Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Inherit Metab Dis ; 47(3): 533-550, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38168036

RESUMO

Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.


Assuntos
Modelos Animais de Doenças , Neurotransmissores , Animais , Camundongos , Humanos , Neurotransmissores/metabolismo , Monoaminas Biogênicas/metabolismo
2.
Nutr Neurosci ; 27(5): 506-519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37395401

RESUMO

Objective: The purpose of this review was to assess the current evidence regarding the associated physiological and cognitive effects of aspartame (APM) consumption and Parkinson's Disease (PD). METHODS: A total of 32 studies demonstrating effects of APM on monoamine deficiencies, oxidative stress, and cognitive changes were reviewed. RESULTS: Multiple studies demonstrated decreased brain dopamine, decreased brain norepinephrine, increased oxidative stress, increased lipid peroxidation, and decreased memory function in rodents after APM use. In addition, PD animal models have been found to be more sensitive to the effects of APM. DISCUSSION: Overall, studies of APM use over time yielded more consistent results; however, no study has examined long-term effects on APM in human PD patients. Based on the current evidence, long-term human based observational research is needed to further investigate the potential effect of APM on PD.


Assuntos
Aspartame , Doença de Parkinson , Animais , Humanos , Cognição , Estresse Oxidativo , Neurotransmissores
3.
CNS Spectr ; 28(1): 6-15, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34588093

RESUMO

Treatment of major depressive disorder (MDD) including treatment-resistant depression (TRD) remains a major unmet need. Although there are several classes of dissimilar antidepressant drugs approved for MDD, the current drugs have either limited efficacy or are associated with undesirable side effects and withdrawal symptoms. The efficacy and side effects of antidepressant drugs are mainly attributed to their actions on different monoamine neurotransmitters (serotonin, norepinephrine, and dopamine). Development of new antidepressants with novel targets beyond the monoamine pathways may fill the unmet need in treatment of MDD and TRD. The recent approval of intranasal Esketamine (glutamatergic agent) in conjunction with an oral antidepressant for the treatment of adult TRD patients was the first step toward expanding beyond the monoamine targets. Several other glutamatergic (AXS-05, REL-1017, AV-101, SLS-002, AGN24175, and PCN-101) and GABAergic (brexanolone, zuranolone, and ganaxolone) drugs are currently in different stages of clinical development for MDD, TRD and other indications. The renaissance of psychedelic drugs and the emergence of preliminary positive clinical trial results with psilocybin, Ayahuasca, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), and lysergic acid diethylamide (LSD) may pave the way towards establishing this class of drugs as effective therapies for MDD, TRD and other neuropsychiatric disorders. Going beyond the monoamine targets appears to be an effective strategy to develop novel antidepressant drugs with superior efficacy, safety, and tolerability for the improved treatment of MDD and TRD.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Adulto , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Antidepressivos/efeitos adversos , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Serotonina , Norepinefrina
4.
J Integr Neurosci ; 22(2): 40, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992584

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease for which bone marrow mesenchymal stem cells (BM-MSCs) have become one of the most promising tools for treatment. Cuprizone(CPZ) induces demyelination in the central nervous system and its use has established a demyelination sheath animal model which is particularly suitable for studying the effects of BM-MSCs on the remyelination and mood improvement of a demyelinating model mice. METHODS: 70 C57BL/6 male mice were selected and divided into 4 groups: the normal control (n = 20), chronic demyelination (n = 20), myelin repair (n = 15) and cell-treated groups (n = 15). Mice in the normal control group were given a normal diet; the chronic demyelination group mice were given a 0.2% CPZ mixed diet for 14 weeks, mice in the myelin repair and cell-treated groups mice were given a 0.2% CPZ diet for 12 weeks and normal diet for 2 weeks, while the cell-treated group mice were injected with BM-MSCs from the 13th week. The cuprizone-induced demyelination model was successfully established and BM-MSCs extracted, behavioural changes of the mice were detected by open field test, elevated plus maze test and tail suspension test, demyelination and repair of the corpus callosum and astrocyte changes were observed by immunofluorescence and electron microscopy and the concentrations of monoamine neurotransmitters and their metabolites detected by enzyme-linked immunosorbent assay (ELISA) and high performance liquid chromatography-electrochemistry (HPLC-ECD). RESULTS: Results suggest BM-MSCs were successfully extracted and cultured, and migrated to the demyelinating area of brain tissue after cell transplantation. Compared with the normal control group, the mice in the chronic demyelination group showed obvious anxiety and depression behaviours (p < 0.05); compared with the chronic demyelination group, the anxiety and depression behaviours of the cell-treated group mice were improved (p < 0.05); compared with the normal control group, the demyelination of the corpus callosum region of the chronic demyelination group mice was significant (p < 0.01), while the myelin sheath of the cell-treated and myelin repair groups was repaired when compared with the chronic demyelination group (p < 0.05), and the cell-treated group had a more significant effect than the myelin repair group (p < 0.05). Compared with the normal control group, the number of astrocytes in the corpus callosum of the chronic demyelination group mice was significantly increased (p < 0.01), and the expression of glial fibrillary acidic protein (GFAP) in the cell-treated group was lower than that in the chronic demyelination and myelin repair groups (p < 0.05); the serum concentrations of norepinephrine (NE), 5-hydroxytryptamine (5-HT) and 5-Hydroxyindole-3-acetic acid (5-HIAA) between the normal control and the chronic demyelination groups were significantly different (p < 0.05). CONCLUSIONS: The CPZ-induced model can be used as an experimental carrier for MS combined with anxiety and depression, and BM-MSC transplantation promotes the repair of myelin sheath and the recovery of emotional disorders in the model.


Assuntos
Doenças Desmielinizantes , Células-Tronco Mesenquimais , Esclerose Múltipla , Masculino , Animais , Camundongos , Bainha de Mielina/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças
5.
Zhongguo Zhong Yao Za Zhi ; 48(4): 853-860, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872256

RESUMO

The degeneration of monoaminergic system and the reduction of monoamine neurotransmitters(MNTs) are associated with the occurrence of a variety of neuropsychiatric diseases, becoming the key indicators for clinical diagnosis and treatment. Recent studies suggested gut microbiota could influence the occurrence, development, and treatment of neuropsychiatric diseases by directly or indirectly regulating the synthesis and metabolism of MNTs. Rich clinical experience has been accumulated in the amelioration and treatment of neuropsychiatric diseases by traditional Chinese medicines. The traditional oral administration method demonstrates obvious advantages in regulating gut microbiota. It provides a new idea for explaining the pharmacodynamic material basis and mechanism of traditional Chinese medicines in ameliorating neuropsychiatric disease by improving the levels of MNTs via gut microbiota regulation. Focusing on three common neuropsychiatric diseases including Alzheimer's disease, Parkinson's disease, and major depression, we summarized the pathways of gut microbiota in regulating the levels of MNTs and the paradigms of traditional Chinese medicines in ameliorating neuropsychiatric diseases via the "bacteria-gut-brain axis", aiming to provide ideas for the development of drugs and treatment schemes.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Humanos , Administração Oral , Eixo Encéfalo-Intestino , Neurotransmissores
6.
J Neurochem ; 161(2): 129-145, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35233765

RESUMO

Increasing evidence suggests the involvement of peripheral amino acid metabolism in the pathophysiology of neuropsychiatric disorders, whereas the molecular mechanisms are largely unknown. Tetrahydrobiopterin (BH4) is a cofactor for enzymes that catalyze phenylalanine metabolism, monoamine synthesis, nitric oxide production, and lipid metabolism. BH4 is synthesized from guanosine triphosphate and regenerated by quinonoid dihydropteridine reductase (QDPR), which catalyzes the reduction of quinonoid dihydrobiopterin. We analyzed Qdpr-/- mice to elucidate the physiological significance of the regeneration of BH4. We found that the Qdpr-/- mice exhibited mild hyperphenylalaninemia and monoamine deficiency in the brain, despite the presence of substantial amounts of BH4 in the liver and brain. Hyperphenylalaninemia was ameliorated by exogenously administered BH4, and dietary phenylalanine restriction was effective for restoring the decreased monoamine contents in the brain of the Qdpr-/- mice, suggesting that monoamine deficiency was caused by the secondary effect of hyperphenylalaninemia. Immunohistochemical analysis showed that QDPR was primarily distributed in oligodendrocytes but hardly detectable in monoaminergic neurons in the brain. Finally, we performed a behavioral assessment using a test battery. The Qdpr-/- mice exhibited enhanced fear responses after electrical foot shock. Taken together, our data suggest that the perturbation of BH4 metabolism should affect brain monoamine levels through alterations in peripheral amino acid metabolism, and might contribute to the development of anxiety-related psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15398.


Assuntos
Biopterinas , Fenilcetonúrias , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Di-Hidropteridina Redutase , Medo , Humanos , Camundongos , Fenilalanina , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-34985774

RESUMO

OBJECTIVES: Delirium frequently arises in older demented and non-demented patients in postoperative, clinical settings. To date, the underlying pathophysiological mechanisms remain poorly understood. Monoamine neurotransmitter alterations have been linked to delirium and cognitive impairment. Our aim was to investigate if this holds true in cognitively normal and impaired patients experiencing delirium following hip surgery. METHODS: Monoamines and metabolites were measured in plasma samples of 181 individuals by means of reversed-phase ultra-high-performance liquid chromatography with electrochemical detection. Delirium and delirium severity were scored with the Confusion Assessment Method and Delirium Rating Scale-Revised-1998. Cognitive function was assessed using the Informant Questionnaire on Cognitive Decline and the Mini-Mental State Examination, multimorbidity with the Charlson Comorbidity Index. RESULTS: Plasma 5-hydroxyindoleacetic acid (5-HIAA), the major metabolite of serotonin (5-HT), was significantly higher in delirious and non-delirious cognitively impaired subjects as compared to control individuals without delirium and cognitive impairment (p < 0.001 and p = 0.007), which remained highly significant after excluding patients taking psychotropic medication (p < 0.0001 and p = 0.003). No significant differences were found for cognitively normal delirious patients, although serotonergic levels were numerically higher compared to control counterparts. CONCLUSIONS: Our findings indicate a general serotonergic disturbance in delirious and non-delirious postoperative patients suffering from cognitive impairment. We observed a similar, but less pronounced difference in delirious patients, which suggests serotonergic disturbances may be further aggravated by the co-occurrence of delirium and cognitive impairment.


Assuntos
Delírio , Idoso , Cognição , Humanos , Ácido Hidroxi-Indolacético
8.
BMC Psychiatry ; 22(1): 419, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733107

RESUMO

BACKGROUND: Pain and depression often occur simultaneously, but the mechanism of this condition is still unclear. METHODS: The aim of this study was to examine the alterations of monoamine neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis hormones, and inflammation cytokines in hyperalgesia and depression comorbidities. The reserpine-induced "Sprague Dawley" (SD) rat models were used, and the concentrations of monoamine neurotransmitters serotonin (5-HT), norepinephrine (NE), dopamine (DA), and their metabolic products 5-hydroxyindoleacetic acid (5-HIAA), Homovanillic acid (HVA), 3,4-Dihydroxyphenylacetic acid (DOPAC) in raphe nucleus region were tested by High Performance Liquid Chromatography (HPLC). Serum levels of Adrenocorticotropic Hormone (ACTH), Cortisol (CORT), and inflammatory cytokines interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, IL-10 were assessed by enzyme linked immunosorbent assay. RESULTS: Repeated reserpine injection induced hyperalgesia and depressive behaviors with decreased sucrose preference and horizontal movement distance, and increased immobility time in forced swimming test. The concentrations of 5-HT and NE in raphe nucleus, and ACTH and CORT in serum were elevated in the model group. And the model group showed increases in serum IL-1ß and IL-6, and decrease in serum IL-10. CONCLUSION: More research in these areas is needed to understand the pathogenesis of the disease, so as to find more and better therapeutic targets.


Assuntos
Citocinas , Hiperalgesia , Neurotransmissores , Hormônio Adrenocorticotrópico , Animais , Comorbidade , Depressão/induzido quimicamente , Depressão/complicações , Depressão/tratamento farmacológico , Hidrocortisona , Hiperalgesia/induzido quimicamente , Hiperalgesia/complicações , Inflamação , Interleucina-10 , Interleucina-6 , Norepinefrina , Ratos , Ratos Sprague-Dawley , Reserpina , Serotonina/metabolismo
9.
Arch Toxicol ; 96(12): 3279-3290, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36104498

RESUMO

3,4-Methylenedioximethamphetamine (MDMA; "ecstasy") is a psychotropic drug with well-known neurotoxic effects mediated by hitherto not fully understood mechanisms. The Na+- and K+-activated adenosine 5'-triphosphatase (Na+/K+ ATPase), by maintaining the ion gradient across the cell membrane, regulates neuronal excitability. Thus, a perturbation of its function strongly impacts cell homeostasis, ultimately leading to neuronal dysfunction and death. Nevertheless, whether MDMA affects the Na+/K+ ATPase remains unknown. In this study, we used synaptosomes obtained from whole mouse brain to test the effects of MDMA, three of its major metabolites [α-methyldopamine, N-methyl-α-methyldopamine and 5-(glutathion-S-yl)-α-methyldopamine], serotonin (5-HT), dopamine, 3,4-dihydroxy-L-phenylalanine (L-Dopa) and 3,4-dihydroxyphenylacetic acid (DOPAC) on the Na+/K+ ATPase function. A concentration-dependent increase of Na+/K+ ATPase activity was observed in synaptosomes exposed to the tested compounds (concentrations ranging from 0.0625 to 200 µM). These effects were independent of protein kinases A and C activities. Nevertheless, a rescue of the compounds' effects was observed in synaptosomes pre-incubated with the antioxidant N-acetylcysteine (1 mM), suggesting a role for reactive species-regulated pathways on the Na+/K+ ATPase effects. In agreement with this hypothesis, a similar increase in the pump activity was found in synaptosomes exposed to the chemical generator of superoxide radicals, phenazine methosulfate (1-250 µM). This study demonstrates the ability of MDMA metabolites, monoamine neurotransmitters, L-Dopa and DOPAC to alter the Na+/K+ ATPase function. This could represent a yet unknown mechanism of action of MDMA and its metabolites in the brain.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina , Animais , Camundongos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Sinaptossomos/metabolismo , Serotonina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Dopamina/metabolismo , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Levodopa/metabolismo , Levodopa/farmacologia , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Superóxidos/metabolismo , Metilfenazônio Metossulfato/metabolismo , Metilfenazônio Metossulfato/farmacologia , Encéfalo , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Adenosina/metabolismo , Proteínas Quinases/metabolismo
10.
Metab Brain Dis ; 37(3): 743-760, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997870

RESUMO

BACKGROUND: Disorders of tetrahydrobiopterin metabolism represent a rare group of inherited neurotransmitter disorders that manifests mainly in infancy or childhood with developmental delay, neuroregression, epilepsy, movement disorders, and autonomic symptoms. METHODOLOGY: A retrospective review of genetically confirmed cases of disorders of tetrahydrobiopterin metabolism over a period of three years (Jan 2018 to Jan 2021) was performed across two paediatric neurology centres from South India. RESULTS: A total of nine patients(M:F=4:5) fulfilled the eligibility criteria. The genetic variants detected include homozygous mutations in the QDPR(n=6), GCH1(n=2), and PTS(n=1) genes. The median age at onset of symptoms was 6-months(range 3-78 months), while that at diagnosis was 15-months (8-120 months), resulting in a median delay in diagnosis of 9-months. The main clinical manifestations included neuroregression (89%), developmental delay(78%), dystonia(78%) and seizures(55%). Management strategies included a phenylalanine restricted diet, levodopa/carbidopa, 5-Hydroxytryphtophan, and folinic acid. Only, Patient-2 afforded and received BH4 supplementation at a sub-optimal dose later in the disease course. We had a median duration of follow up of 15 months (range 2-48 months). Though the biochemical response has been marked; except for patients with GTPCH deficiency, only mild clinical improvement was noted with regards to developmental milestones, seizures, or dystonia in others. CONCLUSION: Tetrahydrobiopterin deficiencies represent a rare yet potentially treatable cause for non-phenylketonuria hyperphenylalaninemia with better outcomes when treated early in life. Screening for disorders of biopterin metabolism in patients with hyperphenylalaninemia prevents delayed diagnosis. This study expands the genotype-phenotype spectrum of patients with disorders of tetrahydrobiopterin metabolism from South India.


Assuntos
Distonia , Fenilcetonúrias , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Biopterinas/uso terapêutico , Criança , Pré-Escolar , Distonia/genética , Feminino , Humanos , Lactente , Masculino , Fenilalanina , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/genética
11.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4691-4697, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164876

RESUMO

To investigate the effect of Rehmanniae Radix on depression-like behavior and monoamine neurotransmitters of chronic unpredictable mild stress(CUMS) model rats. CUMS combined with isolated feeding was used to induce the depression model of rats. The depression-like behavior of rats was evaluated by sucrose preference test, open field test, and forced swim test. Hematoxylin-Eosin(HE) staining was used to investigate the pathological changes of neurons in the CA1 and CA3 area of hippocampus. Ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS) was used to detect the contents of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), 3,4-dihydroxyphenylacetic acid(DOPAC), homovanillic acid(HVA), norepinephrine(NE), and 3-methoxy-4-hydroxyphenyl glycol(MHPG) in rats. Western blot was used to detect the protein expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), and monoamine oxidase A(MAO-A) in the hippocampus of rats. Compared with the normal group, depressive-like behavior of rats was obvious in the model group. The arrangements of neurons in the CA1 and CA3 area of hippocampus were loose and disorderly. The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in the hippocampal area were decreased(P<0.01). The protein expression of TPH2 was decreased(P<0.01), but those of SERT and MAO-A were increased(P<0.01). In the Rehmanniae Radix groups with 1.8 g·kg~(-1) and 7.2 g·kg~(-1), the depression-like behavior of CUMS rats and pathological changes of neurons in CA1, CA3 area of hippocampus were improved. The protein expression of TPH2(P<0.05, P<0.01) was increased, and those of SERT and MAO-A were down-regulated(P<0.05, P<0.01). The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in hippocampus were increased(P<0.05, P<0.01). The changes in DA, DOPAC, HVA, DA/(DOPAC +HVA), NE, DHPG, and NE/DHPG were not statistically significant. The results suggested that Rehmanniae Radix improved depression-like behavior of CUMS rats, and the mechanism might be related to the regulation of synthesis, transportation, and metabolism of 5-HT neurotransmitter in the hippocampus.


Assuntos
Antidepressivos , Depressão , Hipocampo , Ácido Hidroxi-Indolacético , Rehmannia , Serotonina , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Cromatografia Líquida , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Dopamina , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Hipocampo/metabolismo , Ácido Homovanílico/metabolismo , Ácido Homovanílico/farmacologia , Ácido Hidroxi-Indolacético/metabolismo , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/metabolismo , Metoxi-Hidroxifenilglicol/farmacologia , Monoaminoxidase/metabolismo , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Extratos Vegetais , Ratos , Rehmannia/química , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Espectrometria de Massas em Tandem , Triptofano Hidroxilase/metabolismo
12.
Appl Microbiol Biotechnol ; 105(23): 8675-8688, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716786

RESUMO

A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Polissacarídeos Fúngicos/farmacologia , Peptídeos/farmacologia , Reishi , Agaricus , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Camundongos , Córtex Pré-Frontal/metabolismo , Ratos , Esporos Fúngicos , Estresse Psicológico , Sacarose , Regulação para Cima
13.
Handb Exp Pharmacol ; 266: 1-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782773

RESUMO

Inhibitors of Na+/Cl- dependent high affinity transporters for norepinephrine (NE), serotonin (5-HT), and/or dopamine (DA) represent frequently used drugs for treatment of psychological disorders such as depression, anxiety, obsessive-compulsive disorder, attention deficit hyperactivity disorder, and addiction. These transporters remove NE, 5-HT, and/or DA after neuronal excitation from the interstitial space close to the synapses. Thereby they terminate transmission and modulate neuronal behavioral circuits. Therapeutic failure and undesired central nervous system side effects of these drugs have been partially assigned to neurotransmitter removal by low affinity transport. Cloning and functional characterization of the polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3) and the plasma membrane monoamine transporter PMAT (SLC29A4) revealed that every single transporter mediates low affinity uptake of NE, 5-HT, and DA. Whereas the organic transporters are all located in the blood brain barrier, OCT2, OCT3, and PMAT are expressed in neurons or in neurons and astrocytes within brain areas that are involved in behavioral regulation. Areas of expression include the dorsal raphe, medullary motoric nuclei, hypothalamic nuclei, and/or the nucleus accumbens. Current knowledge of the transport of monoamine neurotransmitters by the organic cation transporters, their interactions with psychotropic drugs, and their locations in the brain is reported in detail. In addition, animal experiments including behavior tests in wildtype and knockout animals are reported in which the impact of OCT2, OCT3, and/or PMAT on regulation of salt intake, depression, mood control, locomotion, and/or stress effect on addiction is suggested.


Assuntos
Encéfalo , Proteínas de Transporte de Cátions Orgânicos , Animais , Transporte Biológico , Encéfalo/metabolismo , Cátions , Norepinefrina , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo
14.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806510

RESUMO

It has been reported that monoamine neurotransmitters can be produced by gut microbiota, and that several related metabolites of amino acids in these pathways are associated with nervous system (NVS) diseases. Herein, we focused on three pathways, namely, phenylalanine (Phe), tryptophan (Trp), and glutamic acid (Glu), and established an underivatized liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of nineteen monoamine neurotransmitters and related metabolites in the gut microbiota. The neurotransmitters and related metabolites included Phe, tyrosine (Tyr), l-dopa (Dopa), dopamine (DA), 3-methoxytyramine, Trp, hydroxytryptophan, 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), kynurenine (KN), kynurenic acid (KYNA), melatonin, tryptamine (TA), indole-3-lactic acid (ILA), indole-3-acetic acid (IAA), indolyl-3-propionic acid (IPA), Glu, gamma-aminobutyric acid (GABA), and acetylcholine (Ach). A fluoro-phenyl bonded column was used for separation, and the mobile phase consisted of methanol:acetonitrile (1:1) and water, with 0.2% formic acid in both phases. The compounds exhibited symmetric peak shapes and sufficient sensitivity under a total analysis time of 8.5 min. The method was fully validated with acceptable linearity, accuracy, precision, matrix effect, extraction recovery, and stability. The results showed that neurotransmitters, such as Dopa, DA, 5-HT, GABA, and Ach, were present in the gut microbiota. The metabolic pathway of Trp was disordered under depression, with lower levels of 5-HT, 5-HIAA, KN, KYNA, TA, ILA, IAA, IPA, and Glu, and a higher ratio of KYNA/KN. In addition, some first-line NVS drugs, such as sertraline, imipramine, and chlorpromazine, showed regulatory potential on these pathways in the gut microbiota.


Assuntos
Monoaminas Biogênicas/análise , Microbioma Gastrointestinal , Ácido Glutâmico/metabolismo , Neurotransmissores/análise , Fenilalanina/metabolismo , Triptofano/metabolismo , Animais , Masculino , Redes e Vias Metabólicas , Ratos , Ratos Sprague-Dawley
15.
J Sci Food Agric ; 101(5): 1844-1853, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32901966

RESUMO

BACKGROUND: Male Kunming mice were divided into a normal diet group (control group) and a high-fat diet group (HF group) (185 g·kg-1 protein, 600 g·kg-1 fat and 205 g·kg-1 carbohydrate). After 8 weeks' feeding, behavioral indicators and biochemical indicators in serum were determined. The double-bottle preference experiment was used to study the preferences of mice for five sweeteners. The monoamine neurotransmitter content, gene expression related to dopamine (DA), and opioid receptors were also determined. RESULTS: The body weight of the mice in the HF group increased significantly (P < 0.05) after 36 days compared with the control group. The feed intake of the HF group increased sharply in the first 12 days, and then it became basically unchanged. The preference of the HF group for all of the five sweeteners was highly significantly lower (P < 0.01) than that of the control group. Depression-related behavior was observed in the HF group mice. The triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDLC) content in the HF group were very much higher (P < 0.01) than those of the control group. The gene expression related to DA and opioid receptor in the HF group was significantly lower than that of the control group, except for preproenkephalin (PENK). CONCLUSIONS: In summary, this study suggested that a long-term high-fat diet could result in a decrease in the preference for sweeteners and could result in a state of reward hypofunction in mice. © 2020 Society of Chemical Industry.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/metabolismo , Edulcorantes/metabolismo , Animais , Peso Corporal , LDL-Colesterol/metabolismo , Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos , Masculino , Camundongos , Neurotransmissores/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Edulcorantes/efeitos adversos , Triglicerídeos/metabolismo
16.
J Food Sci Technol ; 58(6): 2227-2236, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33967319

RESUMO

This study focused on the effect of short-term intake of sweeteners on feed intake, solution consumption and neurotransmitters release on mice. The results showed that the free drinking of 10 mM sucralose solution, 100 mM maltose solution, 3 mM saccharin solution and 3 g/L stevioside solution for 32 days will not affect the normal development of the body weight and feed intake of the mice. The consumption of maltose solution was significantly higher than that of the other sweeteners. The leptin and insulin levels increased significantly after the short-term intake of these four sweeteners. The dopamine (DA) content in the whole brain of the mice increased significantly only in the maltose group. These results indicate that the short-term intake of the preferred concentrations of maltose, stevioside, sucralose and saccharin will not affect the body weight and feed intake of the mice. Mice prefer maltose solution to other sweeteners solutions. The 100 mM maltose solution and 3 mM saccharin solution could result in the oxidative stress on mice after 32 days' short-term intake. Compared with other sweeteners, only sugars that could be broken down into small molecules of glucose might have a positive effect on dopamine levels.

17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(5): 611-617, 2020 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-32975073

RESUMO

OBJECTIVE: To study the effect and mechanism of modified constraint-induced movement therapy (mCIMT) on motor function recovery in cerebral ischemia-reperfusion rats. METHODS: The rats were randomly divided into the control group and the mCIMT group, with 12 rats in each group. The left middle cerebral artery occlusion (MCAO) model was established by the Longa suture method. In the mCIMT group, the rats started continuous training for 14 d on the 7 th day after modeling. The unaffected limb was tied to the chest with elastic bandages, and the affected limb was trained in the compulsory runner equipment. In the control group, rats moved freely in the cage. The body mass of rats was recorded within 20 d after modeling, and behavior was assessed by the foot-fault test. Some of the rats were euthanized 18 d after modeling, and high performance liquid chromatography (HPLC) was used to detect monoamine neurotransmitters (5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIVV), homovanillic acid (HVA) ), and amino acid neurotransmitters (glutamic acid (Glu), asparaginic acid (ASP), glutamine (Gln), glycine (Gly), taurine (Tau), gamma aminobutyric acid (GABA) ) in the motor cortex and striatum, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of total P70 ribosomal protein S6 kinase (p70s6k) and p70s6k phosphorylated protein (p-p70s6k) in motor cortex and striatum, respectively. RESULTS: Compared with the control group, the body mass of rats in the mCIMT group was comparable (P >0.05) within 21 d after modeling, foot-fault rate of the mCIMT group was significantly lower at 17 d after modeling (P<0.05). At 18 d after modeling, compared with the control group, the level of 5-HIVV in the motor cortex increased significantly (P<0.05), and the relative content of amino acid neurotransmitters (the ratio of Glu) in the motor cortex including Gln, Gly, Tau and GABA to Glu increased significantly (P<0.05 or P<0.01) except for decreased ASP/Glu (P<0.05). Moreover, compared with the control group, the expression of p-p70s6k in the motor cortex of the mCIMT was significantly decreased (P<0.05). There were no significant differences in monoamine neurotransmitters and amino acid neurotransmitters in the striatum between two groups (P>0.05). CONCLUSION: mCIMT improved the motor function of MCAO rats, and the mechanism might be related to the increase of amino acid neurotransmitters and 5-HIVV and decrease of p-p70s6k expression in the motor cortex.


Assuntos
Isquemia Encefálica , Córtex Cerebral , Terapia por Exercício , Córtex Motor , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/terapia , Córtex Cerebral/metabolismo , Movimento , Neurotransmissores , Ratos , Ratos Sprague-Dawley , Reperfusão
18.
Zhongguo Zhong Yao Za Zhi ; 45(1): 14-19, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237406

RESUMO

Anxiety disorders are a common mental illness that seriously endangered physical and mental health of human beings. The etiology of anxiety disorders is closely related to the abnormality of monoamines neurotransmitters, amino acids neurotransmitters and neuropeptides. The long-term use of anti-anxiety chemical drugs has some adverse effects, such as constipation, muscle relaxation, lethargy, tolerance and withdrawal symptoms. However, traditional Chinese medicines have advantages of multi-component, multi-target coordination, with less adverse reactions. Therefore, it is a promising prospect to develop novel anti-anxiety drugs from traditional Chinese medicines and formulas. This article reviewed some traditional Chinese medicines and formulas that can relieve anxiety symptoms. These include traditional Chinese medicines(Panax ginseng, Lycium ruthenium, Morus alba, Bupleurum plus dragon bone oyster soup, Chailong Jieyu Pills, and Naogongtai Formulas) with the effect on monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine; traditional Chinese medicines(Rehmannia glutinosa, Ziziphus jujuba Mill. var. spinosa, Jielv Anshen Decoction, Baixiangdan Capsules, Antianxietic Compound Prescription Capsules) with the effect on amino acid neurotransmitters, such as glutamic acid, γ-aminobutyrc acid; and traditional Chinese medicines(P. ginseng, Xiaoyao San, Shuyu Ningxin Decoction)with the effect on neuropeptide Y pathway, with the aim to provide theoretical basis for the further development of some novel and more effective anti-anxiety therapeutics from traditional Chinese medicine and formulas.


Assuntos
Ansiolíticos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neurotransmissores , Humanos , Medicina Tradicional Chinesa , Norepinefrina , Serotonina
19.
Phytother Res ; 33(2): 412-421, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30474152

RESUMO

L-theanine, originally found in green tea, elicits various physiological effects, such as promoting relaxation, improving concentration and learning ability, and providing antianxiety-like and antidepressant-like properties. This study aims to investigate the effects of L-theanine (2 mg/kg) on monoamine levels in an animal model of depression. The effect of l-theanine on the symptoms of depression was examined through the open-field test, sucrose preference test, and forced swim test. The monoamine neurotransmitters that involve serotonin (5-HT), norepinephrine (NE), and dopamine (DA) were measured in the limbic-cortical-striatal-pallidal-thalamic (LCSPT)-circuit related brain regions, including the prefrontal cortex (PFC), nucleus accumbens (NAC), striatum (ST), amygdala, and hippocampus (HIP). L-theanine ameliorated the depressive-like behaviors in the chronic unpredictable mild stress (CUMS) rat model. In the PFC, NAC, and HIP, L-theanine administration significantly increased the levels of 5-HT, NE, and DA. In the ST, the levels of 5-HT and DA were increased after the administration of L-theanine. However, in the HIP, only the level of DA significantly changed after the treatment of L-theanine. Taken together, these results indicated that L-theanine has possibly antidepressant-like effects in the CUMS rat model, which could be mediated by the monoamine neurotransmitters in the LCSPT-circuit related brain regions.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Glutamatos/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Natação , Chá
20.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897781

RESUMO

Fenugreek (Trigonella Foenum-Graecum) seeds flavonoids (FSF) have diverse biological activities, while the antidepressant-like effect of FSF has been seldom explored. The aim of this study was to evaluate the antidepressant-like effect of FSF and to identify the potential molecular mechanisms. LC-MS/MS was used for the determination of FSF. Chronic restraint stress (CRS) was used to establish the animal model of depression. Observation of exploratory behavior in the forced swimming test (FST), tail suspension test (TST) and sucrose preference test (SPT) indicated the stress level. The serum corticosterone (CORT) level was measured. The monoamine neurotransmitters (5-HT, NE and DA) and their metabolites, as well as monoamine oxidase A (MAO-A) enzyme activity in the prefrontal cortex, hippocampus and striatum, were evaluated. The protein expression levels of KLF11, SIRT1, MAO-A were also determined by western blot analysis. The results showed that FSF treatment significantly reversed the CRS-induced behavioral abnormalities, including reduced sucrose preference and increased immobility time. FSF administration markedly restored CRS induced changes in concentrations of serum corticosterone, prefrontal cortex neurotransmitters (NE, 5-HT and DA), hippocampus neurotransmitters (NE, 5-HT and DA) and striatum neurotransmitters (NE). FSF treatment exhibited significant inhibition of MAO-A activity in the prefrontal cortex and hippocampus. FSF also significantly down-regulated the KLF11, SIRT1 and MAO-A protein expression levels in the prefrontal cortex and hippocampus. These findings indicate that FSF could exhibit an antidepressant-like effect by down-regulating the KLF11/SIRT1-MAO-A pathways, inhibiting MAO-A expression and activity, as well as up-regulating monoamine neurotransmitters levels.


Assuntos
Antidepressivos/uso terapêutico , Flavonoides/uso terapêutico , Trigonella/química , Animais , Antidepressivos/química , Proteínas Reguladoras de Apoptose , Comportamento Animal , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida , Corticosterona/sangue , Proteínas de Ligação a DNA/sangue , Modelos Animais de Doenças , Flavonoides/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Monoaminoxidase/sangue , Neurotransmissores/química , Neurotransmissores/uso terapêutico , Extratos Vegetais/química , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Repressoras , Sementes/química , Sirtuína 1/sangue , Espectrometria de Massas em Tandem , Fatores de Transcrição/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa