Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(34): e2206973119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969753

RESUMO

The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Heteroplasmia , Proteína MutS de Ligação de DNA com Erro de Pareamento , Arabidopsis/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Genoma de Planta , Mitocôndrias/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Plastídeos/genética , Plastídeos/metabolismo
2.
Plant Cell Physiol ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37756637

RESUMO

MSH1 is an organellar targeted protein that obstructs ectopic recombination and the accumulation of mutations in plant organellar genomes. MSH1 also modulates the epigenetic status of nuclear DNA, and its absence induces a variety of phenotypic responses. MSH1 is a member of the MutS family of DNA mismatch repair proteins but harbors an additional GIY-YIG nuclease domain that distinguishes it from the rest of this family. How MSH1 hampers recombination and promotes fidelity in organellar DNA inheritance is unknown. Here, we elucidate its enzymatic activities by recombinantly expressing and purifying full-length MSH1 from Arabidopsis thaliana (AtMSH1). AtMSH1 is a metalloenzyme that shows a strong binding affinity for displacement loops (D-loops). The DNA binding abilities of AtMSH1 reside in its MutS domain and not in its GIY-YIG domain, which is the ancillary nickase of AtMSH1. In the presence of divalent metal ions, AtMSH1 selectively executes multiple incisions at D-loops, but not other DNA structures including Holliday junctions or dsDNA, regardless of the presence or absence of mismatches. The selectivity of AtMSH1 to dismantle D-loops supports the role of this enzyme in preventing recombination between short repeats. Our results suggest that plant organelles have evolved novel DNA repair routes centered around the anti-recombinogenic activity of MSH1.

3.
Mol Biol Rep ; 50(6): 5147-5155, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119414

RESUMO

BACKGROUND: MSH1 (MutS homolog1) is a nuclear-encoded protein that plays a crucial role in maintaining low mutation rates and stability of the organellar genome. While plastid MSH1 maintains nuclear epigenome plasticity and affects plant development patterns, mitochondrial MSH1 suppresses illegitimate recombination within the mitochondrial genome, affects mitochondrial genome substoichiometric shifting activity and induces cytoplasmic male sterility (CMS) in crops. However, a detailed functional investigation of onion MSH1 has yet to be achieved. MATERIALS AND RESULTS: The homology analysis of onion genome database identified a single copy of the AcMSH1 gene in the onion cv. Bhima Super. In silico analysis of AcMSH1 protein sequence revealed the presence of 6 conserved functional domains including a unique MSH1-specific GIY-YIG endonuclease domain at the C-terminal end. At N-terminal end, it has signal peptide sequences targeting chloroplast and mitochondria. The concentration of AcMSH1 was found to be highest in isolated mitochondria, followed by chloroplasts, and negligible in the cytoplasmic fraction; which proved its localization to the mitochondria and chloroplasts. Quantitative expression analysis revealed that AcMSH1 protein levels were highest in leaves, followed by flower buds, root tips, flowers, and umbels, with the lowest amount found in callus tissue. CONCLUSION: Onion genome has single copy of MSH1, with characteristic GIY-YIG endonuclease domain. AcMSH1 targeted towards both chloroplasts and mitochondria. The identification and characterisation of AcMSH1 may provide valuable insights into the development of CMS lines in onion.


Assuntos
Mitocôndrias , Cebolas , Cebolas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Endonucleases/metabolismo , Clonagem Molecular
4.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686425

RESUMO

MutS homolog 1 (MSH1) is involved in the recombining and repairing of organelle genomes and is essential for maintaining their stability. Previous studies indicated that the length of the gene varied greatly among species and detected species-specific partial gene duplications in Physcomitrella patens. However, there are critical gaps in the understanding of the gene size expansion, and the extent of the partial gene duplication of MSH1 remains unclear. Here, we screened MSH1 genes in 85 selected species with genome sequences representing the main clades of green plants (Viridiplantae). We identified the MSH1 gene in all lineages of green plants, except for nine incomplete species, for bioinformatics analysis. The gene is a singleton gene in most of the selected species with conserved amino acids and protein domains. Gene length varies greatly among the species, ranging from 3234 bp in Ostreococcus tauri to 805,861 bp in Cycas panzhihuaensis. The expansion of MSH1 repeatedly occurred in multiple clades, especially in Gymnosperms, Orchidaceae, and Chloranthus spicatus. MSH1 has exceptionally long introns in certain species due to the gene length expansion, and the longest intron even reaches 101,025 bp. And the gene length is positively correlated with the proportion of the transposable elements (TEs) in the introns. In addition, gene structure analysis indicated that the MSH1 of green plants had undergone parallel intron gains and losses in all major lineages. However, the intron number of seed plants (gymnosperm and angiosperm) is relatively stable. All the selected gymnosperms contain 22 introns except for Gnetum montanum and Welwitschia mirabilis, while all the selected angiosperm species preserve 21 introns except for the ANA grade. Notably, the coding region of MSH1 in algae presents an exceptionally high GC content (47.7% to 75.5%). Moreover, over one-third of the selected species contain species-specific partial gene duplications of MSH1, except for the conserved mosses-specific partial gene duplication. Additionally, we found conserved alternatively spliced MSH1 transcripts in five species. The study of MSH1 sheds light on the evolution of the long genes of green plants.


Assuntos
Magnoliopsida , Viridiplantae , Íntrons/genética , Duplicação Gênica , Processamento Alternativo , Biologia Computacional , Cycadopsida , Proteínas MutS
5.
J Exp Bot ; 73(16): 5428-5439, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35662332

RESUMO

Mitochondria form highly dynamic populations in the cells of plants (and almost all eukaryotes). The characteristics and benefits of this collective behaviour, and how it is influenced by nuclear features, remain to be fully elucidated. Here, we use a recently developed quantitative approach to reveal and analyse the physical and collective 'social' dynamics of mitochondria in an Arabidopsis msh1 mutant where the organelle DNA maintenance machinery is compromised. We use a newly created line combining the msh1 mutant with mitochondrially targeted green fluorescent protein (GFP), and characterize mitochondrial dynamics with a combination of single-cell time-lapse microscopy, computational tracking, and network analysis. The collective physical behaviour of msh1 mitochondria is altered from that of the wild type in several ways: mitochondria become less evenly spread, and networks of inter-mitochondrial encounters become more connected, with greater potential efficiency for inter-organelle exchange-reflecting a potential compensatory mechanism for the genetic challenge to the mitochondrial DNA population, supporting more inter-organelle exchange. We find that these changes are similar to those observed in friendly, where mitochondrial dynamics are altered by a physical perturbation, suggesting that this shift to higher connectivity may reflect a general response to mitochondrial challenges, where physical dynamics of mitochondria may be altered to control the genetic structure of the mtDNA population.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , DNA/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dinâmica Mitocondrial , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35163736

RESUMO

The barley chloroplast mutator (cpm) is a nuclear gene mutant that induces a wide spectrum of cytoplasmically inherited chlorophyll deficiencies. Plastome instability of cpm seedlings was determined by identification of a particular landscape of polymorphisms that suggests failures in a plastome mismatch repair (MMR) protein. In Arabidopsis, MSH genes encode proteins that are in charge of mismatch repair and have anti-recombination activity. In this work, barley homologs of these genes were identified, and their sequences were analyzed in control and cpm mutant seedlings. A substitution, leading to a premature stop codon and a truncated MSH1 protein, was identified in the Msh1 gene of cpm plants. The relationship between this mutation and the presence of chlorophyll deficiencies was established in progenies from crosses and backcrosses. These results strongly suggest that the mutation identified in the Msh1 gene of the cpm mutant is responsible for the observed plastome instabilities. Interestingly, comparison of mutant phenotypes and molecular changes induced by the barley cpm mutant with those of Arabidopsis MSH1 mutants revealed marked differences.


Assuntos
Arabidopsis , Hordeum , Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Hordeum/genética , Mutação , Plântula/genética
7.
Plant Cell Environ ; 44(1): 234-246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978825

RESUMO

Spontaneous fertility reversion has been documented in cytoplasmic male sterile (CMS) plants of several species, influenced in frequency by nuclear genetic background. In this study, we found that MutS HOMOLOG1 (MSH1) mediates fertility reversion via substoichiometric shifting (SSS) of the CMS-associated mitochondrial Open Reading Frame 220 (ORF220), a process that may be regulated by pollination signalling in Brassica juncea. We show that plants adjust their growth and development in response to unsuccessful pollination. Measurable decrease in MSH1 transcript levels and evidence of ORF220 SSS under non-pollination conditions suggest that this nuclear-mitochondrial interplay influences fertility reversion in CMS plants in response to physiological signals. Suppression of MSH1 expression induced higher frequency SSS in CMS plants than occurs normally. Transcriptional analysis of floral buds under pollination and non-pollination conditions, and the response of MSH1 expression to different sugars, supports the hypothesis that carbon flux is involved in the pollination signalling of fertility reversion in CMS plants. Our findings suggest that facultative gynodioecy as a reproductive strategy may incorporate environmentally responsive genes like MSH1 as an "on-off" switch for sterility-fertility transition under ecological conditions of reproductive isolation.


Assuntos
Mostardeira/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Infertilidade das Plantas , Proteínas de Plantas/metabolismo , Frutose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Mostardeira/genética , Polinização , Sacarose/metabolismo
8.
Fungal Genet Biol ; 144: 103465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949723

RESUMO

Wild-type filamentous fungus Neurospora crassa continues to grow its hyphae for a very lengthy period of time (>2 years), whereas mutations at the natural death (nd) locus shorten life span (approximately 20 days). By positional cloning based on heat augmented mutagen sensitivity of the nd strain, we identified a nonsense mutation in the msh1 gene, an eukaryotic homolog of bacterial MutS, and this mutation resulted in encoding non-functional polypeptide. By tagging with GFP, subcellular localization of the MSH1 protein in the mitochondria was observed, and knock out of the msh1 gene caused severe growth deficiency accompanying mitochondrial DNA (mtDNA) aberrations such as large-scale mtDNA deletions and rearrangements as seen in the nd strain. These results suggested that MSH1 may maintain mtDNA integrity. Thus, loss of function compromises mtDNA, leading to the acceleration of cellular aging.


Assuntos
DNA Mitocondrial/genética , Hifas/genética , Longevidade/genética , Proteínas MutS/genética , Sequência de Aminoácidos/genética , Códon sem Sentido/genética , Proteínas de Ligação a DNA/genética , Hifas/crescimento & desenvolvimento , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Recombinação Genética/genética , Saccharomyces cerevisiae/genética
9.
Plant J ; 91(3): 455-465, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28407383

RESUMO

Chloroplast and mitochondrial DNA encodes genes that are essential for photosynthesis and respiration, respectively. Thus, loss of integrity of the genomic DNA of organelles leads to a decline in organelle function and alteration of organelle genetic information. RECA (RECA1 and RECA2) and RECG, which are homologs of bacterial homologous recombination repair (HRR) factors RecA and RecG, respectively, play an important role in the maintenance of integrity of the organelle genome by suppressing aberrant recombination between short dispersed repeats (SDRs) in the moss Physcomitrella patens. On the other hand, MutS homolog 1 (MSH1), a plant-specific MSH with a C-terminal GIY-YIG endonuclease domain, is involved in the maintenance of integrity of the organelle genome in the angiosperm Arabidopsis thaliana. Here, we address the role of the duplicated MSH1 genes, MSH1A and MSH1B, in P. patens, in which MSH1A lacks the C-terminal endonuclease domain. MSH1A and MSH1B localized to both chloroplast and mitochondrial nucleoids in protoplast cells. Single and double knockout (KO) mutants of MSH1A and MSH1B showed no obvious morphological defects; however, MSH1B KO and double KO mutants, as well as MSH1B GIY-YIG deletion mutants, exhibited genomic instability due to recombination between SDRs in chloroplasts and mitochondria. Creating double KO mutations of each combination of MSH1B, RECA2 and RECG synergistically increased recombination between SDRs in chloroplasts and mitochondria. These results show the role of MSH1 in the maintenance of integrity of the organelle genome and the genetic interaction between MSH1 and homologs of HRR factors in the basal land plant P. patens.


Assuntos
Bryopsida/genética , Bryopsida/metabolismo , Instabilidade Genômica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , DNA de Plantas/genética , Mitocôndrias/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
10.
Environ Exp Bot ; 154: 134-142, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30283160

RESUMO

Reduction-oxidation (redox) reactions, in which electrons move from a donor to an acceptor, are the functional heart of photosynthesis. It is not surprising therefore that reactive oxygen species (ROS) are generated in abundance by photosynthesis, providing a plethora of redox signals as well as functioning as essential regulators of energy and metabolic fluxes. Chloroplasts are equipped with an elaborate and multifaceted protective network that allows photosynthesis to function with high productivity even in resource-limited natural environments. This includes numerous antioxidants with overlapping functions that provide enormous flexibility in redox control. ROS are an integral part of the repertoire of chloroplast signals that are transferred to the nucleus to convey essential information concerning redox pressure within the electron transport chain. Current evidence suggests that there is specificity in the gene-expression profiles triggered by the different ROS signals, so that singlet oxygen triggers programs related to over excitation of photosystem (PS) II while superoxide and hydrogen peroxide promote the expression of other suites of genes that may serve to alleviate electron pressure on the reducing side of PSI. Not all chloroplasts are equal in their signaling functions, with some sub-populations appearing to have better contacts/access to the nucleus than others to promote genetic and epigenetic responses. While the concept that light-induced increases in ROS result in damage to PSII and photoinhibition is embedded in the photosynthesis literature, there is little consensus concerning the extent to which such oxidative damage happens in nature. Slowly reversible decreases in photosynthetic capacity are not necessarily the result of light-induced damage to PSII reaction centers.

11.
BMC Plant Biol ; 17(1): 47, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219335

RESUMO

BACKGROUND: Proper regulation of nuclear-encoded, organelle-targeted genes is crucial for plastid and mitochondrial function. Among these genes, MutS Homolog 1 (MSH1) is notable for generating an assortment of mutant phenotypes with varying degrees of penetrance and pleiotropy. Stronger phenotypes have been connected to stress tolerance and epigenetic changes, and in Arabidopsis T-DNA mutants, two generations of homozygosity with the msh1 insertion are required before severe phenotypes begin to emerge. These observations prompted us to examine how msh1 mutants contrast according to generation and phenotype by profiling their respective transcriptomes and small RNA populations. RESULTS: Using RNA-seq, we analyze pathways that are associated with MSH1 loss, including abiotic stresses such as cold response, pathogen defense and immune response, salicylic acid, MAPK signaling, and circadian rhythm. Subtle redox and environment-responsive changes also begin in the first generation, in the absence of strong phenotypes. Using small RNA-seq we further identify miRNA changes, and uncover siRNA trends that indicate modifications at the chromatin organization level. In all cases, the magnitude of changes among protein-coding genes, transposable elements, and small RNAs increases according to generation and phenotypic severity. CONCLUSION: Loss of MSH1 is sufficient to cause large-scale regulatory changes in pathways that have been individually linked to one another, but rarely described all together within a single mutant background. This study enforces the recognition of organelles as critical integrators of both internal and external cues, and highlights the relationship between organelle and nuclear regulation in fundamental aspects of plant development and stress signaling. Our findings also encourage further investigation into potential connections between organelle state and genome regulation vis-á-vis small RNA feedback.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Mitocôndrias/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , DNA Bacteriano/genética , Organelas/genética , Organelas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Transcriptoma/genética
12.
Cancer Causes Control ; 28(5): 447-457, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28194593

RESUMO

PURPOSE: Synchronous endometrial and ovarian tumors (SEOs) are diagnosed in 10% of ovarian cancer patients. We examined predictors of SEOs, evaluated associations of SEOs with survival and characterized ovarian tumor profiles using immunohistochemistry. METHODS: We included patients with endometrioid (n = 180) and clear cell (n = 165) ovarian carcinoma identified from the Alberta Cancer Registry between 1979 and 2010 for whom we abstracted medical records and constructed tumor tissue microarrays (TMAs). A concurrent diagnosis of endometrial cancer was obtained from the medical chart. We used unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) and Cox proportional hazards models to estimate hazard ratios (HRs) and 95% CIs. Protein expression in ovarian tumors of patients with and without SEOs was evaluated using Fisher's exact test. RESULTS: Comparing 52 patients with SEO tumors to 293 patients with endometrioid or clear cell ovarian carcinomas, endometriosis at the ovary (OR = 0.45, 95% CI = 0.23-0.87, p = 0.02) was the strongest predictor of decreased risk in multivariable models. Premenopausal status (OR = 2.17, 95% CI = 0.92-5.13, p = 0.08) and lower pre-treatment CA125 levels (OR = 0.17, 95% CI = 0.02-1.32, p = 0.09) showed weaker associations. There were no significant differences in survival between patients with or without SEO tumors. More patients with SEO tumors compared to endometrioid ovarian carcinoma were deficient in MLH1, PMS2 and PTEN (p ≤ 0.03). CONCLUSIONS: Endometriosis may not be the mechanism by which SEO cancers arise. Altered tumor oncoprotein expression between women with and without SEOs indicates important biological differences although this did not translate into prognostic differences.


Assuntos
Adenocarcinoma de Células Claras/patologia , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/patologia , Neoplasias Primárias Múltiplas/patologia , Neoplasias Ovarianas/patologia , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Alberta , Biomarcadores Tumorais/metabolismo , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/mortalidade , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/mortalidade , Feminino , Humanos , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Neoplasias Primárias Múltiplas/metabolismo , Neoplasias Primárias Múltiplas/mortalidade , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Sistema de Registros , Risco
13.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363960

RESUMO

Aminobacter sp. strain MSH1 grows on and mineralizes the groundwater micropollutant 2,6-dichlorobenzamide (BAM) and is of interest for BAM removal in drinking water treatment plants (DWTPs). The BAM-catabolic genes in MSH1 are located on plasmid pBAM1, carrying bbdA, which encodes the conversion of BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) (BbdA+ phenotype), and plasmid pBAM2, carrying gene clusters encoding the conversion of 2,6-DCBA to tricarboxylic acid (TCA) cycle intermediates (Dcba+ phenotype). There are indications that MSH1 easily loses its BAM-catabolic phenotype. We obtained evidence that MSH1 rapidly develops a population that lacks the ability to mineralize BAM when grown on nonselective (R2B medium) and semiselective (R2B medium with BAM) media. Lack of mineralization was explained by loss of the Dcba+ phenotype and corresponding genes. The ecological significance of this instability for the use of MSH1 for BAM removal in the oligotrophic environment of DWTPs was explored in lab and pilot systems. A higher incidence of BbdA+ Dcba- MSH1 cells was also observed when MSH1 was grown as a biofilm in flow chambers under C and N starvation conditions due to growth on nonselective residual assimilable organic carbon. Similar observations were made in experiments with a pilot sand filter reactor bioaugmented with MSH1. BAM conversion to 2,6-DCBA was not affected by loss of the DCBA-catabolic genes. Our results show that MSH1 is prone to BAM-catabolic instability under the conditions occurring in a DWTP. While conversion of BAM to 2,6-DCBA remains unaffected, BAM mineralization activity is at risk, and monitoring of metabolites is warranted.IMPORTANCE Bioaugmentation of dedicated biofiltration units with bacterial strains that grow on and mineralize micropollutants was suggested as an alternative for treating micropollutant-contaminated water in drinking water treatment plants (DWTPs). Organic-pollutant-catabolic genes in bacteria are often easily lost, especially under nonselective conditions, which affects the bioaugmentation success. In this study, we provide evidence that Aminobacter sp. strain MSH1, which uses the common groundwater micropollutant 2,6-dichlorobenzamide (BAM) as a C source, shows a high frequency of loss of its BAM-mineralizing phenotype due to the loss of genes that convert 2,6-DCBA to Krebs cycle intermediates when nonselective conditions occur. Moreover, we show that catabolic-gene loss also occurs in the oligotrophic environment of DWTPs, where growth of MSH1 depends mainly on the high fluxes of low concentrations of assimilable organic carbon, and hence show the ecological relevance of catabolic instability for using strain MSH1 for BAM removal in DWTPs.


Assuntos
Benzamidas/metabolismo , Biofilmes , Phyllobacteriaceae/genética , Phyllobacteriaceae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Instabilidade Genômica
14.
Appl Microbiol Biotechnol ; 101(13): 5235-5245, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28616645

RESUMO

The pesticide metabolite 2,6-dichlorobenzamide (BAM) is very persistent in both soil and groundwater and has become one of the most frequently detected groundwater micropollutants. BAM is not removed by the physico-chemical treatment techniques currently used in drinking water treatment plants (DWTP); therefore, if concentrations exceed the legal threshold limit, it represents a sizeable problem for the stability and quality of drinking water production, especially in places that depend on groundwater for drinking water. Bioremediation is suggested as a valuable strategy for removing BAM from groundwater by deploying dedicated BAM-degrading bacteria in DWTP sand filters. Only a few bacterial strains with the capability to degrade BAM have been isolated, and of these, only three isolates belonging to the Aminobacter genus are able to mineralise BAM. Considerable effort has been made to elucidate degradation pathways, kinetics and degrader genes, and research has recently been presented on the application of strain Aminobacter sp. MSH1 for the purification of BAM-contaminated water. The aim of the present review was to provide insight into the issue of BAM contamination and to report on the current status and knowledge with regard to the application of microorganisms for purification of BAM-contaminated water resources. This paper discusses the prospects and challenges for bioaugmentation of DWTP sand filters with specific BAM-degrading bacteria and identifies relevant perspectives for future research.


Assuntos
Bactérias/metabolismo , Benzamidas/metabolismo , Água Subterrânea/química , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Água Potável/química , Filtração , Água Subterrânea/microbiologia , Phyllobacteriaceae/metabolismo , Poluição da Água/prevenção & controle , Purificação da Água/métodos
15.
J Exp Bot ; 67(1): 435-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26516127

RESUMO

Cytoplasmic male sterility (CMS) has consistently been associated with the expression of mitochondrial open reading frames (ORFs) that arise from genomic rearrangements. Spontaneous fertility reversion in CMS has been observed in several cases, but a clear understanding of fertility reversion controlled by nuclear genetic influences has been lacking. Here, we identified spontaneous fertile revertant lines for Brassica juncea CMS cytoplasm in which the mitochondrial genome has undergone substoichiometric shifting (SSS) to suppress ORF220 copy number. We placed ORF220, with or without a mitochondrial targeting presequence, under the control of the CaMV35S and AP3 promoters in Arabidopsis to confirm that ORF220 causes male sterility when mitochondrially localized. We found that copy number of the ORF220 gene was altered under conditions that suppress MSH1, a nuclear gene that controls illegitimate recombination in plant mitochondria. MSH1-RNAi lines with increased ORF220 copy number were male sterile compared with wild type. We found that a wide range of genes involved in anther development were up- and down-regulated in revertant and MSH1-RNAi lines, respectively. The system that we have developed offers valuable future insight into the interplay of MSH1 and SSS in CMS induction and fertility reversion as a mediator of nuclear-mitochondrial crosstalk.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mostardeira/fisiologia , Infertilidade das Plantas , Proteínas de Plantas/genética , Rearranjo Gênico , Inativação Gênica , Genoma Mitocondrial , Mostardeira/genética , Proteínas de Plantas/metabolismo
16.
Zookeys ; 1089: 37-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586606

RESUMO

A molecular phylogenetic analysis of 132 octocoral species reveals a close relationship between specimens collected from the intertidal pools of the Datan Algal Reef, Taoyuan, Taiwan, and Erythropodiumcaribaeorum (Duchassaing & Michelotti, 1860), but the two species have distinct morphological features. On the basis of morphological differences in polyps and sclerites, we identify and describe a new Erythropodium species: E.taoyuanensis sp. nov. The distinct identifying features of E.taoyuanensis sp. nov. include the upright contractile polyps from thin encrusting membranes and abundant 6-radiate sclerites. Using an integrative approach, we present the findings of morphological comparisons and molecular phylogenetic analyses to demonstrate that E.taoyuanensis sp. nov. is distinct from other Erythropodium species. Our study contributes to the knowledge of octocoral biodiversity in marginal habitats.

17.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35214766

RESUMO

The significant number of people with latent and active tuberculosis infection requires further efforts to develop new vaccines or improve the Bacillus Calmette-Guérin (BCG), which is the only approved vaccine against this disease. In this study, we developed a recombinant fusion protein (PEPf) containing high-density immunodominant epitope sequences from Rv0125, Rv2467, and Rv2672 Mycobacterium tuberculosis (Mtb) proteases that proved immunogenic and used it to develop a recombinant BCG vaccine expressing the fusion protein. After challenging using Mtb, a specific immune response was recalled, resulting in a reduced lung bacterial load with similar protective capabilities to BCG. Thus BCG PEPf failed to increase the protection conferred by BCG. The PEPf was combined with Advax4 adjuvant and tested as a subunit vaccine using a prime-boost strategy. PEPf + Advax4 significantly improved protection after Mtb challenge, with a reduction in bacterial load in the lungs. Our results confirm that Mtb proteases can be used to develop vaccines against tuberculosis and that the use of the recombinant PEPf subunit protein following a prime-boost regimen is a promising strategy to improve BCG immunity.

18.
Front Cell Dev Biol ; 9: 671698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447743

RESUMO

Besides the nuclear genome, plants possess two small extra chromosomal genomes in mitochondria and chloroplast, respectively, which contribute a small fraction of the organelles' proteome. Both mitochondrial and chloroplast DNA have originated endosymbiotically and most of their prokaryotic genes were either lost or transferred to the nuclear genome through endosymbiotic gene transfer during the course of evolution. Due to their immobile nature, plant nuclear and organellar genomes face continuous threat from diverse exogenous agents as well as some reactive by-products or intermediates released from various endogenous metabolic pathways. These factors eventually affect the overall plant growth and development and finally productivity. The detailed mechanism of DNA damage response and repair following accumulation of various forms of DNA lesions, including single and double-strand breaks (SSBs and DSBs) have been well documented for the nuclear genome and now it has been extended to the organelles also. Recently, it has been shown that both mitochondria and chloroplast possess a counterpart of most of the nuclear DNA damage repair pathways and share remarkable similarities with different damage repair proteins present in the nucleus. Among various repair pathways, homologous recombination (HR) is crucial for the repair as well as the evolution of organellar genomes. Along with the repair pathways, various other factors, such as the MSH1 and WHIRLY family proteins, WHY1, WHY2, and WHY3 are also known to be involved in maintaining low mutation rates and structural integrity of mitochondrial and chloroplast genome. SOG1, the central regulator in DNA damage response in plants, has also been found to mediate endoreduplication and cell-cycle progression through chloroplast to nucleus retrograde signaling in response to chloroplast genome instability. Various proteins associated with the maintenance of genome stability are targeted to both nuclear and organellar compartments, establishing communication between organelles as well as organelles and nucleus. Therefore, understanding the mechanism of DNA damage repair and inter compartmental crosstalk mechanism in various sub-cellular organelles following induction of DNA damage and identification of key components of such signaling cascades may eventually be translated into strategies for crop improvement under abiotic and genotoxic stress conditions. This review mainly highlights the current understanding as well as the importance of different aspects of organelle genome maintenance mechanisms in higher plants.

19.
FEMS Microbiol Ecol ; 93(6)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28498947

RESUMO

Aminobacter sp. MSH1 is of interest for bioaugmentation of biofiltration units in drinking water treatment plants (DWTPs) due to its ability to degrade the groundwater micropollutant 2,6-dichlorobenzamide (BAM). Using a continuous flow chamber biofilm model, MSH1 was previously shown to colonize surfaces and degrade BAM at trace concentrations as low as 1 µg/L under the oligotrophic conditions found in DWTPs. In DWTP filtration units, MSH1 has to compete with the resident biofilm microbiota for space and nutrients. Using the same model, we examined how a sand filter community (SFC) affects MSH1's BAM-degrading activity and biofilm formation under C- and N-limiting conditions when fed with trace concentrations of BAM. MSH1 was inoculated simultaneously with the SFC (co-colonization mode) or after the SFC formed a biofilm (invasion mode). MSH1 successfully established in the SFC biofilm showing growth and activity. In co-colonization mode, MSH1 decreased in number in the presence of the SFC and formed isolated colonies, while specific BAM-degradation activity increased. In the invasion mode, MSH1 also decreased in numbers in the presence of the SFC but formed mixed colonies, while specific BAM degradation was unaffected. Our results show that MSH1 invades and performs successfully in an SFC biofilm under the oligotrophic conditions of DWTPs.


Assuntos
Benzamidas/metabolismo , Biofilmes/crescimento & desenvolvimento , Phyllobacteriaceae/crescimento & desenvolvimento , Phyllobacteriaceae/metabolismo , Purificação da Água/métodos , Carbono/metabolismo , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição da Água
20.
Mol Plant ; 9(2): 245-260, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26584715

RESUMO

As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Plastídeos/genética , Plastídeos/metabolismo , Tilacoides/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa