dietilexilftalato/farmacocinética , Poluentes Ambientais/farmacocinética , Contaminação de Alimentos/análise , Exposição Materna , Fenóis/farmacocinética , Adolescente , Adulto , Disruptores Endócrinos/farmacocinética , Monitoramento Ambiental , Feminino , Humanos , Modelos Biológicos , Gravidez , Espanha , Adulto Jovem
13.
Arch Toxicol ; 91(2): 689-698, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27071666

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP), which is an endocrine-disrupting chemical. In the present study, MEHP glucuronidation in humans was studied using recombinant UDP-glucuronosyltransferases (UGTs) and microsomes of the liver and intestine. Among the recombinant UGTs examined, UGT1A3, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B4, and UGT2B7 glucuronidated MEHP. The kinetics of MEHP glucuronidation by UGT1A3, UGT1A7, UGT1A8, UGT1A10, UGT2B4, and UGT2B7 followed the Michaelis-Menten model, whereas that by UGT1A9 fit the negative allosteric model. CLint values were in the order of UGT1A9 > UGT2B7 > UGT1A7 > UGT1A8 ≥ UGT1A10 > UGT1A3 > UGT2B4. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model. Diclofenac (20 µM) and raloxifene (20 µM) decreased CLint values to 43 and 36 % that of native microsomes, respectively. The kinetics of MEHP glucuronidation by intestine microsomes fit the biphasic model. Diclofenac (150 and 450 µM) decreased CLint values to 32 and 13 % that of native microsomes for the high-affinity phase, and to 28 and 21 % for the low-affinity phase, respectively. Raloxifene (2.5 and 7.0 µM) decreased CLint values to 35 and 4.1 % that of native microsomes for the high-affinity phase, and to 48 and 53 % for the low-affinity phase, respectively. These results suggest that MEHP glucuronidation in humans is catalyzed by UGT1A3, UGT1A9, UGT2B4, and/or UGT2B7 in the liver, and by UGT1A7, UGT1A8, UGT1A9, UGT1A10, and/or UGT2B7 in the intestine, and also that these UGT isoforms play important and characteristic roles in the detoxification of DEHP.


Assuntos
Dietilexilftalato/análogos & derivados , Glucuronosiltransferase/metabolismo , Diclofenaco/farmacologia , Dietilexilftalato/metabolismo , Dietilexilftalato/farmacocinética , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/farmacocinética , Glucuronosiltransferase/genética , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Teóricos , Cloridrato de Raloxifeno/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Arch Toxicol ; 90(7): 1651-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26514348

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP) and has endocrine-disrupting effects. MEHP is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the hepatic and intestinal glucuronidation of MEHP in humans, dogs, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model for humans and dogs, and the biphasic model for rats and mice. The K m and V max values of human liver microsomes were 110 µM and 5.8 nmol/min/mg protein, respectively. The kinetics of intestinal microsomes followed the biphasic model for humans, dogs, and mice, and the Michaelis-Menten model for rats. The K m and V max values of human intestinal microsomes were 5.6 µM and 0.40 nmol/min/mg protein, respectively, for the high-affinity phase, and 430 µM and 0.70 nmol/min/mg protein, respectively, for the low-affinity phase. The relative levels of V max estimated by Eadie-Hofstee plots were dogs (2.0) > mice (1.4) > rats (1.0) ≈ humans (1.0) for liver microsomes, and mice (8.5) > dogs (4.1) > rats (3.1) > humans (1.0) for intestinal microsomes. The percentages of the V max values of intestinal microsomes to liver microsomes were mice (120 %) > rats (57 %) > dogs (39 %) > humans (19 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward MEHP markedly differed among species, and imply that these species differences are strongly associated with the toxicity of DEHP.


Assuntos
Dietilexilftalato/análogos & derivados , Glucuronídeos/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , Dietilexilftalato/metabolismo , Cães , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Cinética , Fígado/metabolismo , Camundongos , Microssomos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Estrutura Molecular , Ratos , Especificidade da Espécie , Adulto Jovem
15.
Biochim Biophys Acta ; 1839(11): 1170-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25153068

RESUMO

Epigenetic silencing mechanisms are essential for regulating germ cell apoptosis in response to different stimuli during complicated spermatogenesis. Herein, we report the potential signaling events related to up-regulation of metastasis associated protein 1 (Mta1), a master chromatin modifier, during mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cells (SCs) injury. Mta1 up-regulation correlated to the gradual increases of MYC expression in MEHP-treated SCs. Selective knockdown of MYC abolished MEHP-induced activation of Mta1, suggesting that MYC may regulate the Mta1 signaling following MEHP injury. Furthermore, MTA1 acted as a specific corepressor of tissue inhibitor of metalloproteinase 2 (Timp2) during SCs injury. Mta1 repressed Timp2 expression either directly by recruiting histone deacetylase 2 onto the Timp2 promoter or indirectly by enhancing NF-κB-mediated inflammatory responses during MEHP injury. This transcriptional and post-translational down-regulation of Timp2/TIMP2 expression consequently resulted in the stimulated activation of matrix metalloproteinase 2 (MMP2) in SCs, which should ultimately promote germ cell death upon MEHP insult. From a functional standpoint, inhibition of endogenous Mta1 expression along with anti-inflammation treatment in cultured SCs could rescue MEHP-inhibited TIMP2 and subsequently rebalanced MMP2 activity to the control level. Together with the recently reported essential role of TIMP2/MMP2 signaling in MEHP-induced specific disruption of junctional complexes in the seminiferous epithelium, our results further substantiate a critical role of Mta1 in the control of SCs response to MEHP stimulation. The MYC/Mta1/TIMP2 circuit may serve as an important scavenger mechanism to help to maintain the capacity of damaged SCs to support germ cell development following MEHP injury.


Assuntos
Cromatina/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Células de Sertoli/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fatores de Transcrição/fisiologia , Animais , Cromatina/metabolismo , Dietilexilftalato/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes myc/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Repressoras , Células de Sertoli/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Transativadores
16.
Biol Reprod ; 92(5): 120, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25810477

RESUMO

Humans are ubiquitously exposed to di(2-ethylhexyl) phthalate (DEHP), which is an environmental toxicant present in common consumer products. DEHP potentially targets the ovary through its metabolite mono(2-ethylhexyl) phthalate (MEHP). However, the direct effects of MEHP on ovarian folliculogenesis and steroidogenesis, two processes essential for reproductive and nonreproductive health, are unknown. The present study tested the hypotheses that MEHP directly accelerates early folliculogenesis via overactivation of phosphatidylinositol 3-kinase (PI3K) signaling, a pathway that regulates primordial follicle quiescence and activation, and inhibits the synthesis of steroid hormones by decreasing steroidogenic enzyme levels. Neonatal ovaries from CD-1 mice were cultured for 6 days with vehicle control, DEHP, or MEHP (0.2-20 µg/ml) to assess the direct effects on folliculogenesis and PI3K signaling. Further, antral follicles from adult CD-1 mice were cultured with vehicle control or MEHP (0.1-10 µg/ml) for 24-96 h to establish the temporal effects of MEHP on steroid hormones and steroidogenic enzymes. In the neonatal ovaries, MEHP, but not DEHP, decreased phosphatase and tensin homolog levels and increased phosphorylated protein kinase B levels, leading to a decrease in the percentage of germ cells and an increase in the percentage of primary follicles. In the antral follicles, MEHP decreased the mRNA levels of 17alpha-hydroxylase-17,20-desmolase, 17beta-hydroxysteroid dehydrogenase, and aromatase leading to a decrease in testosterone, estrone, and estradiol levels. Collectively, MEHP mediates the effect of DEHP on accelerated folliculogenesis via overactivating PI3K signaling and inhibits steroidogenesis by decreasing steroidogenic enzyme levels.


Assuntos
Dietilexilftalato/análogos & derivados , Dietilexilftalato/farmacologia , Folículo Ovariano/fisiologia , Animais , Animais Recém-Nascidos , Dietilexilftalato/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios Esteroides Gonadais/biossíntese , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/metabolismo , Camundongos
17.
Environ Toxicol ; 30(10): 1178-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24706461

RESUMO

Mono(2-ethylhexyl) phthalate (MEHP) is one of the main metabolites of di(2-ethylhexyl) phthalate. The evidence shows that DEHP may exert its toxic effects primarily via MEHP, which is 10-fold more potent than its parent compound in toxicity in vitro. MEHP-induced apoptosis is mediated by either p53-dependent or -independent pathway. However, the detailed mechanism of its toxicity remains unclear. In this study, immortalized normal human liver cell line L02 was chosen, as an in vitro model of nonmalignant liver, to elucidate the role of p53 in MEHP-induced apoptosis. The cells were treated with MEHP (6.25, 12.50, 25.00, 50.00, and 100.00 µM) for 24 and 36 h, then small interfering RNA (siRNA) was used to specifically silence p53 gene of L02 cells. The results indicated that MEHP caused oxidative DNA damage and apoptosis in L02 cells were associated with the p53 signaling pathway. Further study found that MEHP (50.00 and 100.00 µM) induced apoptosis in p53-silenced L02 cells, along with the up-regulations of Fas and FasL proteins as well as increased the Bax/Bcl-2 ratio and Caspase 3, 8, and 9 activities. Additionally, both FasL inhibitor (AF-016) and Caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp- fluoromethylketone (Z-VAD-FMK) could prevent the cell apoptosis induced by MEHP. The findings suggested that MEHP-induced apoptosis in L02 cells involving a Caspases-mediated mitochondrial signaling pathway and/or death receptor pathway. p53 was not absolutely necessary for MEHP-induced L02 cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Dietilexilftalato/toxicidade , Mitocôndrias/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Caspase 3/química , Caspase 3/metabolismo , Caspase 8/química , Caspase 8/metabolismo , Caspase 9/química , Caspase 9/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Dietilexilftalato/química , Dietilexilftalato/metabolismo , Proteína Ligante Fas/antagonistas & inibidores , Proteína Ligante Fas/metabolismo , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores de Morte Celular , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Receptor fas/metabolismo
18.
Toxicology ; 505: 153815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685446

RESUMO

Phthalates are found in everyday items like plastics and personal care products. There is an increasing concern that continuous exposure can adversely affect female fertility. However, experimental data are lacking to establish causal links between exposure and disease in humans. To address this gap, we tested the effects of a common phthalate metabolite, mono-(2-ethylhexyl) phthalate (MEHP), on adult human ovaries in vitro using an epidemiologically determined human-relevant concentration range (2.05 nM - 20.51 mM). Histomorphological assessments, steroid and cytokine measurements were performed on human ovarian tissue exposed to MEHP for 7 days in vitro. Cell viability and gene expression profile were investigated following 7 days of MEHP exposure using the human granulosa cancer cell lines KGN, and COV434, the germline tumor cell line PA-1, and human ovarian primary cells. Selected differentially expressed genes (DEGs) were validated by RT-qPCR and immunofluorescence in human ovarian tissue. MEHP exposure reduced follicular growth (20.51 nM) and increased follicular degeneration (20.51 mM) in ovarian tissue, while not affecting steroid and cytokine production. Out of the 691 unique DEGs identified across all the cell types and concentrations, CSRP2 involved in cytoskeleton organization and YWHAE as well as CTNNB1 involved in the Hippo pathway, were chosen for further validation. CSRP2 was upregulated and CTNNB1 downregulated in both ovarian tissue and cells, whereas YWHAE was downregulated in cells only. In summary, one-week MEHP exposure of human ovarian tissue can perturb the development and survival of human follicles through mechanisms likely involving dysregulation of cytoskeleton organization and Hippo pathway.


Assuntos
Sobrevivência Celular , Dietilexilftalato , Folículo Ovariano , Humanos , Feminino , Sobrevivência Celular/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Adulto , Linhagem Celular Tumoral , Citocinas/metabolismo , Citocinas/genética
19.
Toxicol Sci ; 198(1): 76-85, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38113427

RESUMO

Exposure of rodents to mono-(2-ethylhexyl) phthalate (MEHP) is known to disrupt the blood-testis barrier and cause testicular germ cell apoptosis. Peritubular macrophages (PTMφ) are a newly identified type of testicular macrophage that aggregates near the spermatogonial stem cell niche. We have previously reported that MEHP exposure increased the numbers of PTMφs by 6-fold within the testis of peripubertal rats. The underlying mechanism(s) accounting for this change in PTMφs and its biological significance is unknown. This study investigates if MEHP-induced alterations in PTMφs occur in rodents (PND 75 adult rats and PND 26 peripubertal mice) that are known to be less sensitive to MEHP-induced testicular toxicity. Results show that adult rats have a 2-fold higher basal level of PTMφ numbers than species-matched peripubertal animals, but there was no significant increase in PTMφ numbers after MEHP exposure. Peripubertal mice have a 5-fold higher basal level of PTMφ compared with peripubertal rats but did not exhibit increases in number after MEHP exposure. Further, the interrogation of the testis transcriptome was profiled from both the MEHP-responsive peripubertal rats and the less sensitive rodents via 3' Tag sequencing. Significant changes in gene expression were observed in peripubertal rats after MEHP exposure. However, adult rats showed lesser changes in gene expression, and peripubertal mice showed only minor changes. Collectively, the data show that PTMφ numbers are associated with the sensitivity of rodents to MEHP in an age- and species-dependent manner.


Assuntos
Dietilexilftalato , Dietilexilftalato/análogos & derivados , Testículo , Masculino , Ratos , Camundongos , Animais , Transcriptoma , Células de Sertoli , Roedores , Dietilexilftalato/toxicidade , Macrófagos
20.
Curr Res Toxicol ; 7: 100188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175913

RESUMO

The exposure to the ubiquitous phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) is connected to dysregulated trophoblast function and placenta health; however, the underlying mechanisms preluding this scenario remain to be elucidated. In this study, we explored the hypoxemic effects of MEHP on a human placental first-trimester trophoblast cell line (HTR-8/Svneo). MEHP-treated trophoblast cells displayed significantly increased levels of oxidative stress and hypoxia-inducible factor-1 alpha (HIF-1α) attributed by the induction of hypoxia. Further, HIF-1α exhibited higher DNA binding activity and upregulated gene expression of its downstream target vascular endothelial growth factor A (VEGFA). The hypoxia-induced microRNA miR-210-3p was also significantly increased upon MEHP treatment followed by disrupted mitochondrial ATP generation and membrane potential. This was identified to possibly be facilitated by lowered mitochondrial DNA copy number and inhibited expression of electron transport chain subunits, such as mitochondrial complex-IV. These results suggest potential adverse effects of MEHP exposure in a trophoblast cell line mediated by HIF-1α and the epigenetic modulator miR-210-3p. Chronic placental hypoxia and oxidative stress have long been implicated in the pathogenesis of pregnancy complications such as preeclampsia. As we've revealed genetic and epigenetic factors underscoring a potential mechanism induced by MEHP, this brings to light another significant implication of phthalate exposure on maternal and fetal health.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa