Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioorg Med Chem ; 99: 117606, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262304

RESUMO

Multidrug and toxin extrusion (MATE) inhibitors improve the antimicrobial susceptibility of drug-resistant bacteria by preventing the efflux of administered antibiotics. In this study, we optimized the chemical structure of a previously identified bacterial-selective MATE inhibitor 1 (EC50 > 30 µM) to improve its activity further. Compound 1 was divided into three fragments (aromatic part, linker part, and guanidine part), and each part was individually optimized. Compound 31 (EC50 = 1.8 µM), a novel pentafluorosulfanyl-containing molecule synthesized following optimized parts, showed antimicrobial activity against MATE-expressing strains at concentrations lower than conventional inhibitor 1 when co-administrated with norfloxacin. Furthermore, 31 was not cytotoxic at effective concentrations. This suggests that compound 31 can be a promising candidate for combating bacterial infections, particularly those resistant to conventional antibiotics by MATE expression.


Assuntos
Antibacterianos , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacologia , Norfloxacino/farmacologia , Transporte Biológico , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo
2.
Genetica ; 151(3): 241-249, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37014491

RESUMO

Multidrug and Toxic Compound Extrusion (MATE) proteins are essential transporters that extrude metabolites and participate in plant development and cellular detoxification. MATE transporters, which play crucial roles in the survival of mangrove plants under highly challenged environments, by specialized salt extrusion mechanisms, are mined from their genomes and reported here for the first time. Through homology search and domain prediction in the genome assemblies of Avicennia marina, Bruguiera sexangula, Ceriops zippeliana, Kandelia obovata, Rhizophora apiculata and Ceriops tagal, 74, 68, 66, 66, 63 and 64 MATE proteins, respectively were identified. The phylogenetic analysis divided the identified proteins into five major clusters and following the clustering pattern of the functionally characterized proteins, functions of the transporters in each cluster were predicted. Amino acid sequences, exon-intron structure, motif details and subcellular localization pattern for all the 401 proteins are described. The custom designed repeat masking libraries generated for each of these genomes, which will be of extensive use for the researchers worldwide, are also provided in this paper. This is the first study on the MATE genes in mangroves and the results provide comprehensive information on the molecular mechanisms enabling the survival of mangroves under hostile conditions.


Assuntos
Avicennia , Filogenia , Avicennia/genética , Avicennia/metabolismo , Sequência de Aminoácidos , Éxons , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(23): 13012-13022, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444490

RESUMO

Metastatic colorectal cancer (mCRC) patients have poor overall survival despite using irinotecan- or oxaliplatin-based chemotherapy combined with anti-EGFR (epidermal growth factor receptor) drugs, especially those with the oncogene mutation of KRAS Metformin has been reported as a potentially novel antitumor agent in many experiments, but its therapeutic activity is discrepant and controversial so far. Inspiringly, the median survival time for KRAS-mutation mCRC patients with diabetes on metformin is 37.8 mo longer than those treated with other hypoglycemic drugs in combination with standard systemic therapy. In contrast, metformin could not improve the survival of mCRC patients with wild-type KRAS Interestingly, metformin is preferentially accumulated in KRAS-mutation mCRC cells, but not wild-type ones, in both primary cell cultures and patient-derived xenografts, which is in agreement with its tremendous effect in KRAS-mutation mCRC. Mechanistically, the mutated KRAS oncoprotein hypermethylates and silences the expression of multidrug and toxic compound extrusion 1 (MATE1), a specific pump that expels metformin from the tumor cells by up-regulating DNA methyltransferase 1 (DNMT1). Our findings provide evidence that KRAS-mutation mCRC patients benefit from metformin treatment and targeting MATE1 may provide a strategy to improve the anticancer response of metformin.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Metformina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metformina/uso terapêutico , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Bioorg Med Chem ; 74: 117042, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215813

RESUMO

Drug efflux pump inhibitors for the multidrug resistance protein HmrM, a member of the multidrug and toxin extrusion (MATE) family of transporters, were investigated to increase the drug susceptibility of multidrug-resistant bacteria and restore the antimicrobial effect of fluoroquinolones, such as norfloxacin. The lead inhibitor, prepared from the known hMATE1 inhibitor cimetidine, reduced the norfloxacin resistance of HmrM-expressing strains by 92% at non-cytotoxic concentrations in human cells, and multidrug resistance protein MdtK-expressing strains by 86%. These results indicated that the inhibitor is a lead candidate for the development of drugs with a novel mechanism of action against infections caused by multidrug-resistant bacteria that act synergistically with antimicrobial drugs.


Assuntos
Anti-Infecciosos , Norfloxacino , Humanos , Norfloxacino/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias/metabolismo
5.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269965

RESUMO

In plants, the translocation of molecules, such as ions, metabolites, and hormones, between different subcellular compartments or different cells is achieved by transmembrane transporters, which play important roles in growth, development, and adaptation to the environment. To facilitate transport in a specific direction, active transporters that can translocate their substrates against the concentration gradient are needed. Examples of major active transporters in plants include ATP-binding cassette (ABC) transporters, multidrug and toxic compound extrusion (MATE) transporters, monosaccharide transporters (MSTs), sucrose transporters (SUTs), and amino acid transporters. Transport via ABC transporters is driven by ATP. The electrochemical gradient across the membrane energizes these secondary transporters. The pH in each cell and subcellular compartment is tightly regulated and yet highly dynamic, especially when under stress. Here, the effects of cellular and subcellular pH on the activities of ABC transporters, MATE transporters, MSTs, SUTs, and amino acid transporters will be discussed to enhance our understanding of their mechanics. The relation of the altered transporter activities to various biological processes of plants will also be addressed. Although most molecular transport research has focused on the substrate, the role of protons, the tiny counterparts of the substrate, should also not be ignored.


Assuntos
Plantas , Prótons , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Plantas/metabolismo
6.
Biol Pharm Bull ; 44(4): 501-506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790101

RESUMO

Multidrug and toxic compound extrusion (MATE) transporters are primarily expressed in the kidneys and liver, where they contribute to the excretion of organic cations. Our previous study suggested that pig MATE2 (class III) participates in testosterone secretion from Leydig cells. In humans, it is unclear which MATE class is involved in testosterone transport. In this study, we aimed to clarify whether human MATE1 (hMATE1) or human MATE2K (hMATE2K) mediates testosterone transport. To confirm that testosterone inhibits transporter-mediated tetraethylammonium (TEA) uptake, a cis-inhibition assay was performed using cells that stably expressed hMATE1 or hMATE2K. Docking simulations were performed to characterize differences in the binding of hMATE1 and hMATE2K to testosterone. Transport experiments in LLC-PK1 cells that stably expressed hMATE1 were used to test whether hMATE1 mediates testosterone transport. We detected differences between the amino acid sequences of the substrate-binding sites of hMATE1 and hMATE2K that could potentially be involved in testosterone binding. Testosterone and estradiol inhibited TEA uptake mediated by hMATE1 but not that mediated by hMATE2K. Transport experiments in LLC-PK1 cells indicated that testosterone might be transported via hMATE1. This study suggested that hMATE1, but not hMATE2K, is involved in human testosterone transport.


Assuntos
Proteínas de Transporte de Cátions Orgânicos/metabolismo , Testosterona/farmacologia , Animais , Cimetidina/farmacologia , Estradiol/farmacologia , Células HEK293 , Humanos , Células LLC-PK1 , Modelos Moleculares , Proteínas de Transporte de Cátions Orgânicos/química , Suínos , Tetraetilamônio/metabolismo
7.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769445

RESUMO

Soybeans are nutritionally important as human food and animal feed. Apart from the macronutrients such as proteins and oils, soybeans are also high in health-beneficial secondary metabolites and are uniquely enriched in isoflavones among food crops. Isoflavone biosynthesis has been relatively well characterized, but the mechanism of their transportation in soybean cells is largely unknown. Using the yeast model, we showed that GmMATE1 and GmMATE2 promoted the accumulation of isoflavones, mainly in the aglycone forms. Using the tobacco BrightYellow-2 (BY-2) cell model, GmMATE1 and GmMATE2 were found to be localized in the vacuolar membrane. Such subcellular localization supports the notion that GmMATE1 and GmMATE2 function by compartmentalizing isoflavones in the vacuole. Expression analyses showed that GmMATE1 was mainly expressed in the developing soybean pod. Soybean mutants defective in GmMATE1 had significantly reduced total seed isoflavone contents, whereas the overexpression of GmMATE1 in transgenic soybean promoted the accumulation of seed isoflavones. Our results showed that GmMATE1, and possibly also GmMATE2, are bona fide isoflavone transporters that promote the accumulation of isoflavones in soybean seeds.


Assuntos
Glycine max/metabolismo , Isoflavonas/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Transporte Biológico , Células Cultivadas , Clonagem Molecular/métodos , Plantas Geneticamente Modificadas , Sementes/metabolismo , Glycine max/química
8.
Plant Mol Biol ; 98(1-2): 101-120, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30121733

RESUMO

KEY MESSAGE: The OsMATE2 upon constitutive expression in tobacco decreases root-to-shoot As transfer coefficient and its endosperm-specific silencing in rice reduces grain As content, broadening the role of MATE proteins in planta. Rice (Oryza sativa) is capable of accumulating significant amount of arsenic (As) in grains, causing serious health hazard for rice consuming population. The multidrug and toxic compound extrusion (MATE) protein family comprises a large group of secondary transporters present universally in living organisms, and transports metabolites and/or xenobiotic compounds. OsMATE2, one of the MATE family members of rice was found to be transcriptionally up-regulated (sixfolds) in the developing seeds during As stress, and showed positive correlation with the As content in mature grains. Therefore, to understand the role of OsMATE2 in As accumulation, constitutive expression in tobacco was carried out. Transgenic tobacco plants exhibited decreased root-to-shoot As transfer coefficient (33.3-39.6%) along with augmented As sensitivity by increasing oxidative stress compared to untransformed control plants, indicating the involvement of OsMATE2 in As accumulation. Consequently, RNAi strategy was utilized for endosperm-specific silencing of endogenous OsMATE2 to mitigate As accumulation in rice grains. Transgenic rice lines demonstrated significant reduction of both OsMATE2 transcript (~ 38-87%) and grain As content (36.9-47.8%) compared to the control plants without undesirable effects on agronomical traits. Together, the present findings indicate the connection of OsMATE2 in As accumulation, and could expand the functional role of MATE proteins in planta.


Assuntos
Arsênio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Arsênio/toxicidade , Morte Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Oryza/genética , Estresse Oxidativo/efeitos dos fármacos , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Nicotiana/genética , Transformação Genética
9.
Mol Biol Res Commun ; 13(3): 155-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915458

RESUMO

Multidrug and Toxic Compound Extrusion (MATE) proteins are responsible for the transport of a wide range of metabolites out of plant cells. This helps to protect the cells from toxins and other harmful compounds. MATE proteins also play a role in plant development, by regulating the transport of hormones and other signalling molecules. They transport a wide variety of substances, including organic acids, plant hormones, flavonoids, alkaloids, terpenes and other secondary metabolites. MATE proteins are thought to play similar roles in Coriander, in addition to stress responses. The MATE genes in the coriander genome have been identified and characterized. Detailed genome homology search and domain identification analysis have identified 91 MATE proteins in the genome assembly of coriander. A phylogenetic analysis of the identified proteins divided them into five major clades. The functions of the transporters in each cluster were predicted based on the clustering pattern of the functionally characterized proteins. The amino acid sequences, exon-intron structures and motif details of all the 91 proteins are identified and described. This is the first work on the MATE transporters in coriander and the results deliver clues for the molecular mechanisms behind the stress responses and secondary metabolite transport in coriander.

10.
Front Plant Sci ; 13: 1046597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438155

RESUMO

In common bean (Phaseolus vulgaris L.), postharvest seed coat darkening is an undesirable trait that affects crop value. The increased accumulation of proanthocyanidins (PAs) in the seed coat results in darker seeds in many market classes of colored beans after harvest. The precursors of PAs are synthesized in the cytoplasm, and subsequently get glycosylated and then transported to the vacuoles where polymerization occurs. Thus, vacuolar transporters play an important role in the accumulation of PAs. Here, we report that common bean genome contains 59 multidrug and toxic compound extrusion genes (PvMATEs). Phylogenetic analysis of putative PvMATEs with functionally characterized MATEs from other plant species categorized them into substrate-specific clades. Our data demonstrate that a vacuolar transporter PvMATE8 is expressed at a higher level in the pinto bean cultivar CDC Pintium (regular darkening) compared to 1533-15 (slow darkening). PvMATE8 localizes in the vacuolar membrane and rescues the PA deficient (tt12) mutant phenotype in Arabidopsis thaliana. Analysis of PA monomers in transgenic seeds together with wild-type and mutants suggests a possible feedback regulation of PA biosynthesis and accumulation. Identification of PvMATE8 will help better understand the mechanism of PA accumulation in common bean.

11.
Genes (Basel) ; 13(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35205273

RESUMO

Natural antisense transcripts (NATs) have been generally reported as negative regulators of their sense counterparts. Multidrug and toxic compound extrusion (MATE) proteins mediate the transport of various substrates. Although MATEs have been identified genome-wide in various plant species, their transcript regulators remain unclear. Here, using the publicly available strand-specific RNA-seq datasets of Glycine soja (wild soybean) which have the data from various tissues including developing pods, developing seeds, embryos, cotyledons and hypocotyls, roots, apical buds, stems, and flowers, we identified 35 antisense transcripts of MATEs from 28 gene loci after transcriptome assembly. Spearman correlation coefficients suggested the positive expression correlations of eight MATE antisense and sense transcript pairs. By aligning the identified transcripts with the reference genome of Glycine max (cultivated soybean), the MATE antisense and sense transcript pairs were identified. Using soybean C08 (Glycine max), in developing pods and seeds, the positive correlations between MATE antisense and sense transcript pairs were shown by RT-qPCR. These findings suggest that soybean antisense transcripts are not necessarily negative transcription regulators of their sense counterparts. This study enhances the existing knowledge on the transcription regulation of MATE transporters by uncovering the previously unknown MATE antisense transcripts and their potential synergetic effects on sense transcripts.


Assuntos
Glycine max , RNA Antissenso , Regulação da Expressão Gênica , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA-Seq , Glycine max/genética , Glycine max/metabolismo , Transcriptoma/genética
12.
Membranes (Basel) ; 12(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35207127

RESUMO

Multidrug and toxic compound extrusion (MATE) transporters in eukaryotes have been characterized to be antiporters that mediate the transport of substrates in exchange for protons. In plants, alkaloids, phytohormones, ion chelators, and flavonoids have been reported to be the substrates of MATE transporters. Structural analyses have been conducted to dissect the functional significance of various motifs of MATE proteins. However, an understanding of the functions of the N- and C-termini has been inadequate. Here, by performing phylogenetic analyses and protein sequence alignment of 14 representative plant species, we identified a distinctive N-terminal poly-glutamate motif among a cluster of MATE proteins in soybean. Amongst them, GmMATE4 has the most consecutive glutamate residues at the N-terminus. A subcellular localization study showed that GmMATE4 was localized at the vacuolar membrane-like structure. Protein charge prediction showed that the mutation of the glutamate residues to alanine would reduce the negative charge at the N-terminus. Using yeast as the model, we showed that GmMATE4 mediated the transport of daidzein, genistein, glycitein, and glycitin. In addition, the glutamate-to-alanine mutation reduced the isoflavone transport capacity of GmMATE4. Altogether, we demonstrated GmMATE4 as an isoflavone transporter and the functional significance of the N-terminal poly-glutamate motif of GmMATE4 for regulating the isoflavone transport activity.

13.
Front Plant Sci ; 13: 909045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991422

RESUMO

Aluminum (Al) toxicity poses a significant challenge for the yield improvement of chickpea, which is an economically important legume crop with high nutritional value in human diets. The genetic basis of Al-tolerance in chickpea remains unclear. Here, we assessed the Al-tolerance of 8 wild Cicer and one cultivated chickpea (PBA Pistol) accessions by measuring the root elongation in solution culture under control (0 µM Al3+) and Al treatments (15, 30 µM Al3+). Compared to PBA Pistol, the wild Cicer accessions displayed both tolerant and sensitive phenotypes, supporting wild Cicer as a potential genetic pool for Al-tolerance improvement. To identify potential genes related to Al-tolerance in chickpea, genome-wide screening of multidrug and toxic compound extrusion (MATE) encoding genes was performed. Fifty-six MATE genes were identified in total, which can be divided into 4 major phylogenetic groups. Four chickpea MATE genes (CaMATE1-4) were clustered with the previously characterized citrate transporters MtMATE66 and MtMATE69 in Medicago truncatula. Transcriptome data showed that CaMATE1-4 have diverse expression profiles, with CaMATE2 being root-specific. qRT-PCR analyses confirmed that CaMATE2 and CaMATE4 were highly expressed in root tips and were up-regulated upon Al treatment in all chickpea lines. Further measurement of carboxylic acids showed that malonic acid, instead of malate or citrate, is the major extruded acid by Cicer spp. root. Protein structural modeling analyses revealed that CaMATE2 has a divergent substrate-binding cavity from Arabidopsis AtFRD3, which may explain the different acid-secretion profile for chickpea. Pangenome survey showed that CaMATE1-4 have much higher genetic diversity in wild Cicer than that in cultivated chickpea. This first identification of CaMATE2 and CaMATE4 responsive to Al3+ treatment in Cicer paves the way for future functional characterization of MATE genes in Cicer spp., and to facilitate future design of gene-specific markers for Al-tolerant line selection in chickpea breeding programs.

14.
Mol Plant ; 14(12): 2115-2125, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34509639

RESUMO

In modern agriculture, frequent application of herbicides may induce the evolution of resistance in plants, but the mechanisms underlying herbicide resistance remain largely unexplored. Here, we report the characterization of rtp1 (resistant to paraquat 1), an Arabidopsis mutant showing strong resistance to the widely used herbicides paraquat and diquat. The rtp1 mutant is semi-dominant and carries a point mutation in the gene encoding the multidrug and toxic compound extrusion family protein DTX6, leading to the change of glycine to glutamic acid at residue 311 (G311E). The wild-type DTX6 with glycine 311 conferred weak paraquat and diquat resistance when overexpressed, while mutation of glycine 311 to a negatively charged amino acid (G311E or G311D) markedly increased the paraquat and diquat resistance of plants, whereas mutation to a positively charged amino acid (G311R or G311K) compromised the resistance, suggesting that the charge property of residue 311 of DTX6 is critical for the paraquat and diquat resistance of Arabidopsis plants. DTX6 is localized in the endomembrane trafficking system and may undergo the endosomal sorting to localize to the vacuole and plasma membrane. Treatment with the V-ATPase inhibitor ConA reduced the paraquat resistance of the rtp1 mutant. Paraquat release and uptake assays demonstrated that DTX6 is involved in both exocytosis and vacuolar sequestration of paraquat. DTX6 and DTX5 show functional redundancy as the dtx5 dtx6 double mutant but not the dtx6 single mutant plants were more sensitive to paraquat and diquat than the wild-type plants. Collectively, our work reveals a potential mechanism for the evolution of herbicide resistance in weeds and provides a promising gene for the manipulation of plant herbicide resistance.


Assuntos
Aminoácidos Acídicos/metabolismo , Arabidopsis/genética , Di-Hidropiridinas/toxicidade , Resistência a Herbicidas , Mutação/genética , Paraquat/toxicidade , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Daninhas/efeitos dos fármacos
15.
Biotechnol Rep (Amst) ; 26: e00390, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32435604

RESUMO

MATE genes play an important role in cellular detoxification processes. Nine MATE genes were identified by a transcriptomics study previously. Candidate gene prioritization was done where 29 new genes were found to interact with 09 guide genes. Therefore, a total of 38 genes were analyzed here to predict a concise model by gene prioritization study. Those genes were analyzed further in Rice Interactions Viewer programme, and based on high ICV, 10 new genes were found to interact among themselves at protein level. Surprisingly, only 05 genes were found to play a key role at protein level. These 15 genes were analyzed for their interaction with soil available inorganic arsenic species. Maximum expression levels were found mostly at young inflorescence and seed development stage for those genes. So, these genes may have a direct role in arsenic sequestration from cells and thereby providing safety to the developing embryo within the seed.

16.
Methods Mol Biol ; 2083: 89-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31745915

RESUMO

Apocarotenoids are carotenoid derivatives produced by the nonenzymatic or enzymatic cleavage of carotenoids, followed by different enzymatic modifications. In plants, apocarotenoids play different roles, such as attraction of pollinators and seeds dispersal, defense against pathogens and herbivores, protection against photo-oxidative stresses, stimulation and inhibition of plant growth and regulation of biological processes in the case of phytohormones abscisic acid and strigolactones. While carotenoids are in general plastid-localized metabolites, apocarotenoids can reach different final destinations inside or outside the cell. The mechanisms of apocarotenoid transport through biological membranes have been poorly studied. This chapter describes a method to characterize transmembrane transporters involved in the transport of polar and amphipathic apocarotenoids. This protocol was successfully used to in vitro characterize the transport activity of ATP-binding cassette (ABC) and multidrug and toxic extrusion (MATE) in microsomes isolated from Saccharomyces cerevisiae expressing these plant transporters.


Assuntos
Carotenoides/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plantas/metabolismo , Proteômica , Transporte Biológico , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Eletroporação , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Microssomos/metabolismo , Plantas/genética , Proteômica/métodos , Leveduras/genética , Leveduras/metabolismo
17.
Microorganisms ; 8(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979049

RESUMO

During the last years, many evidences have been accumulating about the phytohormone indole-3-acetic acid (IAA) as a multifaceted compound in the microbial world, with IAA playing a role as a bacterial intra and intercellular signaling molecule or as an effector during pathogenic or beneficial plant-bacteria interactions. However, pretty much nothing is known on the mechanisms that bacteria use to modulate IAA homeostasis, in particular on IAA active transport systems. Here, by an approach combining in silico three-dimensional (3D) structural modeling and docking, mutagenesis, quantitative gene expression analysis, and HPLC FLD auxin quantitative detection, for the first time a bacterial multidrug and toxic compound extrusion (MATE) transporter was demonstrated to be involved in the efflux of IAA, as well as of its conjugate IAA-Lysine, in the plant pathogenic hyperplastic bacterium Pseudomonas savastanoi pv. nerii strain Psn23. Furthermore, according to the role proved to be played by Psn23 MatE in the development of plant disease, and to the presence of Psn23 MatE homologs in all the genomospecies of the P. syringae complex, this membrane transporter could likely represent a promising target for the design of novel and selective anti-infective molecules for plant disease control.

18.
J Pharm Sci ; 109(5): 1811-1818, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32027922

RESUMO

Entecavir (ETV) is a first-line antiviral drug against the hepatitis B virus. This study was designed to investigate whether ETV pharmacokinetics changes during pregnancy and the underlying mechanism. The results showed that ETV exposure in plasma was higher in pregnant rats than in nonpregnant rats, whereas the exposure after delivery was recovered to that in nonpregnant rats. Because 70% of orally dosed ETV is eliminated by kidney, the effects of estradiol (E2) and progesterone (P4), 2 important hormones during pregnancy, on ETV-related renal transporters were investigated. Our results revealed that the activities of the ETV-related renal transporters hOAT1, hOAT3, hMATE1, and hMATE2-K were clearly inhibited by E2 and P4, resulting in reduced ETV accumulation in transporter-transfected cell models. However, the cumulative urinary excretion of ETV in pregnant rats exhibited no significant difference compared to nonpregnant rats, although the endogenous creatinine clearance in pregnant rats was 1.5-fold that of nonpregnant rats. In conclusion, ETV plasma exposure is increased during pregnancy, but ETV renal excretion displays no significant alteration. This may be because, during pregnancy, increased glomerular ETV filtration compensated for the decrease in renal tubular ETV secretion that occurs by E2- and P4-mediated inhibition of related transporters.


Assuntos
Guanina , Eliminação Renal , Animais , Antivirais/metabolismo , Feminino , Guanina/análogos & derivados , Vírus da Hepatite B , Rim/metabolismo , Gravidez , Ratos
19.
J Pharm Sci ; 108(9): 3118-3123, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31034908

RESUMO

Cobicistat has been reported to increase serum creatinine clinically without affecting glomerular filtration. This was ascribed to transient inhibition of MATE1-mediated renal creatinine secretion. Interestingly, a structurally similar drug, ritonavir, has not been associated with serum creatinine increases at the pharmacoenhancer dose. The present study was aimed to investigate the translation of in vitro MATE1/2K inhibition to clinical creatinine increase (cobicistat) and lack of it (ritonavir) considering their intracellular concentrations in renal proximal tubules. Uptake studies showed ritonavir and cobicistat are unlikely substrates for OCT2. The steady-state unbound concentration in the cytosol of human renal proximal tubule epithelial cells was comparable with the extracellular unbound concentration, suggesting that the entry of these compounds is predominantly mediated by passive diffusion. Ritonavir and cobicistat are MATE1 and MATE2K inhibitors with IC50 values of 3.1 and 90 µM (ritonavir), and 4.4 and 3.2 µM (cobicistat), respectively. However, the unbound cytosolic concentrations (Cu,cytosol) of ritonavir and cobicistat in human renal proximal tubule epithelial cells, 0.065 and 0.10 µM, respectively, after incubation with the clinical maximum total plasma concentrations at pharmacoenhancer doses does not support inhibition in vivo; Cu,cytosol >30 fold lower than IC50s. These results demonstrate that MATE1/2K inhibition is unlikely the mechanism of the clinical creatinine elevations with cobicistat.


Assuntos
Cobicistat/farmacologia , Creatinina/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Ritonavir/farmacologia , Linhagem Celular , Creatinina/sangue , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Eliminação Renal/efeitos dos fármacos
20.
Biochim Biophys Acta Biomembr ; 1860(11): 2456-2464, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30028956

RESUMO

Human MATE1 (multidrug and toxin extrusion 1, hMATE1) is a H+/organic cation (OC) exchanger responsible for the final step of toxic organic cation excretion in the kidney and liver. To investigate the mechanism of transport, we have established an in vitro assay procedure that includes its expression in insect cells, solubilization with octyl glucoside, purification, and reconstitution into liposomes. The resultant proteoliposomes containing hMATE1 as the sole protein component took up radiolabeled tetraethylammonium (TEA) in a ∆pH-dependent and electroneutral fashion. Furthermore, lipid-detergent micelle containing hMATE1 showed ∆pH-dependent TEA binding similar to transport. Mutated hMATE1 with replacement E273Q completely lacked these TEA binding and transport. In the case of divalent substrates, transport was electrogenic. These observations indicate that the stoichiometry of OC/H+ exchange is independent of substrate charge. Purification and reconstitution of hMATE1 is considered to be suitable for understanding the detailed molecular mechanisms of hMATE1. The results suggest that Glu273 of hMATE1 plays essential roles in substrate binding and transport.


Assuntos
Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tetraetilamônio/metabolismo , Cátions/química , Cátions/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas de Transporte de Cátions Orgânicos/genética , Ligação Proteica , Proteolipídeos/química , Proteolipídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Tetraetilamônio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa