Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
BMC Plant Biol ; 24(1): 710, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060989

RESUMO

BACKGROUND: The Diplolepideae are the larger group within the Arthrodontae mosses, characterized by peristomes formed from residual cell walls. It is now understood that these peristomes exhibit diverse hygroscopic movements, playing a crucial role in spore release. However, the exact mechanism behind this movement remains unclear, lacking direct evidence. This study investigated the microscopic and submicroscopic structures of the peristomes in three Diplolepideae species: Hypopterygium fauriei (Besch.), Pylaisia levieri (Müll. Hal.) Arikawa and Regmatodon declinatus (Hook.) Brid. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to reveal the differences in their hygroscopic movement mechanisms. RESULTS: The three species exhibited distinct responses upon wetting: H. fauriei's exostome closed inwards, P. levieri' opened outwards, and R. declinatus' elongated significantly. These differences are attributed to the varying microfibril deposition in the exostome layers. Uniform deposition in the inner layer and minimal deposition in the outer layer enabled exostome opening upon wetting and closing when dry. Our findings suggest that the diastole and contraction of fine microfibrils in the exostome plates and ridges are the key drivers of hygroscopic movement. CONCLUSIONS: This study provides further evidence at both the structural and submicroscopic levels, contributing to the unraveling of the hygroscopic movement mechanism in Diplolepideae peristomes. This enhanced understanding sheds light on the relationship between peristome structure and function.


Assuntos
Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Molhabilidade , Movimento
2.
Proc Biol Sci ; 291(2014): 20232622, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196366

RESUMO

Terrestrial wetland ecosystems challenge biodiversity-ecosystem function theory, which generally links high species diversity to stable ecosystem functions. An open question in ecosystem ecology is whether assemblages of co-occurring peat mosses contribute to the stability of peatland ecosystem processes. We conducted a two-species (Sphagnum cuspidatum, Sphagnum medium) replacement series mesocosm experiment to evaluate the resistance, resilience, and recovery rates of net ecosystem CO2 exchange (NEE) under mild and deep water table drawdown. Our results show a positive effect of mild water table drawdown on NEE with no apparent role for peat moss mixture. Our study indicates that the carbon uptake capacity by peat moss mixtures is rather resilient to mild water table drawdown, but seriously affected by deeper drought conditions. Co-occurring peat moss species seem to enhance the resilience of the carbon uptake function (i.e. ability of NEE to return to pre-perturbation levels) of peat moss mixtures only slightly. These findings suggest that assemblages of co-occurring Sphagnum mosses do only marginally contribute to the stability of ecosystem functions in peatlands under drought conditions. Above all, our results highlight that predicted severe droughts can gravely affect the sink capacity of peatlands, with only a small extenuating role for peat moss mixtures.


Assuntos
Ecossistema , Sphagnopsida , Ecologia , Biodiversidade , Carbono
3.
Planta ; 259(5): 92, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504021

RESUMO

MAIN CONCLUSION: Fiber-like cells with thickened cell walls of specific structure and polymer composition that includes (1 → 4)-ß-galactans develop in the outer stem cortex of several moss species gametophytes. The early land plants evolved several specialized cell types and tissues that did not exist in their aquatic ancestors. Of these, water-conducting elements and reproductive organs have received most of the research attention. The evolution of tissues specialized to fulfill a mechanical function is by far less studied despite their wide distribution in land plants. For vascular plants following a homoiohydric trajectory, the evolutionary emergence of mechanical tissues is mainly discussed starting with the fern-like plants with their hypodermal sterome or sclerified fibers that have xylan and lignin-based cell walls. However, mechanical challenges were also faced by bryophytes, which lack lignified cell-walls. To characterize mechanical tissues in the bryophyte lineage, following a poikilohydric trajectory, we used six wild moss species (Polytrichum juniperinum, Dicranum sp., Rhodobryum roseum, Eurhynchiadelphus sp., Climacium dendroides, and Hylocomium splendens) and analyzed the structure and composition of their cell walls. In all of them, the outer stem cortex of the leafy gametophytic generation had fiber-like cells with a thickened but non-lignified cell wall. Such cells have a spindle-like shape with pointed tips. The additional thick cell wall layer in those fiber-like cells is composed of sublayers with structural evidence for different cellulose microfibril orientation, and with specific polymer composition that includes (1 → 4)-ß-galactans. Thus, the basic cellular characters of the cells that provide mechanical support in vascular plant taxa (elongated cell shape, location at the periphery of a primary organ, the thickened cell wall and its peculiar composition and structure) also exist in mosses.


Assuntos
Briófitas , Bryopsida , Células Germinativas Vegetais/metabolismo , Plantas/metabolismo , Bryopsida/metabolismo , Lignina/metabolismo , Galactanos/metabolismo , Parede Celular/metabolismo
4.
New Phytol ; 242(6): 2411-2429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38659154

RESUMO

Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions.


Assuntos
Briófitas , Mudança Climática , Ciclo do Nitrogênio , Água , Briófitas/fisiologia , Água/metabolismo , Ciclo do Carbono , Carbono/metabolismo , Nitrogênio/metabolismo , Ecossistema
5.
Am J Bot ; 111(5): e16347, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38760943

RESUMO

PREMISE: We assessed changes in traits associated with water economy across climatic gradients in the ecologically similar peat mosses Sphagnum cuspidatum and Sphagnum lindbergii. These species have parapatric distributions in Europe and have similar niches in bogs. Sphagnum species of bogs are closely related, with a large degree of microhabitat niche overlap between many species that can be functionally very similar. Despite this, ecologically similar species do have different distributional ranges along climatic gradients that partly overlap. These gradients may favor particular Sphagnum traits, especially in relation to water economy, which can be hypothesized to drive species divergence by character displacement. METHODS: We investigated traits relevant for water economy of two parapatric bryophytes (Sphagnum cuspidatum and S. lindbergii) across the border of their distributional limits. We included both shoot traits and canopy traits, i.e., collective traits of the moss surface, quantified by photogrammetry. RESULTS: The two species are ecologically similar and occur at similar positions along the hydrological gradient in bogs. The biggest differences between the species were expressed in the variations of their canopy surfaces, particularly surface roughness and in the responses of important traits such as capitulum mass to climate. We did not find support for character displacement, because traits were not more dissimilar in sympatric than in allopatric populations. CONCLUSIONS: Our results suggest that parapatry within Sphagnum can be understood from just a few climatic variables and that climatic factors are stronger drivers than competition behind trait variation within these species of Sphagnum.


Assuntos
Especificidade da Espécie , Sphagnopsida , Água , Sphagnopsida/fisiologia , Água/metabolismo , Clima , Ecossistema , Áreas Alagadas , Brotos de Planta/anatomia & histologia
6.
Glob Chang Biol ; 29(19): 5691-5705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37577794

RESUMO

Climate warming and projected increase in summer droughts puts northern peatlands under pressure by subjecting them to a combination of gradual drying and extreme weather events. The combined effect of those on peatland functions is poorly known. Here, we studied the impact of long-term water level drawdown (WLD) and contrasting weather conditions on leaf phenology and biomass production of ground level vegetation in boreal peatlands. Data were collected during two contrasting growing seasons from a WLD experiment including a rich and a poor fen and an ombrotrophic bog. Results showed that WLD had a strong effect on both leaf area development and biomass production, and these responses differed between peatland types. In the poor fen and the bog, WLD increased plant growth, while in the rich fen, WLD reduced the growth of ground level vegetation. Plant groups differed in their response, as WLD reduced the growth of graminoids, while shrubs and tree seedlings benefited from it. In addition, the vegetation adjusted to the lower WTs, was more responsive to short-term climatic variations. The warmer summer resulted in a greater maximum and earlier peaking of leaf area index, and greater biomass production by vascular plants and Sphagnum mosses at WLD sites. In particular, graminoids benefitted from the warmer conditions. The change towards greater production in the WLD sites in general and during the warmer weather in particular, was related to the observed transition in plant functional type composition towards arboreal vegetation.


Assuntos
Mudança Climática , Solo , Biomassa , Tempo (Meteorologia) , Árvores , Plantas
7.
Am J Bot ; 110(11): e16249, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792319

RESUMO

PREMISE: Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear. METHODS: Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations. RESULTS: The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology. CONCLUSIONS: We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.


Assuntos
Briófitas , Hepatófitas , Filogenia , Briófitas/genética , Plantas/genética , Hepatófitas/genética
8.
Chem Biodivers ; 20(10): e202300286, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714813

RESUMO

This study aimed to report the unprecedented volatile composition of the mosses Phyllogonium viride BRID, Orthotichella rigida (MÜLL.HAL.) B. H. ALLEN & MAGILL and Schlotheimia rugifolia (HOOK.) SCHWÄGR occurring in the Brazilian Atlantic Forest, in order to elucidate the chemical composition of these species and enrich the chemotaxonomic knowledge of mosses. 28 compounds were identified, the major constituent being hexadecanoic acid, also known as palmitic acid, specifically P. viride com (38.55 %), O. rigida com (17.17 %) and S. rugifolia com (24.94 %), followed by phytol, P. viride com (3.92 %), O. rigida com (28.57 %) and S. rugifolia com (36.13 %). In addition, there was a prevalence of aliphatic hydrocarbons (25 %) and fatty acids (17.8 %) in the evaluated samples. These data contribute to the generation of new scientific information about the chemical constitution of mosses, still little studied, enriching the chemotaxonomic collection of the taxon.

9.
J Environ Manage ; 345: 118839, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598496

RESUMO

Mosses (Class- Bryopsida) are vital to ecosystem dynamics in numerous biomes, although their effects on soil processes are poorly understood. The interplay of moss cover and seasonal variations in soil processes is still unclear in the Indian Central Himalayas. Therefore, we examined the seasonal variations in net nitrogen (N) mineralization rates and several soil properties under two ground covers (with and without moss cover). We used the ex-situ incubation technique to determine N mineralization rates (Rmin) and standard methodology for soil physical and chemical analysis. During the rainy season, the physical properties of the soil and its nutrients, apart from phosphorus, were higher under moss cover. The winter season, however, showed a different pattern, with soil properties exhibiting higher values in soils without moss cover. Ammonium concentrations were higher under moss cover, while nitrate concentrations were higher in soil without moss cover during rainy and winter seasons. The Rmin rates were higher in soil under moss cover, indicating that moss cover promotes N transformation. In contrast, Rmin rates were negative in soil without moss cover, indicating that N immobilization was dominant in N transformation under this ground cover during the rainy season. Our research shows that mosses positively impact the nutrient status and N mineralization rates in various temperate forest types. The seasonal patterns of soil properties are strongly influenced by soil temperature, moisture, and organic carbon. Therefore, we advocate the conservation of mosses and their integration into forest management plans for better ecosystem processes and services in the ecologically fragile Himalayas.


Assuntos
Briófitas , Solo , Estações do Ano , Solo/química , Ecossistema , Nitrogênio/análise , Florestas
10.
New Phytol ; 236(4): 1497-1511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971292

RESUMO

Sphagnum magellanicum is one of two Sphagnum species for which a reference-quality genome exists to facilitate research in ecological genomics. Phylogenetic and comparative genomic analyses were conducted based on resequencing data from 48 samples and RADseq analyses based on 187 samples. We report herein that there are four clades/species within the S. magellanicum complex in eastern North America and that the reference genome belongs to Sphagnum divinum. The species exhibit tens of thousands (RADseq) to millions (resequencing) of fixed nucleotide differences. Two species, however, referred to informally as S. diabolicum and S. magni because they have not been formally described, are differentiated by only 100 (RADseq) to 1000 (resequencing) of differences. Introgression among species in the complex is demonstrated using D-statistics and f4 ratios. One ecologically important functional trait, tissue decomposability, which underlies peat (carbon) accumulation, does not differ between segregates in the S. magellanicum complex, although previous research showed that many closely related Sphagnum species have evolved differences in decomposability/carbon sequestration. Phylogenetic resolution and more accurate species delimitation in the S. magellanicum complex substantially increase the value of this group for studying the early evolutionary stages of climate adaptation and ecological evolution more broadly.


Assuntos
Briófitas , Sphagnopsida , Sphagnopsida/genética , Filogenia , Ecossistema , Solo , Carbono , Nucleotídeos
11.
New Phytol ; 235(4): 1330-1335, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687087

RESUMO

Most mosses are colonized by nitrogen (N)-fixing cyanobacteria. This discovery is relatively recent, which can explain the large knowledge gaps the field is now tackling. For instance, while we have a good understanding of the abiotic controls (e.g. nutrient availability, increased temperature), we still do not know much about the biotic controls of N2 fixation in mosses. I propose here that we should endeavour to position moss-cyanobacteria associations along the mutualism-parasitism continuum under varying abiotic conditions (e.g. nutrient availability). This would finally unravel the nature of the relationship between the partners and will be a big leap in our understanding of the evolution of plant-bacteria interactions using moss-cyanobacteria associations as a model system.


Assuntos
Briófitas , Cianobactérias , Nitrogênio , Fixação de Nitrogênio , Simbiose
12.
J Exp Bot ; 73(13): 4306-4322, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35437589

RESUMO

Bryophytes including mosses, liverworts, and hornworts are among the earliest land plants, and occupy a crucial phylogenetic position to aid in the understanding of plant terrestrialization. Despite their small size and simple structure, bryophytes are the second largest group of extant land plants. They live ubiquitously in various habitats and are highly diversified, with adaptive strategies to modern ecosystems on Earth. More and more genomes and transcriptomes have been assembled to address fundamental questions in plant biology. Here, we review recent advances in bryophytes associated with diversity, phylogeny, and ecological adaptation. Phylogenomic studies have provided increasing supports for the monophyly of bryophytes, with hornworts sister to the Setaphyta clade including liverworts and mosses. Further comparative genomic analyses revealed that multiple whole-genome duplications might have contributed to the species richness and morphological diversity in mosses. We highlight that the biological changes through gene gain or neofunctionalization that primarily evolved in bryophytes have facilitated the adaptation to early land environments; among the strategies to adapt to modern ecosystems in bryophytes, desiccation tolerance is the most remarkable. More genomic information for bryophytes would shed light on key mechanisms for the ecological success of these 'dwarfs' in the plant kingdom.


Assuntos
Briófitas , Embriófitas , Briófitas/genética , Ecossistema , Embriófitas/genética , Genômica , Filogenia , Plantas/genética , Transcriptoma
13.
J Exp Bot ; 73(13): 4514-4527, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35394025

RESUMO

Plants perceive a multitude of environmental signals and stresses, and integrate their response to them in ways that culminate in modified phenotypes, optimized for plant survival. This ability of plants, known as phenotypic plasticity, is found throughout evolution, in all plant lineages. For any given environment, the specifics of the response to a particular signal may vary depending on the plants' unique physiology and ecological niche. The bryophyte lineage, including mosses, which diverged from the vascular plants ~450-430 million years ago, represent a unique ecological and phylogenetic group in plant evolution. Several aspects of the moss life cycle, their morphology including the presence of specialized tissue types and distinct anatomical features, gene repertoires and networks, as well as the habitat differ significantly from those of vascular plants. To evaluate the outcomes of these differences, we explore the phenotypic responses of mosses to environmental signals such as light, temperature, CO2, water, nutrients, and gravity, and compare those with what is known in vascular plants. We also outline knowledge gaps and formulate testable hypotheses based on the contribution of anatomical and molecular factors to specific phenotypic responses.


Assuntos
Briófitas , Crescimento e Desenvolvimento , Filogenia , Fenômenos Fisiológicos Vegetais , Plantas/genética
14.
J Exp Bot ; 73(13): 4338-4361, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35536655

RESUMO

Desiccation-rehydration experiments have been employed over the years to evaluate desiccation tolerance of bryophytes (Bryophyta, Marchantiophyta, and Anthocerotophyta). Researchers have applied a spectrum of protocols to induce desiccation and subsequent rehydration, and a wide variety of techniques have been used to study desiccation-dependent changes in bryophyte molecular, cellular, physiological, and structural traits, resulting in a multifaceted assortment of information that is challenging to synthesize. We analysed 337 desiccation-rehydration studies, providing information for 351 species, to identify the most frequent methods used, analyse the advances in desiccation studies over the years, and characterize the taxonomic representation of the species assessed. We observed certain similarities across methodologies, but the degree of convergence among the experimental protocols was surprisingly low. Out of 52 bryophyte orders, 40% have not been studied, and data are lacking for multiple remote or difficult to access locations. We conclude that for quantitative interspecific comparisons of desiccation tolerance, rigorous standardization of experimental protocols and measurement techniques, and simultaneous use of an array of experimental techniques are required for a mechanistic insight into the different traits modified in response to desiccation. New studies should also aim to fill gaps in taxonomic, ecological, and spatial coverage of bryophytes.


Assuntos
Briófitas , Dessecação , Briófitas/fisiologia , Hidratação
15.
J Exp Bot ; 73(13): 4291-4305, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35148385

RESUMO

Bryophytes are useful models for the study of plant evolution, development, plant-fungal symbiosis, stress responses, and gametogenesis. Additionally, their dominant haploid gametophytic phase makes them great models for functional genomics research, allowing straightforward genome editing and gene knockout via CRISPR or homologous recombination. Until 2016, however, the only bryophyte genome sequence published was that of Physcomitrium patens. Throughout recent years, several other bryophyte genomes and transcriptome datasets became available, enabling better comparative genomics in evolutionary studies. The increase in the number of bryophyte genome and transcriptome resources available has yielded a plethora of annotations, databases, and bioinformatics tools to access the new data, which covers the large diversity of this clade and whose biology comprises features such as association with arbuscular mycorrhiza fungi, sex chromosomes, low gene redundancy, or loss of RNA editing genes for organellar transcripts. Here we provide a guide to resources available for bryophytes with regards to genome and transcriptome databases and bioinformatics tools.


Assuntos
Briófitas , Transcriptoma , Briófitas/genética , Biologia Computacional , Genômica , Filogenia
16.
J Exp Bot ; 73(13): 4412-4426, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35274697

RESUMO

Ultraviolet (UV) radiation has contributed to the evolution of organisms since the origins of life. Bryophytes also have evolutionary importance as the first clearly identified lineage of land plants (embryophytes) colonizing the terrestrial environment, thus facing high UV and water scarcity, among other new challenges. Here we review bryophyte UV-omics, the discipline relating bryophytes and UV, with an integrative perspective from genes to the environment. We consider species and habitats investigated, methodology, response variables, protection mechanisms, environmental interactions, UV biomonitoring, molecular and evolutionary aspects, and applications. Bryophyte UV-omics shows convergences and divergences with the UV-omics of other photosynthetic organisms, from algae to tracheophytes. All these organisms converge in that UV damage may be limited under realistic UV levels, due to structural protection and/or physiological acclimation capacity. Nevertheless, bryophytes diverge because they have a unique combination of vegetative and reproductive characteristics to cope with high UV and other concomitant adverse processes, such as desiccation. This interaction has both evolutionary and ecological implications. In addition, UV effects on bryophytes depend on the species and the evolutionary lineage considered, with mosses more UV-tolerant than liverworts. Thus, bryophytes do not constitute a homogeneous functional type with respect to their UV tolerance.


Assuntos
Briófitas , Embriófitas , Briófitas/genética , Ecossistema , Fotossíntese , Plantas/genética
17.
J Exp Bot ; 73(4): 1155-1175, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35038724

RESUMO

Raindrop impact on leaves is a common event which is of relevance for numerous processes, including the dispersal of pathogens and propagules, leaf wax erosion, gas exchange, leaf water absorption, and interception and storage of rainwater by canopies. The process of drop impact is complex, and its outcome depends on many influential factors. The wettability of plants has been recognized as an important parameter which is itself complex and difficult to determine for leaf surfaces. Other important parameters include leaf inclination angle and the ability of leaves to respond elastically to drop impact. Different elastic motions are initiated by drop impact, including local deformation, flapping, torsion, and bending, as well as 'swinging' of the petiole. These elastic responses, which occur on different time scales, can affect drop impact directly or indirectly, by changing the leaf inclination. An important feature of drop impact is splashing, meaning the fragmentation of the drop with ejection of satellite droplets. This process is promoted by the kinetic energy of the drop and leaf traits. For instance, a dense trichome cover can suppress splashing. Basic drop impact patterns are presented and discussed for a number of different leaf types, as well as some exemplary mosses.


Assuntos
Folhas de Planta , Chuva , Folhas de Planta/fisiologia , Plantas , Tricomas , Molhabilidade
18.
Glob Chang Biol ; 28(22): 6483-6508, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35900301

RESUMO

Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea-level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past ~2.6 million years). Understanding Antarctica's paleoecosystems, and the corresponding paleoenvironments and climates that have shaped them, provides insight into present day ecosystem change, and importantly, helps constrain model projections of future change. Biological archives such as extant moss beds and peat profiles, biological proxies in lake and marine sediments, vertebrate animal colonies, and extant terrestrial and benthic marine invertebrates, complement other Antarctic paleoclimate archives by recording the nature and rate of past ecological change, the paleoenvironmental drivers of that change, and constrain current ecosystem and climate models. These archives provide invaluable information about terrestrial ice-free areas, a key location for Antarctic biodiversity, and the continental margin which is important for understanding ice sheet dynamics. Recent significant advances in analytical techniques (e.g., genomics, biogeochemical analyses) have led to new applications and greater power in elucidating the environmental records contained within biological archives. Paleoecological and paleoclimate discoveries derived from biological archives, and integration with existing data from other paleoclimate data sources, will significantly expand our understanding of past, present, and future ecological change, alongside climate change, in a unique, globally significant region.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Solo , Água
19.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361686

RESUMO

C2H2 zinc finger protein (C2H2-ZFP) plays an important role in regulating plant growth, development, and response to abiotic stress. To date, there have been no analyses of the C2H2-ZFP family in desiccation-tolerant moss. In this study, we identified 57 BaZFP transcripts across the Bryum argenteum (B. argenteum) transcriptome. The BaZFP proteins were phylogenetically divided into four groups (I-IV). Additionally, we studied the BaZFP1 gene, which is a nuclear C2H2-ZFP and acts as a positive regulator of growth and development in both moss and Arabidopsis thaliana. The complete coding sequence of the BaZFP1 gene was isolated from B. argenteum cDNA, which showed a high expression level in a dehydration-rehydration treatment process. The overexpression of the BaZFP1 gene in the Physcomitrium patens and B. argenteum promoted differentiation and growth of gametophytes. Heterologous expression in Arabidopsis regulated the whole growth and development cycle. In addition, we quantitatively analyzed the genes related to growth and development in transgenic moss and Arabidopsis, including HLS1, HY5, ANT, LFY, FT, EIN3, MUS, APB4, SEC6, and STM1, and found that their expression levels changed significantly. This study may pave the way for substantial insights into the role of C2H2-ZFPs in plants as well as suggest appropriate candidate genes for crop breeding.


Assuntos
Arabidopsis , Briófitas , Bryopsida , Arabidopsis/genética , Arabidopsis/metabolismo , Briófitas/metabolismo , Dessecação , Melhoramento Vegetal , Bryopsida/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
J Environ Manage ; 317: 115471, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751270

RESUMO

Terrestrial mosses are promising species to study concerning metal deposition, absorption, and soil fertility as moss biocrusts. However, acrocarpous moss, as a kind of terrestrial mosses, has not yet been well understood, both in environmental monitoring and ecological application, especially exposed to an abandoned pyrite mining. Herein, we investigated the concentrations of different heavy metals in soil underlying acrocarpous moss Campylopus schmidii at three distances from an abandoned pyrite mine tailings (0.5, 1, 2 km) by sampling analysis, as well as the accumulation properties of heavy metals in different parts of mosses and soil nutrients under intact mosses and moss-free layers. The results indicated that the soil we researched was heavily polluted by Cr, Cu, and Cd, which was 4.46, 4.18, and 1.77 times higher than the standard of risk screening values for soil environment quality in China. And there was a marked difference in the concentrations and distribution of heavy metals in mosses, with higher concentrations of Cr, Cu, Ni and Pb mainly in the ageing parts. In addition, mosses can effectively promote soil fertility. Compared with the bare soil without the moss layer, the total organic matter and total potassium concentrations of the soil covered by the intact moss layer were significantly increased, by 113.91% and 186.08% respectively. Correlation analysis indicated that similar pollution sources for Zn, Cd, Cu, and Pb, and the concentrations of these heavy metals in soil connected with the distance from the source of pollution. Overall, we expected that these findings could assess the greater potential of single native dominant moss species C.schmidii to act as biomonitors in specific pyrite mine tailings characterized by barren soil with strong acids (pH < 4.0) and polymetallic pollution. Meanwhile, our results revealed may serve as a possibility reference for similar areas and is recommended for developing a vegetative cover utilizing local acrocarpous mosses to achieve greening of degraded tailings in the future, as well as environmental management and protection.


Assuntos
Briófitas , Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Ferro , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise , Sulfetos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa