Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Control Release ; 238: 139-148, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27460683

RESUMO

Therapeutic nanoparticles (NPs) approved for clinical use in solid tumor therapy provide only modest improvements in patient survival, in part due to physiological barriers that limit delivery of the particles throughout the entire tumor. Here, we explore the thresholds for NP size and surface poly(ethylene glycol) (PEG) density for penetration within tumor tissue extracellular matrix (ECM). We found that NPs as large as 62nm, but less than 110nm in diameter, diffused rapidly within a tumor ECM preparation (Matrigel) and breast tumor xenograft slices ex vivo. Studies of PEG-density revealed that increasing PEG density enhanced NP diffusion and that PEG density below a critical value led to adhesion of NP to ECM. Non-specific binding of NPs to tumor ECM components was assessed by surface plasmon resonance (SPR), which revealed excellent correlation with the particle diffusion results. Intravital microscopy of NP spread in breast tumor tissue confirmed a significant difference in tumor tissue penetration between the 62 and 110nm PEG-coated NPs, as well as between PEG-coated and uncoated NPs. SPR assays also revealed that Abraxane, an FDA-approved non-PEGylated NP formulation used for cancer therapy, binds to tumor ECM. Our results establish limitations on the size and surface PEG density parameters required to achieve uniform and broad dispersion within tumor tissue and highlight the utility of SPR as a high throughput method to screen NPs for tumor penetration.


Assuntos
Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Neoplasias/metabolismo , Polietilenoglicóis/metabolismo , Paclitaxel Ligado a Albumina/administração & dosagem , Paclitaxel Ligado a Albumina/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Difusão , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/metabolismo , Portadores de Fármacos/análise , Combinação de Medicamentos , Feminino , Humanos , Ácido Láctico/análise , Ácido Láctico/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Nus , Nanopartículas/análise , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/análise , Ácido Poliglicólico/análise , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteoglicanas/metabolismo , Propriedades de Superfície
2.
Biomaterials ; 42: 42-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542792

RESUMO

A major limitation in the treatment of glioblastoma (GBM), the most common and deadly primary brain cancer, is delivery of therapeutics to invading tumor cells outside of the area that is safe for surgical removal. A promising way to target invading GBM cells is via drug-loaded nanoparticles that bind to fibroblast growth factor-inducible 14 (Fn14), thereby potentially improving efficacy and reducing toxicity. However, achieving broad particle distribution and nanoparticle targeting within the brain remains a significant challenge due to the adhesive extracellular matrix (ECM) and clearance mechanisms in the brain. In this work, we developed Fn14 monoclonal antibody-decorated nanoparticles that can efficiently penetrate brain tissue. We show these Fn14-targeted brain tissue penetrating nanoparticles are able to (i) selectively bind to recombinant Fn14 but not brain ECM proteins, (ii) associate with and be internalized by Fn14-positive GBM cells, and (iii) diffuse within brain tissue in a manner similar to non-targeted brain penetrating nanoparticles. In addition, when administered intracranially, Fn14-targeted nanoparticles showed improved tumor cell co-localization in mice bearing human GBM xenografts compared to non-targeted nanoparticles. Minimizing non-specific binding of targeted nanoparticles in the brain may greatly improve the access of particulate delivery systems to remote brain tumor cells and other brain targets.


Assuntos
Encéfalo/metabolismo , Glioblastoma/metabolismo , Nanopartículas/química , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Anticorpos/metabolismo , Transporte Biológico , Encéfalo/patologia , Linhagem Celular Tumoral , Embrião de Mamíferos/citologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Glioblastoma/patologia , Humanos , Cinética , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Ratos Sprague-Dawley , Receptores do Fator de Necrose Tumoral/química , Ressonância de Plasmônio de Superfície , Receptor de TWEAK , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa