Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105639

RESUMO

Sanfilippo syndrome or mucopolysaccharidosis III is a lysosomal storage disorder caused by mutations in genes responsible for the degradation of heparan sulfate, a glycosaminoglycan located in the extracellular membrane. Undegraded heparan sulfate molecules accumulate within lysosomes leading to cellular dysfunction and pathology in several organs, with severe central nervous system degeneration as the main phenotypical feature. The exact molecular and cellular mechanisms by which impaired degradation and storage lead to cellular dysfunction and neuronal degeneration are still not fully understood. Here, we compile the knowledge on this issue and review all available animal and cellular models that can be used to contribute to increase our understanding of Sanfilippo syndrome disease mechanisms. Moreover, we provide an update in advances regarding the different and most successful therapeutic approaches that are currently under study to treat Sanfilippo syndrome patients and discuss the potential of new tools such as induced pluripotent stem cells to be used for disease modeling and therapy development.


Assuntos
Heparitina Sulfato/metabolismo , Mucopolissacaridose III/etiologia , Mucopolissacaridose III/terapia , Acetiltransferases/genética , Animais , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Terapia Genética , Humanos , Hidrolases/genética , Mucopolissacaridose III/patologia , Mutação , Transplante de Células-Tronco
2.
J Struct Biol ; 205(3): 65-71, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30802506

RESUMO

Mucopolysaccharidosis III B (MPS III-B) is a rare lysosomal storage disorder caused by deficiencies in Alpha-N-acetylglucosaminidase (NAGLU) for which there is currently no cure, and present treatment is largely supportive. Understanding the structure of NAGLU may allow for identification of novel therapeutic targets for MPS III-B. Here we describe the first crystal structure of human NAGLU, determined to a resolution of 2.3 Å. The crystal structure reveals a novel homotrimeric configuration, maintained primarily by hydrophobic and electrostatic interactions via domain II of three contiguous domains from the N- to C-terminus. The active site cleft is located between domains II and III. Catalytic glutamate residues, E316 and E446, are located at the top of the (α/ß)8 barrel structure in domain II. We utilized the three-dimensional structure of NAGLU to map several MPS III-B mutations, and hypothesize their functional consequences. Revealing atomic level structural information about this critical lysosomal enzyme paves the way for the design of novel therapeutics to target the underlying causes of MPS III-B.


Assuntos
Acetilglucosamina/química , Acetilglucosaminidase/química , Acetilglucosamina/metabolismo , Acetilglucosaminidase/genética , Acetilglucosaminidase/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Linhagem Celular Tumoral , Clonagem Molecular , Cristalografia por Raios X , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mucopolissacaridose III/enzimologia , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Homologia Estrutural de Proteína , Especificidade por Substrato
3.
Mol Genet Metab ; 125(1-2): 59-63, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30006231

RESUMO

BACKGROUND: With ongoing efforts to develop improved treatments for Sanfilippo Syndrome Type A (MPS-IIIA), a disease caused by the inability to degrade heparan sulfate in lysosomes, we sought to develop an enzymatic activity assay for the relevant enzyme, sulfamidase, that uses dried blood spots (DBS). METHODS: We designed and synthesized a new sulfamidase substrate that can be used to measure sulfamidase activity in DBS using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Sulfamidase activity was readily detected in DBS using the new substrate and LC-MS/MS. Sulfamidase activity showed acceptable linearity proportional to the amount of enzyme and reaction time. Sulfamidase activity in 238 random newborns was well elevated compared to the range of activities measured in DBS from 8 patients previously confirmed to have MPS-IIIA. CONCLUSIONS: This is the first report of an assay capable of detecting sulfamidase in DBS. The new assay could be useful in diagnosis and potentially for newborn screening of MPS-IIIA.


Assuntos
Teste em Amostras de Sangue Seco , Heparitina Sulfato/metabolismo , Hidrolases/sangue , Mucopolissacaridose III/sangue , Cromatografia Líquida , Heparitina Sulfato/genética , Humanos , Recém-Nascido , Doenças por Armazenamento dos Lisossomos/sangue , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/enzimologia , Lisossomos/patologia , Mucopolissacaridose III/patologia , Triagem Neonatal/métodos , Espectrometria de Massas em Tandem
4.
Am J Med Genet A ; 176(9): 1799-1809, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30070758

RESUMO

Mucopolysaccharidosis type III (MPS III, Sanfilippo syndrome) has a variable age of onset and variable rate of progression. However, information regarding the natural history of this disorder in Asian populations is limited. A retrospective analysis was carried out for 28 patients with MPS III (types IIIA [n = 3], IIIB [n = 23], and IIIC [n = 2]; 15 males and 13 females; median age, 8.2 years; age range, 2.7-26.5 years) seen in six medical centers in Taiwan from January 1996 through October 2017. The median age at confirmed diagnosis was 4.6 years. The most common initial symptom was speech delay (75%), followed by hirsutism (64%) and hyperactivity (54%). Both z scores for height and weight were negatively correlated with age (r = -.693 and -0.718, respectively; p < .01). The most prevalent clinical manifestations were speech delay (100%) and intellectual disability (100%), followed by hirsutism (93%), hyperactivity (79%), coarse facial features (68%), sleep disorders (61%), and hepatosplenomegaly (61%). Ten patients (36%) had epilepsy, and the median age at the first seizure was 11 years. Thirteen patients (46%) experienced at least one surgical procedure. At the time of the present study, 7 of the 28 patients had passed away at the median age of 13.0 years. Molecular studies showed an allelic heterogeneity without clear genotype and phenotype correlations. MPS IIIB is the most frequent subtype among MPS III in the Taiwanese population. An understanding of the natural history of MPS III may allow early diagnosis and timely management of the disease facilitating better treatment outcomes.


Assuntos
Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/etiologia , Acetilglucosaminidase/genética , Acetilglucosaminidase/metabolismo , Adolescente , Adulto , Biomarcadores , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletroencefalografia , Ativação Enzimática , Feminino , Estudos de Associação Genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/mortalidade , Imagem Multimodal/métodos , Mutação , Fenótipo , Estudos Retrospectivos , Avaliação de Sintomas , Taiwan , Adulto Jovem
5.
Int J Mol Sci ; 18(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194406

RESUMO

Mucopolysaccharidosis III type A (MPS IIIA; Sanfilippo syndrome), a genetic lysosomal disorder causing a deficiency of heparan N-sulfatase (HNS), leads to progressive cognitive decline from an early age. An effective enzyme replacement therapy (ERT) for MPS IIIA requires central nervous system (CNS) biodistribution. Recombinant human heparan N-sulfatase (rhHNS), an investigatory ERT for MPS IIIA, has been formulated for intrathecal (IT) administration since intravenous (IV) administration cannot cross the blood brain barrier (BBB) in sufficient amounts to have a therapeutic effect. In this study, systemic and CNS distribution of rhHNS in cynomolgus monkeys following IV and IT administration was evaluated by quantitation of rhHNS in serum, cerebral spinal fluid (CSF) and various tissues, and positron emission tomography (PET) imaging of live animals. Following IV administration, rhHNS levels were low to non-detectable in the CSF, and systemic clearance was rapid (≤2 h). With IT administration, rhHNS was observable in CNS tissues in ≤1 h, with varying Tmax (1-24 h). Appreciable systemic distribution was observed up to 7 days. This provides evidence that in this animal model, intrathecal administration of rhHNS delivers the replacement enzyme to therapeutically relevant tissues for the treatment of Sanfilippo Syndrome type A. Penetration into grey matter and cortex was 3-4 times greater than concentrations in white matter and deeper parenchymal regions, suggesting some limitations of this ERT strategy.


Assuntos
Sistema Nervoso Central/química , Sulfatases/administração & dosagem , Sulfatases/farmacocinética , Administração Intravenosa , Animais , Sistema Nervoso Central/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Injeções Espinhais , Macaca fascicularis , Masculino , Mucopolissacaridose III/tratamento farmacológico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Distribuição Tecidual
6.
Mol Genet Metab ; 113(1-2): 34-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25127543

RESUMO

Mucopolysaccharidosis type III (MPS III) is characterized by progressive neurological deterioration, behavioral abnormalities, a relatively mild somatic phenotype, and early mortality. Because of the paucity of somatic manifestations and the rarity of the disease, early diagnosis is often difficult. Therapy targeting the underlying disease pathophysiology may offer the greatest clinical benefit when started prior to the onset of significant neurologic sequelae. Here we review current practices in the laboratory diagnosis of MPS III in order to facilitate earlier patient identification and diagnosis. When clinical suspicion of MPS III arises, the first step is to order a quantitative assay that screens urine for the presence of glycosaminoglycan biomarkers using a spectrophotometric compound (e.g., dimethylmethylene blue). We recommend testing all patients with developmental delay and/or behavioral abnormalities as part of the diagnostic work-up because quantitative urine screening is inexpensive and non-invasive. Semi-quantitative urine screening assays using cationic dyes on filter paper (e.g., spot tests) have relatively high rates of false-positives and false-negatives and are obsolete. Of note, a negative urinary glycosaminoglycan assay does not necessarily rule out MPS because, in some patients, an overlap in excretion levels with healthy controls may occur. All urine samples that test positive for glycosaminoglycans with a quantitative assay should be confirmed by electrophoresis, thin layer chromatography, or tandem mass spectrometry, which further improves the sensitivity and specificity. The gold standard for diagnosis remains the enzyme activity assay in cultured skin fibroblasts, leukocytes, plasma, or serum, which can be used as a first-line diagnostic test in some regions. Molecular genetic analysis should be offered to all families of patients to allow genetic counseling for informed family planning. For a small number of variants, genotype-phenotype correlations are available and can offer prognostic value. Prenatal testing via enzyme activity assay in chorionic villi or amniotic fluid cells is available at a limited number of centers worldwide, but whenever possible, a molecular genetic analysis is preferred for prenatal diagnosis. To conclude, we discuss the development of newborn screening assays in dried blood spots and high-throughput methods for sequencing the protein-coding regions of the genome (whole exome sequencing) and their relevance to future changes in the MPS III diagnostic landscape.


Assuntos
Testes Diagnósticos de Rotina , Mucopolissacaridose III/diagnóstico , Testes Diagnósticos de Rotina/métodos , Testes Genéticos , Humanos , Recém-Nascido , Triagem Neonatal
7.
Cureus ; 16(4): e58023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38738088

RESUMO

Sanfilippo syndrome is a childhood-onset (1-4 years) autosomal recessive lysosomal storage disease that presents as a neurodegenerative disease by targeting the brain and spinal cord. It is also known as mucopolysaccharidosis III. Mucopolysaccharidosis III is divided into four subtypes (A, B, C, or D). It can cause delayed speech, behavior problems, and features of autism spectrum disorder. Sanfilippo syndrome is of a higher prevalence within consanguineous families that carry its gene alteration. If both parents have a nonfunctional copy of a gene linked to this condition, their children will have a 25% (1 in 4) chance of developing the disease. In Saudi Arabia, the incidence rate is estimated at 2 per 100,000 live births. Recent research focused on promising treatment approaches, such as gene therapy, modified enzyme replacement therapy, and stem cells. These approaches work by exogenous administration of the proper version of the mutant enzyme (enzyme replacement therapy), cleaning the defective enzyme in individuals with glycolipid storage disorders (substrate reduction therapy), or using a pharmacological chaperone to target improperly folded proteins. However, there is currently no approved curative medication for Sanfilippo syndrome that can effectively halt or reverse the disorder.

8.
Front Neurol ; 13: 968297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468061

RESUMO

Mucopolysaccharidosis type III (MPS III) or Sanfilippo syndrome is the most common form of MPS, in which neurological involvement in all stages of the disease is prominent. The current study aimed to comprehensively describe the neurological profile of children and adolescents with MPS III who visited the largest pediatric hospital in South America. A prospective/retrospective cohort analysis was performed on 10 patients with MPS III from eight unrelated families. Most patients <12 months of age had achieved development milestones within the expected range for their age, with delay in walking independently and first single word acquisition. Behavioral symptoms were reported in seven patients. Eight patients (80%) developed profound intellectual disabilities. Six patients (60%) had epilepsy, among whom 75% had their first seizure between 2 and 4 years of age; the frequency of which increased with age. Monotherapy was effective in 60% of patients. Two patients, both aged <8 years, had normal baseline electroencephalographic activity. Epileptiform activity was observed in three patients. Cortical atrophy was visualized using magnetic resonance imaging in 71% patients; all but one of these patients were aged >6 years. Neurological abnormalities increased in prevalence and severity with age. Anti-seizure drug resistance was uncommon. Dysmorphological and systemic manifestations were uncommon and mild and did not correlate with neurological involvement. Despite high allelic heterogeneity, neurodegeneration was similar among all patients. Overall, these data contribute to the scarce literature from developing countries.

9.
J Pers Med ; 12(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35629088

RESUMO

BACKGROUND: Mucopolysaccharidosis type III (MPS III) is an autosomal recessive lysosomal storage disorder characterised by progressive neurocognitive deterioration. MPS III subtypes are clinically indistinguishable, with a wide range of symptoms and variable severity. The natural history of this disorder within an Asian population has not yet been extensively studied. This study investigated the natural history of Korean patients with MPS III. METHODS: Thirty-four patients from 31 families diagnosed with MPS III from January 1997 to May 2020 in Samsung Medical Centre were enrolled. Clinical, molecular, and biochemical characteristics were retrospectively collected from the patients' medical records and via interviews. RESULTS: 18 patients had MPS IIIA, 14 had IIIB, and two had IIIC. Twenty (58.9%) patients were male. Mean age at symptom onset was 2.8 ± 0.8 years and at diagnosis was 6.3 ± 2.2 years. All patients with MPS IIIA and IIIB were classified into the rapidly progressing (RP) phenotype. The most common symptom at diagnosis was language retardation (88.2%), followed by motor retardation (76.5%), general retardation (64.7%), and hyperactivity (41.2%). Language retardation was more predominant in IIIA, and motor retardation was more predominant in IIIB. The mean age of the 13 deceased patients at the time of the study was 14.4 ± 4.1 years. The age at diagnosis and lag time were significantly older and longer in the non-survivor group compared with the survivor group (p = 0.029 and 0.045, respectively). Genetic analysis was performed in 24 patients with MPS III and identified seven novel variants and three hot spots. CONCLUSION: This study is the first to analyse the genetic and clinical characteristics of MPS III patients in Korea. Better understanding of the natural history of MPS III might allow early diagnosis and timely management of the disease and evaluation of treatment outcomes in future clinical trials for MPS III.

10.
J Pediatr Genet ; 10(1): 74-76, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33552644

RESUMO

Mucopolysaccharidosis type IIIB (Sanfilippo's B; OMIM no.: 252920) is a lysosomal storage disorder caused by defective degradation of heparan sulfate. The enzyme that has decreased function in this disease is α-N acetylglucosaminidase. This enzyme is encoded by the NAGLU gene. A 9-year-old male patient was referred to us with speech disability, developmental delay, hepatomegaly, mild learning disability, and otitis media with effusion complaints. Whole exome sequencing (WES) was performed because of consanguinity between the parents of the patient and the lack of specific prediagnosis. As a result of the patient's WES analysis, a homozygous mutation was detected in the NAGLU gene. The leukocyte enzyme activity was then evaluated to confirm the diagnosis. Alpha-N acetylglucosaminidase deficiency was found. Alpha-N acetylglucosaminidase activity was 0.2 nmol/mLh. WES is a successful diagnostic method in the diagnosis of the mild clinical diseases with recessive inheritance. In addition, our case is a good example of genotype to phenotype diagnosis. Because in storage diseases, the diagnosis is made by leukocyte enzyme analysis first, and then the result is confirmed by gene analysis. The opposite situation occurred in our case.

11.
J Pediatr Endocrinol Metab ; 34(10): 1225-1235, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34271605

RESUMO

OBJECTIVES: Mucopolysaccharidosis III, an autosomal recessive lysosomal storage disorder, is characterized by progressive mental retardation and behavioral problems. Meta-analysis of global mucopolysaccharidosis III epidemiology, which serves as a fundamental reference for public health decision-making, was not available prior to this study. To provide a systematic review and meta-analysis of birth prevalence of mucopolysaccharidosis III in multiple countries. METHODS: MEDLINE and EMBASE databases were searched for original research articles on the epidemiology of mucopolysaccharidosis III from inception until 1st July, 2020. A checklist adapted from STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) was used to assess the quality of all studies involved. Meta-analysis, adopting a random effects logistic model, was performed to estimate pooled birth prevalence of mucopolysaccharidosis III and its subtypes. RESULTS: Twenty-five studies screened out of 1,826 records were included for data extraction. The pooled global mucopolysaccharidosis III birth prevalence was 0.76 cases (95% CI: 0.57-0.96) per 100,000 live births. The pooled global birth prevalence of mucopolysaccharidosis III subtypes (A, B, and C) was 0.52 cases (95% CI: 0.33-0.72), 0.21 cases (95% CI: 0.12-0.30) and 0.01 cases (95% CI: 0.005-0.02) per 100,000 live births, respectively. CONCLUSIONS: Based on the global population size (7.8 billion) and the life span of patients, there would be 12-19 thousand mucopolysaccharidosis III patients worldwide. To our knowledge, this is the first comprehensive systematic review that presented quantitative data fundamental for evidence-based public health decision-making by evaluating global epidemiology of mucopolysaccharidosis III.


Assuntos
Saúde Global/estatística & dados numéricos , Mucopolissacaridose III/epidemiologia , Humanos , Recém-Nascido , Mucopolissacaridose III/diagnóstico , Triagem Neonatal , Prevalência
12.
Pediatr Endocrinol Diabetes Metab ; 27(3): 201-208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34743503

RESUMO

Mucopolysaccharidoses (MPSs) are known as rare genetic diseases which are caused by mutation in the enzyme heparin sulfate, which normally leads to degradation and accumulation of glycosaminoglycans in the cells. There are 11 types of MPSs, whereby neuropathy may occur in seven of them (MPS I, II, IIIA, IIIB, IIIC, IIID and VII). Accumulation of degraded heparin sulfate in lysosomes causes cellular dysfunction and malfunction of several organs. However, the exact molecular mechanism how protein degradation and storage leads to cellular dysfunction is not understood, yet. Nonetheless, several genetic and biochemical methods for diagnosis of MPSs are available nowadays. Here we provide an overview on known molecular basis of MPS in general, including enzyme defects and symptoms of MPS; however, the main focus is on MPS type III together with potential and perspective therapy-options.


Assuntos
Mucopolissacaridoses , Mucopolissacaridose III , Mucopolissacaridose I , Glicosaminoglicanos , Humanos , Mucopolissacaridoses/tratamento farmacológico , Mucopolissacaridoses/genética , Mutação
13.
J Clin Med ; 9(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012694

RESUMO

The mucopolysaccharidoses (MPS) are a group of diseases caused by the lysosomal accumulation of glycosaminoglycans, due to genetic deficiencies of enzymes involved in their degradation. MPS III or Sanfilippo disease, in particular, is characterized by early-onset severe, progressive neurodegeneration but mild somatic involvement, with patients losing milestones and previously acquired skills as the disease progresses. Despite being the focus of extensive research over the past years, the links between accumulation of the primary molecule, the glycosaminoglycan heparan sulfate, and the neurodegeneration seen in patients have yet to be fully elucidated. This review summarizes the current knowledge on the molecular bases of neurological decline in Sanfilippo disease. It emerges that this deterioration results from the dysregulation of multiple cellular pathways, leading to neuroinflammation, oxidative stress, impaired autophagy and defects in cellular signaling. However, many important questions about the neuropathological mechanisms of the disease remain unanswered, highlighting the need for further research in this area.

14.
Cureus ; 12(6): e8487, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32656005

RESUMO

Mucopolysaccharidoses (MPS) are rare genetic lysosomal storage disorders caused by a deficiency of enzymes that catalyze the breakdown of glycosaminoglycans. MPS-III, also known as Sanfilippo syndrome, is caused by a deficiency of one of four enzymes that catalyze heparan sulfate proteoglycan degradation. MPS-IIIA results from a deficiency of heparan sulfatase. The natural history of MPS-IIIA is marked by progressive neurodegeneration. A nine-year-old boy with developmental delay presented with progressive three-month functional decline culminating in emergency department presentation for lethargy and immobility. Laboratory workup revealed hepatic and renal failure, coagulopathy, pancytopenia, hypernatremia, and uremia requiring emergent dialysis. He developed hyperkalemia during the second month of hospitalization, the workup of which led to a diagnosis of hyperreninemic hypoaldosteronism with normal cortisol. Blood chemistry consistent with renal hypoperfusion prompted exploration of adrenal ischemia, specifically affecting the zona glomerulosa and sparing the zona fasciculata, to explain low aldosterone with normal cortisol. Heparan sulfate (HS) normally acts as a storage site for basic fibroblast growth factor (bFGF), a paracrine stimulator of aldosterone, but accumulates in MPS-IIIA due to deficiency of heparan sulfatase. If bFGF is sequestered in HS deposits in MPS-III, then paracrine signaling is reduced, accounting for the state of hypoaldosteronism. To our knowledge, this is the first reported case of hyperreninemic hypoaldosteronism caused by an MPS disorder.

15.
J Pediatr Endocrinol Metab ; 33(6): 793-802, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32447333

RESUMO

Objectives Sanfilippo syndrome (Mucopolysaccharidosis III, MPS III) is a rare autosomal recessive hereditary disease, which is caused by lysosomal enzyme deficiency. This study was operated to investigate clinical and molecular characteristics of patients with MPS III, which will improve the diagnosis and treatment of MPS III. Method Thirty four patients with MPS III were assessed using clinical evaluation, questionnaire, and scoring system. Results Among the 34 patients, 14 had MPS IIIA, 19 had MPS III B, and one had MPS III C. Speech delay (100%) and intellectual disability (100%) were the most prevalent clinical manifestations in this cohort, followed by hyperactivity (94.12%), hirsutism (91.18%), enlarged head circumference (73.52%), repeated diarrhea (67.64%), sparse teeth (67.64%), and Mongolian spots (64.71%). There were two clinical manifestations that were significantly different between IIIA and IIIB: Hepatosplenomegaly and serrated teeth. The most common initial symptoms at diagnosis were speech delay (52.94%), hyperactivity (35.29%), and mental retardation (29.41%). Genetic analysis of 25 patients was conducted, which identified 12 novel mutations. Conclusion When language retardation, mental retardation, and rough facial features occurred, MPS III should be considered. At same time, more examination should be operated, such as examination of changes in cranial magnetic resonance imaging of cerebral cortex atrophy. Hepatosplenomegaly and serrated teeth could be used clinically to preliminarily distinguish IIIA from IIIB.


Assuntos
Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/genética , Adolescente , Criança , China/epidemiologia , Estudos de Coortes , Análise Mutacional de DNA , Técnicas de Diagnóstico Endócrino , Progressão da Doença , Feminino , Humanos , Masculino , Técnicas de Diagnóstico Molecular , Mucopolissacaridose III/epidemiologia , Mucopolissacaridose III/patologia , Mutação , Exame Físico , Prevalência , Prognóstico , Inquéritos e Questionários
16.
Eur J Pharmacol ; 888: 173562, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32949598

RESUMO

Mucopolysaccharidosis III (Sanfilippo syndrome, MPS III) is caused by lysosomal enzyme deficiency, which is a rare autosomal recessive hereditary disease. For now, there is no approved treatment for MPS III despite lots of efforts providing new vision of its molecular basis, as well as governments providing regulatory and economic incentives to stimulate the development of specific therapies. Those efforts and incentives attract academic institutions and industry to provide potential therapies for MPS III, including enzyme replacement therapies, substrate reduction therapies, gene and cell therapies, and so on, which were discussed in this paper.


Assuntos
Terapia de Reposição de Enzimas/tendências , Terapia Genética/tendências , Transplante de Células-Tronco Hematopoéticas/tendências , Mucopolissacaridose III/enzimologia , Mucopolissacaridose III/terapia , Animais , Ensaios Clínicos como Assunto/métodos , Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lisossomos/enzimologia , Lisossomos/genética , Mucopolissacaridose III/genética , Resultado do Tratamento
17.
J Clin Med ; 9(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121121

RESUMO

Sanfilippo syndrome type C (mucopolysaccharidosis IIIC) is an early-onset neurodegenerative lysosomal storage disorder, which is currently untreatable. The vast majority of studies focusing on disease mechanisms of Sanfilippo syndrome were performed on non-neural cells or mouse models, which present obvious limitations. Induced pluripotent stem cells (iPSCs) are an efficient way to model human diseases in vitro. Recently developed transcription factor-based differentiation protocols allow fast and efficient conversion of iPSCs into the cell type of interest. By applying these protocols, we have generated new neuronal and astrocytic models of Sanfilippo syndrome using our previously established disease iPSC lines. Moreover, our neuronal model exhibits disease-specific molecular phenotypes, such as increase in lysosomes and heparan sulfate. Lastly, we tested an experimental, siRNA-based treatment previously shown to be successful in patients' fibroblasts and demonstrated its lack of efficacy in neurons. Our findings highlight the need to use relevant human cellular models to test therapeutic interventions and shows the applicability of our neuronal and astrocytic models of Sanfilippo syndrome for future studies on disease mechanisms and drug development.

18.
Orphanet J Rare Dis ; 14(1): 140, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196149

RESUMO

BACKGROUND: Mucopolysaccharidosis type III (MPS III), or Sanfilippo syndrome, is caused by a deficiency in one of the four enzymes involved in the lysosomal degradation of heparan sulfate. Cardiac abnormalities have been observed in patients with all types of MPS except MPS IX, however few studies have focused on cardiac alterations in patients with MPS III. METHODS: We reviewed medical records, echocardiograms, and electrocardiograms of 26 Taiwanese patients with MPS III (five with IIIA, 20 with IIIB, and one with IIIC; 14 males and 12 females; median age, 7.4 years; age range, 1.8-26.5 years). The relationships between age and each echocardiographic parameter were analyzed. RESULTS: Echocardiographic examinations (n = 26) revealed that 10 patients (38%) had valvular heart disease. Four (15%) and eight (31%) patients had valvular stenosis or regurgitation, respectively. The most prevalent cardiac valve abnormality was mitral regurgitation (31%), followed by aortic regurgitation (19%). However, most of the cases of valvular heart disease were mild. Three (12%), five (19%) and five (19%) patients had mitral valve prolapse, a thickened interventricular septum, and asymmetric septal hypertrophy, respectively. The severity of aortic regurgitation and the existence of valvular heart disease, aortic valve abnormalities and valvular stenosis were all positively correlated with increasing age (p < 0.05). Z scores > 2 were identified in 0, 38, 8, and 27% of left ventricular mass index, interventricular septal end-diastolic dimension, left ventricular posterior wall end-diastolic dimension, and aortic diameter, respectively. Electrocardiograms in 11 patients revealed the presence of sinus arrhythmia (n = 3), sinus bradycardia (n = 2), and sinus tachycardia (n = 1). Six patients with MPS IIIB had follow-up echocardiographic data at 1.9-18.1 years to compare with the baseline data, which showed some patients had increased thickness of the interventricular septum, as well as more patients had valvular abnormalities at follow-up. CONCLUSIONS: Cardiac involvement in MPS III is less common and milder compared with other types of MPS. The existence of valvular heart disease, aortic valve abnormalities and valvular stenosis in the patients worsened with increasing age, reinforcing the concept of the progressive nature of this disease.


Assuntos
Doenças das Valvas Cardíacas/metabolismo , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Ecocardiografia , Eletrocardiografia , Feminino , Coração/fisiopatologia , Doenças das Valvas Cardíacas/diagnóstico por imagem , Doenças das Valvas Cardíacas/fisiopatologia , Humanos , Lactente , Masculino , Mucopolissacaridose III/diagnóstico por imagem , Adulto Jovem
19.
World J Pediatr ; 13(4): 374-380, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28101780

RESUMO

BACKGROUND: Mucopolysaccharidoses type III (MPS III) are a group of autosomal recessive lysosomal storage diseases, caused by mutations in genes that code for enzymes involved in the lysosomal degradation of heparan sulphate: heparan sulfate sulfamidase (SGSH), α-Nacetylglucosaminidase (NAGLU), heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT), and N-acetylglucosamine-6-sulfatase (GNS). METHODS: In this study, we have performed the molecular analysis of the SGSH, NAGLU and HGSNAT genes in 10 patients from 6 different MPS III Tunisian families. RESULTS: In the SGSH gene, two mutations were identified: one novel (p.D477N) and one already described (p.Q365X). In the NAGLU gene, two novel mutations were discovered (p.L550P and p.E153X). For the novel missense mutations found in these two genes we performed an in silico structural analysis and the results were consistent with the clinical course of the patients harboring those mutations. Finally, in HGSNAT gene, we found the splicesite mutation c.234+1G>A that had already been reported as relatively frequent in MPS IIIC patients from countries surrounding the basin of the Mediterranean sea. Its presence in two Tunisian MPS IIIC families points to the hypothesis of its peri Mediterranean origin. With the exception of the c.234+1G>A mutation, that was identified in two unrelated MPS IIIC families, the other identified mutations were family-specific and were always found in homozygosity in the patients studied, thus reflecting the existence of consanguinity in MPS III Tunisian families. CONCLUSIONS: Three novel mutations are reported here, further contributing to the knowledge of the molecular basis of these diseases. The results of this study will allow carrier detection in affected families and prenatal molecular diagnosis, leading to an improvement in genetic counseling.


Assuntos
Análise Mutacional de DNA , Predisposição Genética para Doença/epidemiologia , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/genética , Mutação de Sentido Incorreto , Acetilglucosaminidase/genética , Feminino , Humanos , Hidrolases/genética , Recém-Nascido , Masculino , Linhagem , Medição de Risco , Estudos de Amostragem , Tunísia
20.
Rev. cientif. cienc. med ; 25(1): 42-48, sept. 2022.
Artigo em Espanhol | LILACS | ID: biblio-1399908

RESUMO

Mucopolisacaridosis de tipo III es una enfermedad rara, con una incidencia de 1 en 70 000 nacidos vivos, es la más frecuente dentro del grupo de Mucopolisacaridosis y se produce por un defecto en la vía del metabolismo del heparan sulfato. Se caracteriza por afectar a mayor profundidad el sistema nervioso central, el paciente tiene un desarrollo normal hasta aproximadamente los 1 a 3 años de edad y posteriormente empieza con deterioro progresivo, cursa con retraso del desarrollo, alteración del comportamiento y trastorno del sueño agregándose déficit motor y cuadros infecciosos, culminando en un estado de postración. La esperanza de vida oscila entre los 20 a 30 años, aunque depende del fenotipo y la principal causa de muerte fue la neumonía. El diagnóstico definitivo se consigue mediante pruebas genómicas y ensayo enzimático. No cuenta con tratamiento curativo, únicamente con paliación y soporte ante las complicaciones que va desarrollando


Mucopolysaccharidosis III is a rare disease, with an incidence of 1 in 70 000 live births, it is the most frequent within the group of Mucopolysaccharidosis and is caused by a defect in the heparan sulfate metabolism pathway. It is characterized by affecting the central nervous system in greater depth, the patient has a normal development until approximately 1 to 3 years of age and later begins with progressive deterioration, courses with developmental delay, behavioral alteration and sleep disorder, adding motor deficits and infectious pictures, culminating in a state of prostration. Life expectancy ranges from 20 to 30 years, although it depends on the phenotype, and the main cause of death is pneumonia. Definitive diagnosis is achieved by genomic tests and enzymatic assay. It does not have curative treatment, only palliation and support in the face of the complications that it develops.


Assuntos
Doenças Raras , Metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa