Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 402, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867686

RESUMO

BACKGROUND: Pollen formation and development is important for crop fertility and is a key factor for hybrid development. Previous reports have indicated that Arabidopsis thaliana TAPETUM DETERMINANT1 (AtTPD1) and its rice (Oryza sativa) homolog, OsTPD1-like (OsTDL1A), are required for cell specialization and greatly affect pollen formation and development. Little is known about the role of the TPD1 homolog in banana pollen development. RESULTS: Here, we report the identification and characterization of TPD1 homologs in diploid banana (Musa itinerans) and examine their role in pollen development by overexpressing the closest homolog, MaTPD1A. MaTPD1A exhibits high expression in stamen and localizes in the plasma membrane. MaTPD1A-overexpressing plants produce no pollen grains and smaller and seedless fruit compared to wild-type plants. Transcriptome analysis showed that in plant hormone, starch and sucrose metabolism, and linolenic acid metabolism-related pathways were affected by overexpression of MaTPD1A, and the expression of several key regulators, such as PTC1 and MYB80, which are known to affect anther development, is affected in MaTPD1A-overexpressing lines. CONCLUSIONS: Our results indicate that MaTPD1A plays an important role in pollen formation and fruit development in diploid banana, possibly by affecting the expression of some key regulators of pollen development.


Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Musa/genética , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Frutas/genética , Genes de Plantas , Musa/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Pólen/genética
2.
BMC Plant Biol ; 18(1): 308, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30486778

RESUMO

BACKGROUND: Cold stress is one of the most severe abiotic stresses affecting the banana production. Although some miRNAs have been identified, little is known about the role of miRNAs in response to cold stress in banana, and up to date, there is no report about the role of miRNAs in the response to cold stress in the plants of the cultivated or wild bananas. RESULT: Here, a cold-resistant line wild banana (Musa itinerans) from China was used to profile the cold-responsive miRNAs by RNA-seq during cold stress. Totally, 265 known mature miRNAs and 41 novel miRNAs were obtained. Cluster analysis of differentially expressed (DE) miRNAs indicated that some miRNAs were specific for chilling or 0 °C treated responses, and most of them were reported to be cold-responsive; however, some were seldom reported to be cold-responsive in response to cold stress, e.g., miR395, miR408, miR172, suggesting that they maybe play key roles in response to cold stress. The GO and KEGG pathway enrichment analysis of DE miRNAs targets indicated that there existed diversified cold-responsive pathways, and miR172 was found likely to play a central coordinating role in response to cold stress, especially in the regulation of CK2 and the circadian rhythm. Finally, qPCR assays indicated the related targets were negatively regulated by the tested DE miRNAs during cold stress in the wild banana. CONCLUSIONS: In this study, the profiling of miRNAs by RNA-seq in response to cold stress in the plants of the wild banana (Musa itinerans) was reported for the first time. The results showed that there existed diversified cold-responsive pathways, which provided insight into the roles of miRNAs during cold stress, and would be helpful for alleviating cold stress and cold-resistant breeding in bananas.


Assuntos
MicroRNAs/genética , Musa/genética , Transdução de Sinais/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/fisiologia , Musa/metabolismo , Musa/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
3.
Mitochondrial DNA B Resour ; 4(2): 2614-2616, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33365650

RESUMO

Sanming wild banana (Musa itinerans) is a cold resistant wild banana found in Fujian province of China. In this study, we characterized its complete chloroplast genome using BGISEQ-500 sequencing. The chloroplast genome is 171,815 bp in size, containing a pair of IR regions (35,142 bp), a large single copy region (89,995 bp), and a small single copy region (11,464 bp). The whole chloroplast genome contains 111 unique genes, including 78 protein-coding genes, 29 tRNAs, and 4 rRNAs. Phylogenetic maximum likelihood analysis revealed that Sanming wild banana showed the closest relationship with Musa itinerans that collected from Yunnan Province of China.

4.
Springerplus ; 4: 829, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26753116

RESUMO

Banana cultivars may experience chilling or freezing injury in some of their cultivated regions, where wild banana can still grow very well. The clarification of the cold-resistant mechanism of wild banana is vital for cold-resistant banana breeding. In this study, the central stress integrator gene KIN10 and some cold-acclimation related genes (HOS1 and ICE1s) from the cold-resistant wild banana 'Huanxi' (Musa itinerans) were cloned and their expression patterns under different temperature treatments were analyzed. Thirteen full-length cDNA transcripts including 6 KIN10s, 1 HOS1 and 6 ICE1s were successfully cloned. Quantitative real-time PCR (qRT-PCR) results showed that all these genes had the highest expression levels at the critical temperature of banana (13 °C). Under chilling temperature (4 °C), the expression level of KIN10 reduced significantly but the expression of HOS1 was still higher than that at the optimal temperature (28 °C, control). Both KIN10 and HOS1 showed the lowest expression levels at 0 °C, the expression level of ICE1, however, was higher than control. As sucrose plays role in plant cold-acclimation and in regulation of KIN10 and HOS1 bioactivities, the sucrose contents of wild banana under different temperatures were detected. Results showed that the sucrose content increased as temperature lowered. Our result suggested that KIN10 may participate in cold stress response via regulating sucrose biosynthesis, which is helpful in regulating cold acclimation pathway in wild banana.

5.
Phytochemistry ; 103: 171-177, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24766994

RESUMO

Two diarylheptanoids, musaitinerins A and B, one heterodimeric phenylphenalenone musaitinerone and four known phenylphenalenones, identified as 4-hydroxy-2-methoxy-9-phenyl-1H-phenalen-1-one, musanolone E, hydroxyanigorufone and irenolone were isolated from the fruits of Musa itinerans Cheesm. Their structures were elucidated using spectroscopic analyses. The antimicrobial activity of these compounds was evaluated against Escherichia coli, Staphylococcus aureus and Candida albicans; the cytotoxic activity of these compounds was also evaluated against human erythromyeloblastoid leukemia (K562) and human alveolar carcinoma epithelial (A549) cell lines, respectively. Musaitinerone and musanolone E exhibited weak effects against the A549 cell line, as compared with adriamycin. However, these two compounds did not exhibit any growth inhibition against K562 cells, S. aureus, E. coli or C. albicans. The other compounds were inactive against all of the tested cell lines and microorganisms, even at concentrations as high as 50 µM.


Assuntos
Diarileptanoides/química , Diarileptanoides/farmacologia , Frutas/química , Musa/química , Fenalenos/química , Fenalenos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa