Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Plant Physiol ; 296: 154238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581742

RESUMO

While parasites are likely to connect to multiple host plants in nature, parasitism dynamics under multiple association conditions remain unclear and are difficult to separate from competitive effects. In this study, a five-compartment split root-box was constructed to allow a single facultative root hemiparasite, Phtheirospermum japonicum, to connect to zero, one or two Medicago sativa hosts while maintaining constant plant number and independently controlling nutrient supply. In the first experiment, we found that P. japonicum derived equal, additive benefits from attachment to a second host irrespective of parasite N status. In the second experiment, parasites were grown at four N levels in either parasitic or control conditions. Attachment caused a constant, absolute increase in parasite mass at all N levels, while host damage increased at higher parasite N levels despite an apparent decrease in host to parasite N transfer. Our findings suggest that host damage caused by P. japonicum may be strengthened by exogenous nitrogen supply to the parasite.


Assuntos
Orobanchaceae , Plantas , Nitrogênio , Simbiose , Interações Hospedeiro-Parasita , Raízes de Plantas
2.
Infect Dis Model ; 4: 28-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30997436

RESUMO

Lyme disease is the most prevalent tick-borne disease in the United States, which humans acquire from an infected tick of the genus Ixodes (primarily Ixodes scapularis). While previous studies have provided useful insights into various aspects of Lyme disease, the tick's host preference in the presence of multiple hosts has not been considered in the existing models. In this study, we develop a transmission dynamics model that includes the interactions between the primary vectors involved: blacklegged ticks (I. scapularis), white-footed mice (Peromyscus leucopus), and white-tailed deer (Odocoileus virginianus). Our model shows that the presence of multiple vectors may have a significant impact on the dynamics and spread of Lyme disease. Based on our model, we also calculate the basic reproduction number, R 0 , a threshold value that predicts whether a disease exists or dies out. Subsequent extensions of the model consider seasonality of the tick's feeding period and mobility of deer between counties. Our results suggest that a longer tick peak feeding period results in a higher infection prevalence. Moreover, while the deer mobility may not be a primary factor for short-term emergence of Lyme disease epidemics, in the long-run it can significantly contribute to local infectiousness in neighboring counties, which eventually reach the endemic steady state.

3.
Trop Med Infect Dis ; 3(2)2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-30274439

RESUMO

Leishmaniasis is a neglected tropical disease caused by the Leishmania parasite and transmitted by the Phlebotominae subfamily of sandflies, which infects humans and other mammals. Clinical manifestations of the disease include cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL) and visceral leishmaniasis (VL) with a majority (more than three-quarters) of worldwide cases being CL. There are a number of risk factors for CL, such as the presence of multiple reservoirs, the movement of individuals, inequality, and social determinants of health. However, studies related to the role of these factors in the dynamics of CL have been limited. In this work, we (i) develop and analyze a vector-borne epidemic model to study the dynamics of CL in two ecologically distinct CL-affected regions-Madrid, Spain and Tolima, Colombia; (ii) derived three different methods for the estimation of model parameters by reducing the dimension of the systems; (iii) estimated reproduction numbers for the 2010 outbreak in Madrid and the 2016 outbreak in Tolima; and (iv) compared the transmission potential of the two economically-different regions and provided different epidemiological metrics that can be derived (and used for evaluating an outbreak), once R0 is known and additional data are available. On average, Spain has reported only a few hundred CL cases annually, but in the course of the outbreak during 2009⁻2012, a much higher number of cases than expected were reported and that too in the single city of Madrid. Cases in humans were accompanied by sharp increase in infections among domestic dogs, the natural reservoir of CL. On the other hand, CL has reemerged in Colombia primarily during the last decade, because of the frequent movement of military personnel to domestic regions from forested areas, where they have increased exposure to vectors. In 2016, Tolima saw an unexpectedly high number of cases leading to two successive outbreaks. On comparing, we estimated reproduction number of the Madrid outbreak to be 3.1 (with range of 2.8⁻3.9), which was much higher than reproduction number estimates of the Tolima first outbreak 1.2 (with range of 1.1⁻1.3), and the estimate for the second outbreak in Tolima of 1.019 (with range of 1.018⁻1.021). This suggests that the epidemic outbreak in Madrid was much more severe than the Tolima outbreak, even though Madrid was economically better-off compared to Tolima. It indicates a potential relationship between urban development and increasing health disparities.

4.
Epidemics ; 10: 26-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25843378

RESUMO

Many disease systems exhibit complexities not captured by current theoretical and empirical work. In particular, systems with multiple host species and multiple infectious agents (i.e., multi-host, multi-agent systems) require novel methods to extend the wealth of knowledge acquired studying primarily single-host, single-agent systems. We outline eight challenges in multi-host, multi-agent systems that could substantively increase our knowledge of the drivers and broader ecosystem effects of infectious disease dynamics.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Ecologia , Cadeia Alimentar , Interações Hospedeiro-Patógeno , Humanos , Estágios do Ciclo de Vida , Modelos Estatísticos , Dinâmica Populacional
5.
Fungal Biol ; 118(7): 579-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25088072

RESUMO

Saprolegnia species are destructive pathogens to many aquatic organisms and are found in most parts of the world. Reports based on phylogenetic analysis suggest that Saprolegnia strains isolated from aquatic animals such as crustaceans and frogs are close to Saprolegnia strains isolated from infected fish or fish eggs and vice versa. However, it has often been assumed that host specificity occurs for each individual isolate or strain. Here we demonstrate that Saprolegnia spp. can have multiple hosts and are thus capable of infecting different aquatic organisms. Saprolegnia delica, Saprolegnia hypogyna, and 2 strains of Saprolegnia diclina were isolated from aquatic insects and amphipods while S. delica, Saprolegnia ferax, Pythium pachycaule, and a Pythium sp. were isolated from the water of a medium to fast flowing river. The ITS region of the rRNA gene was sequenced for all isolates. In challenge experiments, all four isolates from insects were found to be highly pathogenic to eggs of Atlantic salmon (Salmo salar) and embryos of the African clawed frog (Xenopus laevis). We found that Saprolegnia spp. isolated from salmon eggs were also able to successfully establish infection in nymphs of stonefly (Perla bipunctata) and embryos of X. laevis). These results suggest that Saprolegnia spp. are capable of infecting multiple hosts, which may give them an advantage during seasonal variation in their natural environments.

6.
Insects ; 5(1): 62-91, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26462580

RESUMO

Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt's pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.

7.
Fungal Biol ; 117(11-12): 752-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24295914

RESUMO

Saprolegnia species are destructive pathogens to many aquatic organisms and are found in most parts of the world. Reports based on phylogenetic analysis suggest that Saprolegnia strains isolated from aquatic animals such as crustaceans and frogs are close to Saprolegnia strains isolated from infected fish or fish eggs and vice versa. However, it has often been assumed that host specificity occurs for each individual isolate or strain. Here we demonstrate that Saprolegnia spp. can have multiple hosts and are thus capable of infecting different aquatic organisms. Saprolegnia delica, Saprolegnia hypogyna, and 2 strains of Saprolegnia diclina were isolated from aquatic insects and amphipods while S. delica, Saprolegnia ferax, Pythium pachycaule, and a Pythium sp. were isolated from the water of a medium to fast flowing river. The ITS region of the rRNA gene was sequenced for all isolates. In challenge experiments, all four isolates from insects were found to be highly pathogenic to eggs of Atlantic salmon (Salmo salar) and embryos of the African clawed frog (Xenopus laevis). We found that Saprolegnia spp. isolated from salmon eggs were also able to successfully establish infection in nymphs of stonefly (Perla bipunctata) and embryos of X. laevis). These results suggest that Saprolegnia spp. are capable of infecting multiple hosts, which may give them an advantage during seasonal variation in their natural environments.


Assuntos
Anfípodes/microbiologia , Especificidade de Hospedeiro , Insetos/microbiologia , Rios/microbiologia , Saprolegnia/classificação , Saprolegnia/fisiologia , Animais , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Saprolegnia/genética , Saprolegnia/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa