Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(1): 181-205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971544

RESUMO

Acrylamide is an environmental electrophile that has been produced in large amounts for many years. There is concern about the adverse health effects of acrylamide exposure due to its widespread industrial use and also presence in commonly consumed foods and others. IL-1ß is a key cytokine that protects the brain from inflammatory insults, but its role in acrylamide-induced neurotoxicity remains unknown. We reported recently that deletion of IL-1ß gene exacerbates ACR-induced neurotoxicity in mice. The aim of this study was to identify genes or signaling pathway(s) involved in enhancement of ACR-induced neurotoxicity by IL-1ß gene deletion or ACR-induced neurotoxicity to generate a hypothesis mechanism explaining ACR-induced neurotoxicity. C57BL/6 J wild-type and IL-1ß KO mice were exposed to ACR at 0, 12.5, 25 mg/kg by oral gavage for 7 days/week for 4 weeks, followed by extraction of mRNA from mice cerebral cortex for RNA sequence analysis. IL-1ß deletion altered the expression of genes involved in extracellular region, including upregulation of PFN1 gene related to amyotrophic lateral sclerosis and increased the expression of the opposite strand of IL-1ß. Acrylamide exposure enhanced mitochondria oxidative phosphorylation, synapse and ribosome pathways, and activated various pathways of different neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, Huntington disease, and prion disease. Protein network analysis suggested the involvement of different proteins in related to learning and cognitive function, such as Egr1, Egr2, Fos, Nr4a1, and Btg2. Our results identified possible pathways involved in IL-1ß deletion-potentiated and ACR-induced neurotoxicity in mice.


Assuntos
Acrilamida , Síndromes Neurotóxicas , Animais , Camundongos , Acrilamida/toxicidade , Encéfalo , Córtex Cerebral , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas/genética
2.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446155

RESUMO

Increasing evidence indicates that photobiomodulation, based on tissue irradiation with photons in the red to near-infrared spectrum, may be an effective therapeutic approach to central nervous system disorders. Although nervous system functionality has been shown to be affected by photons in animal models, as well as in preliminary evidence in healthy subjects or in patients with neuropsychiatric disorders, the mechanisms involved in the photobiomodulation effects have not yet been clarified. We previously observed that photobiomodulation could stimulate glutamate release. Here, we investigate mechanisms potentially involved in the glutamate-releasing effect of photons from adult mouse cerebrocortical nerve terminals. We report evidence of photon ability to induce an exocytotic vesicular release of glutamate from the terminals of glutamatergic neurons in a power-dependent way. It can be hypothesized that photobiomodulation, depending on the potency, can release glutamate in a potentially neurotoxic or physiological range.


Assuntos
Ácido Glutâmico , Fótons , Animais , Camundongos , Córtex Cerebral , Ácido Glutâmico/farmacologia , Terminações Nervosas , Neurônios , Sinaptossomos
3.
J Pharmacol Sci ; 140(2): 197-200, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31178327

RESUMO

Antipsychotics are often the first-line treatment for behavioral and psychological symptoms of dementia. However, the potential anticholinergic effects of antipsychotics could counteract the therapeutic effects of cholinesterase inhibitors used to treat dementia. We investigated the inhibitory effects of 26 antipsychotics on [N-Methyl-3H]scopolamine specific binding in mouse cerebral cortex. At 10-5 M, chlorpromazine, levomepromazine, prochlorperazine, timiperone, zotepine, pimozide, blonanserin, olanzapine, quetiapine, and clozapine inhibited [N-Methyl-3H]scopolamine binding by > 45%. Furthermore, the pKi values of chlorpromazine, levomepromazine, zotepine, olanzapine, and clozapine overlapped with their clinically achievable blood concentrations. Therefore, the anticholinergic properties of these antipsychotics could attenuate the effects of cholinesterase inhibitors.


Assuntos
Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Córtex Cerebral/metabolismo , Antagonistas Colinérgicos/metabolismo , Inibidores da Colinesterase/metabolismo , Receptores Muscarínicos/metabolismo , Escopolamina/metabolismo , Animais , Clorpromazina/farmacologia , Depressão Química , Interações Medicamentosas , Masculino , Metotrimeprazina/farmacologia , Camundongos Endogâmicos , Proclorperazina/farmacologia , Ligação Proteica
4.
Cell Tissue Res ; 368(2): 249-258, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28144784

RESUMO

Bcl2-associated athanogene 3 (BAG3) protein belongs to the family of co-chaperones interacting with several heat shock proteins. It plays a key role in protein quality control and mediates the clearance of misfolded proteins. Little is known about the expression and cellular localization of BAG3 during nervous system development and differentiation. Therefore, we analyze the subcellular distribution and expression of BAG3 in nerve-growth-factor-induced neurite outgrowth in PC12 cells and in developing and adult cortex of mouse brain. In differentiated PC12 cells, BAG3 was localized mainly in the neuritic domain rather than the cell body, whereas in control cells, it appeared to be confined to the cytoplasm near the nuclear membrane. Interestingly, the change of BAG3 localization during neuronal differentiation was associated only with a slight increase in total BAG3 expression. These data were coroborated by transmission electron microscopy showing that BAG3 was confined mainly within large dense-core vesicles of the axon in differentiated PC12 cells. In mouse developing cortex, BAG3 appeared to be intensely expressed in cellular processes of migrating cells, whereas in adult brain, a diffuse expression of low to medium intensity was detected in neuronal cell bodies. These findings suggest that BAG3 expression is required for neuronal differentiation and migration and that its role is linked to a change in its distribution pattern rather than to an increase in its protein expression levels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Diferenciação Celular , Movimento Celular , Neurônios/citologia , Neurônios/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células PC12 , Ratos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
5.
Microscopy (Oxf) ; 70(6): 526-535, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34259875

RESUMO

Three-dimensional (3D) observation of a biological sample using serial-section electron microscopy is widely used. However, organelle segmentation requires a significant amount of manual time. Therefore, several studies have been conducted to improve organelle segmentation's efficiency. One such promising method is 3D deep learning (DL), which is highly accurate. However, the creation of training data for 3D DL still requires manual time and effort. In this study, we developed a highly efficient integrated image segmentation tool that includes stepwise DL with manual correction. The tool has four functions: efficient tracers for annotation, model training/inference for organelle segmentation using a lightweight convolutional neural network, efficient proofreading and model refinement. We applied this tool to increase the training data step by step (stepwise annotation method) to segment the mitochondria in the cells of the cerebral cortex. We found that the stepwise annotation method reduced the manual operation time by one-third compared with the fully manual method, where all the training data were created manually. Moreover, we demonstrated that the F1 score, the metric of segmentation accuracy, was 0.9 by training the 3D DL model with these training data. The stepwise annotation method using this tool and the 3D DL model improved the segmentation efficiency of various organelles.

6.
J Toxicol Sci ; 44(7): 471-479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31270303

RESUMO

M1-microglia (neurotoxic microglia) regulate neuronal development and cell death and are involved in many pathologies in the brain. Although organotypic brain slice cultures are widely used to study the crosstalk between neurons and microglia, little is known about the properties of microglia in the mouse cerebral cortex slices. Here, we aimed to optimize the mouse cerebral slice cultures that reflect microglial functions and evaluate the effects of neurotoxic metals on M1-microglial activation. Most microglia in the cerebral slices prepared from postnatal day (P) 7 mice were similar to mature microglia in adult mice brains, but those in the slices prepared from P2 mice were immature, which is a conventional preparation condition. The degree of expression of M1-microglial markers (CD16 and CD32) and inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß) by lipopolysaccharide, a representative microglia activator, in the cerebral slices of P7 mice were higher than that in the slices of P2 mice. These results indicate that M1-microglial activation can be evaluated more accurately in the cerebral slices of P7 mice than in those of P2 mice. Therefore, we next examined the effects of various neurotoxic metals on M1-microglial activation using the cerebral slices of P7 mice and found that methylmercury stimulated the activation to M1-microglia, but arsenite, lead, and tributyltin did not induce such activation. Altogether, the optimized mouse cerebral slice cultures used in this study can be a helpful tool to study the influence of various chemicals on the central nervous system in the presence of functionally mature microglia.


Assuntos
Córtex Cerebral/citologia , Metais/toxicidade , Microglia/efeitos dos fármacos , Microglia/fisiologia , Animais , Animais Recém-Nascidos , Arsenitos/toxicidade , Células Cultivadas , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Expressão Gênica , Mediadores da Inflamação/metabolismo , Chumbo/toxicidade , Compostos de Metilmercúrio/toxicidade , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/fisiologia , Receptores de IgG/genética , Receptores de IgG/metabolismo , Compostos de Trialquitina/toxicidade
7.
J Biophotonics ; 11(11): e201800102, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29931754

RESUMO

Although photons have been repeatedly shown to affect the functioning of the nervous system, their effects on neurotransmitter release have never been investigated. We exploited in vitro models that allow effects involving neuron-astrocyte network functioning to be detected (mouse cerebrocortical slices) and dissected these effects at cerebrocortical nerve endings and astrocyte processes. Infrared light proved able to induce glutamate release by stimulating glutamatergic nerve endings.


Assuntos
Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Raios Infravermelhos , Lasers , Sistema Nervoso/metabolismo , Fótons , Animais , Astrócitos/citologia , Córtex Cerebral/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Nervoso/citologia , Neurônios/citologia
8.
Open Biol ; 7(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28931651

RESUMO

N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m6A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m6A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m6A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m6A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain.


Assuntos
Adenosina/análogos & derivados , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Redes Reguladoras de Genes , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Cerebelo/citologia , Córtex Cerebral/citologia , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Masculino , Metilação , Camundongos , Anotação de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , RNA Mensageiro/genética , Transdução de Sinais , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa