Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 242, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443921

RESUMO

BACKGROUND: Single-domain von Willebrand factor type C (SVWC) constitute a protein family predominantly identified in arthropods, characterized by a SVWC domain and involved in diverse physiological processes such as host defense, stress resistance, and nutrient metabolism. Nevertheless, the physiological mechanisms underlying these functions remain inadequately comprehended. RESULTS: A massive expansion of the SVWC gene family in Musca domestica (MdSVWC) was discovered, with a count of 35. MdSVWC1 was selected as the representative of the SVWC family for functional analysis, which led to the identification of the immune function of MdSVWC1 as a novel pattern recognition receptor. MdSVWC1 is highly expressed in both the fat body and intestines and displays acute induction upon bacterial infection. Recombinant MdSVWC1 binds to surfaces of both bacteria and yeast through the recognition of multiple pathogen-associated molecular patterns and exhibits Ca2+-dependent agglutination activity. MdSVWC1 mutant flies exhibited elevated mortality and hindered bacterial elimination following bacterial infection as a result of reduced hemocyte phagocytic capability and weakened expression of antimicrobial peptide (AMP) genes. In contrast, administration of recombinant MdSVWC1 provided protection to flies from bacterial challenges by promoting phagocytosis and AMP genes expression, thereby preventing bacterial colonization. MdSPN16, a serine protease inhibitor, was identified as a target protein of MdSVWC1. It was postulated that the interaction of MdSVWC1 with MdSPN16 would result in the activation of an extracellular proteolytic cascade, which would then initiate the Toll signaling pathway and facilitate the expression of AMP genes. CONCLUSIONS: MdSVWC1 displays activity as a soluble pattern recognition receptor that regulates cellular and humoral immunity by recognizing microbial components and facilitating host defense.


Assuntos
Moscas Domésticas , Proteínas de Insetos , Receptores de Reconhecimento de Padrão , Animais , Moscas Domésticas/genética , Moscas Domésticas/microbiologia , Moscas Domésticas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fagocitose , Imunidade Inata , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo
2.
Insect Mol Biol ; 33(2): 157-172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160324

RESUMO

Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.


Assuntos
Quitinases , Moscas Domésticas , Animais , Moscas Domésticas/genética , Moscas Domésticas/metabolismo , Quitinases/metabolismo , Larva , Proteínas Recombinantes/genética , Quitina/metabolismo
3.
BMC Infect Dis ; 24(1): 569, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849747

RESUMO

BACKGROUND: Flies are acknowledged as vectors of diseases transmitted through mechanical means and represent a significant risk to human health. The study aimed to determine the prevalence of enteropathogens carried by flies in Pudong New Area to inform strategies for preventing and controlling flies. METHODS: Samples were collected from various locations in the area using cage trapping techniques between April and November 2021, encompassing various habitats such as parks, residential areas, restaurants, and farmers' markets. The main fly species were identified using cryomicrography and taxonomic enumeration, with 20 samples per tube collected from different habitats. Twenty-five enteropathogens were screened using GI_Trial v3 TaqManTM microbial arrays. RESULTS: A total of 3,875 flies were collected from 6,400 placements, resulting in an average fly density of 0.61 flies per cage. M. domestica were the most common species at 39.85%, followed by L. sericata at 16.57% and B. peregrina at 13.14%. Out of 189 samples, 93 tested positive for enteropathogens, with nine different pathogens being found. 12.70% of samples exclusively had parasites, a higher percentage than those with only bacteria or viruses. The study found that M. domestica had fewer enteropathogens than L. sericata and B. peregrina, which primarily harbored B. hominis instead of bacteria and viruses such as E. coli, Astrovirus, and Sapovirus. During spring testing, all three fly species exhibited low rates of detecting enteropathogens. M. domestica were found in residential areas with the highest number of pathogen species, totaling six. In contrast, L. sericata and B. peregrina were identified in farmers' markets with the highest number of pathogen species, totaling six and seven, respectively. CONCLUSIONS: Flies have the potential to serve as vectors for the transmission of enteropathogens, thereby posing a substantial risk to public health.


Assuntos
Insetos Vetores , Animais , Humanos , Insetos Vetores/microbiologia , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , China/epidemiologia , Dípteros/microbiologia , Vírus/isolamento & purificação , Vírus/classificação , Vírus/genética , Muscidae/microbiologia
4.
Parasitol Res ; 123(4): 183, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622363

RESUMO

Dientamoeba fragilis and Blastocystis sp. are single-celled protozoan parasites of humans and animals. Although they are found in the intestines of healthy hosts, the pathogenicity of them is still unclear. To date, there is no report on D. fragilis and only two studies (without subtyping) on the occurrence of Blastocystis sp. in Musca domestica. In this study, fly samples were collected from livestock farms and their surroundings in the Kirsehir province (Central Anatolia Region) of Türkiye from May to August 2023. A total of 150 microscopically identified M. domestica samples were analyzed for the detection of D. fragilis and Blastocystis sp. molecularly. The overall prevalence of Blastocystis sp. and D. fragilis in M. domestica was determined to be 3.3% (5/150) and 8.0% (12/150), respectively. The SSU rRNA gene sequences of the isolates indicated genotype 1 of D. fragilis. Eleven isolates were identical and represented a single isolate (KAU-Dfrag1). BLAST analysis of KAU-Dfrag1 indicated identity with the isolates reported from humans, cattle, sheep, and budgerigars. The other isolate (KAU-Dfrag2) was polymorphic at two nucleotides from KAU-Dfrag1 and three nucleotides from known genotypes from GenBank and represented a variant of genotype 1. The Blastocystis sp. isolates were found to be identical and represent a single genotype (KAU-Blast1). BLAST analysis revealed that the KAU-Blast1 genotype belonged to the potentially zoonotic subtype 5 (ST5) and exhibited the highest genetic identity (ranging from 99.4 to 99.6%) with pigs, cattle, and sheep from different countries. Our study provides the first data on the molecular prevalence, epidemiology, and genotypic characterization of D. fragilis and Blastocystis sp. in M. domestica.


Assuntos
Infecções por Blastocystis , Blastocystis , Moscas Domésticas , Muscidae , Humanos , Animais , Ovinos , Bovinos , Suínos , Dientamoeba , Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/veterinária , Infecções por Blastocystis/parasitologia , Genótipo , Fezes/parasitologia , Prevalência , Nucleotídeos
5.
Ecotoxicol Environ Saf ; 279: 116449, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759532

RESUMO

Over the past few years, there has been growing interest in the ability of insect larvae to convert various organic side-streams containing mycotoxins into insect biomass that can be used as animal feed. Various studies have examined the effects of exposure to aflatoxin B1 (AFB1) on a variety of insect species, including the larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) and the housefly (HFL; Musca domestica L.; Diptera: Muscidae). Most of these studies demonstrated that AFB1 degradation takes place, either enzymatic and/or non-enzymatic. The possible role of feed substrate microorganisms (MOs) in this process has thus far not been investigated. The main objective of this study was therefore to investigate whether biotransformation of AFB1 occurred and whether it is caused by insect-enzymes and/or by microbial enzymes of MOs in the feed substrate. In order to investigate this, sterile and non-sterile feed substrates were spiked with AFB1 and incubated either with or without insect larvae (BSFL or HFL). The AFB1 concentration was determined via LC-MS/MS analyses and recorded over time. Approximately 50% of the initially present AFB1 was recovered in the treatment involving BSFL, which was comparable to the treatment without BSFL (60%). Similar patterns were observed for HFL. The molar mass balance of AFB1 for the sterile feed substrates with BSFL and HFL was 73% and 78%, respectively. We could not establish whether non-enzymatic degradation of AFB1 in the feed substrates occurred. The results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB1 as well as in conversion of AFB1 into aflatoxin P1 and aflatoxicol, respectively. In contrast, HFL did not seem to contribute to AFB1 degradation. The obtained results contribute to our understanding of aflatoxin metabolism by different insect species. This information is crucial for assessing the safety of feeding fly larvae with feed substrates contaminated with AFB1 with the purpose of subsequent use as animal feed.


Assuntos
Aflatoxina B1 , Ração Animal , Biotransformação , Dípteros , Moscas Domésticas , Larva , Animais , Aflatoxina B1/metabolismo , Moscas Domésticas/metabolismo , Ração Animal/análise , Espectrometria de Massas em Tandem
6.
Pestic Biochem Physiol ; 201: 105898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685256

RESUMO

The dinoflagellate Karenia brevis is a causative agent of red tides in the Gulf of Mexico and generates a potent family of structurally related brevetoxins that act via the voltage-sensitive Na+ channel. This project was undertaken to better understand the neurotoxicology and kdr cross-resistance to brevetoxins in house flies by comparing the susceptible aabys strain to ALkdr (kdr) and JPskdr (super-kdr). When injected directly into the hemocoel, larvae exhibited rigid, non-convulsive paralysis consistent with prolongation of sodium channel currents, the known mechanism of action of brevetoxins. In neurophysiological studies, the firing frequency of susceptible larval house fly central nervous system preparations showed a > 200% increase 10 min after treatment with 1 nM brevetoxin-3. This neuroexcitation is consistent with the spastic paralytic response seen after hemocoel injections. Target site mutations in the voltage-sensitive sodium channel of house flies, known to confer knockdown resistance (kdr and super-kdr) against pyrethroids, attenuated the effect of brevetoxin-3 in baseline firing frequency and toxicity assays. The rank order of sensitivity to brevetoxin-3 in both assays was aabys > ALkdr > JPskdr. At the LD50 level, resistance ratios for the knockdown resistance strains were 6.9 for the double mutant (super-kdr) and 2.3 for the single mutant (kdr). The data suggest that knockdown resistance mutations may be one mechanism by which flies survive brevetoxin-3 exposure during red tide events.


Assuntos
Moscas Domésticas , Toxinas Marinhas , Mutação , Oxocinas , Toxinas de Poliéter , Animais , Oxocinas/farmacologia , Moscas Domésticas/genética , Moscas Domésticas/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Dinoflagellida/genética , Dinoflagellida/efeitos dos fármacos
7.
Chem Biodivers ; : e202401650, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231387

RESUMO

The rising application of conventional synthetic insecticides develops resistant populations of houseflies; therefore, using new chemical agents with different modes of action is essential to overcome this problem. The mechanical grinding technique was used as a green method, to synthesize the tested compounds because it is a more facile work-up and high-yield economy, simplicity and solvent-free than conventional thermal technique. Various methods were employed to synthesize new heterocycles containing anthracene (a photosensitizing agent) from chalcone 3, a building block material such as the preparation of the pyrazole derivatives 4-7, isoxazole derivative 8, pyrimidines 9-11, and oxirane derivative 12. The novel synthesized compounds were analyzed by FT-IR, 1H-NMR, 13C-NMR spectra, and elemental analysis. Herein, the toxicity of the anthracene derivatives was assessed against Musca domestica larvae and adults in different conditions to demonstrate the effect of various inserted moieties on the efficiency of tested compounds. Furthermore, the influence of sunlight on the toxicity of anthracene was studied in dark and sunlight tests against adult houseflies. Moreover, these compounds diminished the total protein and lipids contents while significantly influencing the antioxidant enzymes activities of M. domestica adults. Structure-activity relationships demonstrated the role of each moiety on the toxicity of compounds.

8.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893470

RESUMO

With the global population on the rise, an escalating interest exists in environmentally sustainable and friendly protein sources. Insects have emerged as multifaceted resources, viewed not only as potential food items, but also as sources of traditional medicines and proteins. This study utilized response surface methodology (RSM) to ascertain the optimal extraction conditions for proteins from Musca domestica used in toad feeding, denoted as MDPs-T. The yield of MDPs-T was elevated to 18.3% ± 0.2% under these optimized conditions. Subsequently, the particle size, ζ-potentials, and structures of MDPs-T were analyzed and compared with the proteins derived from Musca domestica fed on a normal diet (MDPs-ND). This comparative analysis utilized a range of advanced techniques, involving UV spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), high-performance gel permeation chromatography (HPGPC), and scanning electron microscopy (SEM). The outcomes have revealed a marginal disparity in the physical and chemical properties between MDPs-T and MDPs-ND. Derosination led to a reduction in the particle size of the MDPs by 10.98% to 62.81%. MDPs-T exhibited a higher proportion of low-molecular-weight components relative to MDPs-ND. Additionally, in a comparative analysis of amino acids, MDPs-T displayed a greater abundance of essential and total amino acids relative to MDPs-ND. Consequently, MDPs-T holds potential as a valuable food supplement for human consumption or as a nutrient-rich feed supplement for animals.


Assuntos
Moscas Domésticas , Proteínas de Insetos , Larva , Animais , Moscas Domésticas/química , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Larva/química , Espectroscopia de Infravermelho com Transformada de Fourier , Bufonidae , Difração de Raios X , Tamanho da Partícula , Ração Animal/análise
9.
J Environ Sci (China) ; 139: 483-495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105071

RESUMO

The significant increase in the demand for biomass waste treatment after garbage classification has led to housefly larvae treatment becoming an attractive treatment option. It can provide a source of protein while treating biomass waste, which means that nutrients can be returned to the natural food chain. However, the performance of this technology in terms of its environmental impacts is still unclear, particularly with regards to global warming potential (GWP).This study used a life cycle assessment (LCA) approach to assess a housefly larvae treatment plant with a treatment capacity of 50 tons of biomass waste per day. The LCA results showed that the 95% confidence intervals for the GWP in summer and winter were determined to be 24.46-32.81 kg CO2 equivalent (CO2-eq)/ton biomass waste and 5.37-10.08 kg CO2-eq/ton biomass waste, respectively. The greater GWP value in summer is due to the longer ventilation time and higher ventilation intensity in summer, which consumes more power. The main GWP contributions are from (1) electricity needs (accounting for 78.6% of emissions in summer and 70.2% in winter) and (2) product substitution by mature housefly larvae and compost (both summer and winter accounting for 96.8% of carbon reduction).


Assuntos
Compostagem , Moscas Domésticas , Animais , Aquecimento Global , Larva , Dióxido de Carbono
10.
BMC Microbiol ; 23(1): 383, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049761

RESUMO

BACKGROUND: Musca domestica larvae are common saprophytes in nature, promoting the material-energy cycle in the environment. However, heavy metal pollution in the environment negatively affects their function in material circulation. Our previous research found that some intestinal bacteria play an important role in the development of housefly, but the responses of microbial community to heavy metal stresses in Musca domestica is less studied. RESULTS: In this study, CuSO4, CuSO4-Klebsiella pneumoniae mixture and CuSO4-K. pneumoniae phage mixture were added to the larval diet to analyze whether K. pneumoniae can protect housefly larvae against Cu2+ injury. Our results showed that larval development was inhibited when were fed with CuSO4, the bacterial abundance of Providencia in the intestine of larvae increased. However, the inhibition effects of CuSO4 was relieved when K. pneumoniae mixed and added in larval diets, the abundance of Providencia decreased. Electron microscope results revealed that K. pneumoniae showed an obvious adsorption effect on copper ion in vitro. CONCLUSIONS: Based on the results we assume that K. pneumoniae could adsorb Cu2+, reduce Cu2+ impact on gut community structure. Our study explains the role of K. pneumoniae antagonizing Cu2+, which could be applied as a probiotic to saprophytic bioantagonistic metal contamination.


Assuntos
Moscas Domésticas , Metais Pesados , Animais , Cobre , Klebsiella pneumoniae , Larva/microbiologia , Providencia , Intestinos
11.
Insect Mol Biol ; 32(2): 200-212, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36522831

RESUMO

The gastrointestinal tract of all animals, including insects, is colonized by a remarkable array of microorganisms which are referred to collectively as the gut microbiota. The hosts establish mutually beneficial interactions with the gut microbiota. However, the mechanisms shaping these interactions remain to be better understood. Here, we investigated the roles of Musca domestica peptidoglycan recognition protein SC (MdPGRP-SC), a secreted pattern recognition receptor, in shaping the gut microbial community structure by using biochemical and high-throughput sequencing approaches. The recombinant MdPGRP-SC (rMdPGRP-SC) could strongly bind various pathogen-associated molecular patterns (PAMPs) including peptidoglycan, lipopolysaccharide and D-galactose, and exhibited mild affinity to ß-1, 3-glucan and D-mannose. Meanwhile, rMdPGRP-SC could also bind different kinds of microorganisms, including gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and yeast (Pichia pastoris). rMdPGRP-SC also exhibited weak antibacterial activity against Bacillus subtilis. Knockdown of MdPGRP-SC by RNAi reduced the persistence of ingested E. coli and a load of indigenous microbiota in the larval gut significantly. In addition, depleted MdPGRP-SC also altered the gut microbiota composition and led to increased ratios of Gram-negative bacteria. We hypothesize that MdPGRP-SC is involved in maintaining gut homeostasis by modulating the immune intensity of the gut through multiple mechanisms, including degrading or neutralizing various PAMPs and selectively suppressing the growth of some bacteria. Considering the functional conservation of the peptidoglycan recognition protein (PGRP) family in insects, the catalytic PGRPs might be promising candidate targets not only for pest and vector control but also for the treatment of bacterial infection in insect farming.


Assuntos
Microbioma Gastrointestinal , Moscas Domésticas , Animais , Moscas Domésticas/metabolismo , Escherichia coli , Moléculas com Motivos Associados a Patógenos , Peptidoglicano/metabolismo , Imunidade Inata
12.
Arch Insect Biochem Physiol ; 114(3): e22045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602787

RESUMO

Organophosphate (OP) resistance has been prevalent in Musca domestica populations worldwide since 1960s. Previous studies have demonstrated that point mutations of the acetylcholinesterase gene (Ace) are one of the important molecular mechanisms underlying OP resistance. However, few studies have investigated the molecular mechanisms of OP resistance in the past 10 years in China. In this study, we investigated the status of OP resistance and genetic diversity of Ace in the field populations of houseflies in Guizhou Province of China. The bioassays showed that the houseflies had 142-304-fold resistance to dichlorvos (DDVP) and 122-364-fold resistance to temephos, compared to the susceptible houseflies. Five nonsynonymous mutations (Y226F, V260L, G342A/V, F407Y) in Ace were detected among the 7 field populations, with an average frequency of 5.4%, 55%, 68%, 32%, and 94%, respectively, of which the Y226F mutation had not been reported previously. Eleven combinations of triple mutations (at positions 260, 342, and 407) were observed, of which the combination 260L/V+342A/V+407Y was predominant. The ZY and AS populations showed greatest diversity of allelic combination and the other five populations showed different distributions among different regions. These results indicate that the resistance to OPs is prevalent among the housefly populations and target-site insensitivity is the main cause of resistance in Guizhou Province. The difference in distribution and the allelic diversity of Ace in field populations may be due to the complexity and variability of insecticide application. It is necessary to monitor resistance to insecticides and conduct management of houseflies in Guizhou Province.

13.
Pestic Biochem Physiol ; 194: 105497, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532356

RESUMO

House flies (Musca domestica L) are nuisances and vectors of pathogens between and among humans and livestock. Population suppression has been accomplished for decades with pyrethroids and acetylcholinesterase (AChE) inhibitors, but recurrent selection has led to increased frequency of alleles conferring resistance to those two classes of active ingredients (Geden et al., 2021). A common mechanism of resistance to both classes involves an altered target site (mutations in Voltage gated sodium channel (Vgsc) for pyrethroids or in Ace for AChE inhibitors). As part of ongoing efforts to understand the origin, spread and evolution of insecticide resistance alleles in house fly populations, we sampled flies in 11 different US states, sequenced, and then estimated frequencies of the Vgsc and Ace alleles. There was substantial variation in frequencies of the four common knockdown resistance alleles (kdr (L1014F), kdr-his (L1014H), super-kdr (M918T + L10414F) and 1B (T929I + L1014F) across the sampled states. The kdr allele was found in all 11 states and was the most common allele in four of them. The super-kdr allele was detected in only six collections, with the highest frequencies found in the north, northeast and central United States. The kdr-his allele was the most common allele in PA, NC, TN and TX. In addition, a novel super-kdr-like mutation in mutually exclusive exon 17a was found. The overall frequencies of the different Ace alleles, which we name based on the amino acid present at the mutation sites (V260L, A316S, G342A/V and F407Y), varied considerably between states. Five Ace alleles were identified: VAGF, VAVY, VAGY, VAAY and VSAY. Generally, the VSAY allele was the most common in the populations sampled. The susceptible allele (VAGF) was found in all populations, ranging in frequency from 3% (KS) to 41% (GA). Comparisons of these resistance allele frequencies with those previously found suggests a dynamic interaction between the different alleles, in terms of levels of resistance they confer and likely fitness costs they impose in the absence of insecticides.


Assuntos
Dípteros , Moscas Domésticas , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Estados Unidos , Alelos , Resistência a Inseticidas/genética , Acetilcolinesterase/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Moscas Domésticas/genética , Canais de Sódio Disparados por Voltagem/genética , Mutação
14.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050012

RESUMO

As resistance to the limited number of insecticides available for medical and veterinary pests becomes more widespread, there is an urgent need for new insecticides and synergists on the market. To address this need, we conducted a study to assess the toxicity of three monoterpenoids-carvone, menthone, and fenchone-in comparison to permethrin and methomyl against adults of two common pests: the yellow fever mosquito (Aedes aegypti) and the house fly (Musca domestica). We also examined the potential for these monoterpenoids to enhance the effectiveness of permethrin and methomyl when used together. Finally, we evaluated the ability of each monoterpenoid to inhibit acetylcholinesterase, comparing them to methomyl. While all three monoterpenoids performed relatively poorly as topical insecticides (LD50 > 4000 ng/mg on M. domestica; >6000 ng/mg on Ae. aegypti), they synergized both permethrin and methomyl as well as or better than piperonyl butoxide (PBO). Carvone and menthone yielded synergistic co-toxicity factors (23 and 29, respectively), which were each higher than PBO at 24 h. Currently, the mechanism of action is unknown. During preliminary testing, symptoms of acetylcholinesterase inhibition were identified, prompting further testing. Acetylcholinesterase inhibition did not appear to explain the toxic or synergistic effects of the three monoterpenoids, with IC50 values greater than 1 mM for all, compared to the 2.5 and 1.7 µM for methomyl on Aedes aegypti and Musca domestica, respectively. This study provides valuable monoterpenoid toxicity and synergism data on two pestiferous insects and highlights the potential for these chemistries in future pest control formulations.


Assuntos
Aedes , Moscas Domésticas , Inseticidas , Muscidae , Febre Amarela , Animais , Inseticidas/farmacologia , Permetrina/farmacologia , Acetilcolinesterase/farmacologia , Metomil , Monoterpenos/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-37578627

RESUMO

Understanding the causes, extent, and period of neglect is not only a medical but also a forensic task when it comes to legal investigations. In this study, we evaluated 46 autopsied cases where there was clear evidence of physical neglect during the last period of the deceased's life. The age of the deceased ranged from 21 to 96 years; most of them were female (71.7%). The majority of cases (89.9%) took place in a domestic environment, with partners or relatives providing care. The most frequent post-mortem findings were pressure sores, followed by inflammatory skin changes, and signs of malnutrition and dehydration. Neglect was the cause or co-cause of death in 23% of the cases. More than half of the deceased showed severe contamination of the skin surface by excrement, and in almost 40% of the cases, fly infestation was found. The majority of insects belonged to the group of house flies (Diptera: Muscidae), mainly the common house fly, Musca domestica. By analyzing the entomological evidence, it was possible to prove an insect infestation period of at least several days ante-mortem. Since the period of neglect may be relevant in terms of legal proceedings, the present work demonstrates the particular importance of insect traces in providing this evidence. While prosecution and conviction of caregivers remain challenging, it is all the more essential that entomology and legal medicine collaborate on the analysis of findings of neglect.

16.
Microb Pathog ; 164: 105439, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35139420

RESUMO

Houseflies (Musca domestica) are important mechanical vectors for the transmission of pathogenic microorganisms. In this study, 129 houseflies (69 males and 60 females) were collected from 10 different environmental sources and a laboratory population was used. The surface microbiota of houseflies was identified by Next-Generation Sequencing. Staphylococci from the surfaces of houseflies were selectively isolated and their virulence genes, antibiotic susceptibilities, biofilm formation, and clonal relatedness were determined. Metagenomic analysis results demonstrated that Staphylococcus, Bacillus, and Enterococcus were mostly present on the surface of houseflies at the genus level. Additionally, the isolated 32 staphylococcal strains were identified as Staphylococcus sciuri (n = 11), S. saprophyticus (n = 9), S. arlettae (n = 6), S. xylosus (n = 4), S. epidermidis (n = 1) and S. gallinarum (n = 1). tetK, tetM, tetL, ermC, msrAB, and aad6 genes were found to carry by some of the staphylococcal strains. The strains were mostly resistant to oxacillin, penicillin, and erythromycin and three strains were multi-drug resistant. There was a statistical difference between housefly collection places and antibiotic resistance of isolated staphylococci to penicillin G, gentamicin, and erythromycin (p < 0.05). Biofilm test showed that 17 strains were strong biofilm formers, and it plays important role in the transmission of these bacteria on the surface of houseflies. Staphylococcal strains showed extracellular proteolytic and lipolytic activity in 31 and 12 strains, respectively. Closely related species were found in PFGE analysis from different environmental sources. By this study, surface microbiota and carriage of pathogenic staphylococci on the surfaces of houseflies and their virulence properties were elucidated.


Assuntos
Moscas Domésticas , Microbiota , Animais , Antibacterianos/farmacologia , Feminino , Masculino , Oxacilina , Staphylococcus , Staphylococcus epidermidis/genética
17.
Microb Pathog ; 168: 105597, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605739

RESUMO

Many insects are capable of developing enhanced resistance in response to repeated infection with the same pathogen, which is defined "immune priming". However, little is known in housefly, an ideal insect model for studying immunity. Here, Candida albicans (C. albicans) was used as the pathogen to explore whether housefly larvae are capable of eliciting immune priming. Firstly, we found that 2nd-instar larvae pre-exposure to heat-killed C. albicans could confer protection upon re-infection with C. albicans, as evidenced by the survival rate was higher in C. albicans primed larvae. Moreover, the hemocyte density was increased by priming, but phenoloxidase (PO) activity was not affected. For this reason, RNA sequencing (RNA-seq) was performed and found that 145 genes were differentially expressed after priming, in which 22 genes were related to immune response. Then, KEGG enrichment showed that Toll signaling pathway and Phagosome signaling pathway, as well as many other signaling pathways were enriched. Finally, qPCR was performed and found that the expression of 2 pattern recognition receptor (PRR) genes (PGRP-SD-like precursor and lectin subunit alpha-like) and 6 immune effector genes (phormicin, cecropin-A2-like, defensin-1, attacin-A-like, sarcotoxin-1C and lysozyme 1-like) in C. albicans primed larvae was significantly up-regulated after challenge. Taken together, our findings suggested that housefly larvae are capable of eliciting immune priming against C. albicans, and cellular immunity as well as the gene expression, especially genes involved in Toll signaling pathway were induced by immune priming with C. albicans.


Assuntos
Moscas Domésticas , Animais , Candida albicans/genética , Expressão Gênica , Moscas Domésticas/genética , Imunidade Celular , Larva/genética
18.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34904650

RESUMO

Wing damage attenuates aerial performance in many flying animals such as birds, bats and insects. Insect wings are especially light in order to reduce inertial power requirements for flight at elevated wing flapping frequencies. There is a continuing debate on the factors causing wing damage in insects, including collisions with objects, mechanical stress during flight activity, and aging. This experimental study addressed the reasons for and significance of wing damage for flight in the house fly Musca domestica. We determined natural wing area loss under two housing conditions and recorded flight activity and flight ability throughout the animals' lifetime. Our data show that in animals with eventually pronounced damage, wing damage occurs on average after 6 h of flight, is sex specific and depends on housing conditions. Statistical tests show that physiological age and flight activity have similar significance as predictors for wing damage. Tests on freely flying flies showed that minimum wing area for active flight is approximately 10-34% below the initial area and requires a left-right wing area asymmetry of less than approximately 25%. Our findings broadly confirm predictions from simple aerodynamic theory based on mean wing velocity and area, and are also consistent with previous wing damage measurements in other insect species.


Assuntos
Dípteros , Voo Animal , Animais , Fenômenos Biomecânicos , Dípteros/fisiologia , Feminino , Voo Animal/fisiologia , Insetos , Masculino , Asas de Animais/fisiologia
19.
Med Vet Entomol ; 36(4): 435-443, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35599244

RESUMO

Adult house flies feed and breed in a variety of microbe-rich habitats and serve as vectors for human and animal pathogens. To better understand their role in harbouring and disseminating bacteria, we characterized the composition and diversity of bacterial communities in the gut of female house flies collected from three different habitats in Kansas: agricultural (dairy farm), urban (business area dumpsters) and mixed (business located between residential and animal agriculture areas). Bacterial community composition and diversity were influenced more by the house flies' habitat than by sampling time. The most abundant taxa were also highly prevalent in the house flies collected from all three habitats, potentially representing a 'core microbiome' attributable to the fly's trophic and reproductive associations with substrates and food sources comprised of decaying matter and/or animal waste. Bacterial taxa associated with vertebrate guts/faeces and potential pathogens were highly abundant in agricultural fly microbial communities. Interestingly, taxa of potential pathogens were highly abundant in flies from the mixed and urban sites. House flies harboured diverse bacterial communities influenced by the habitat in which they reside, including potential human and animal pathogens, further bolstering their role in the dissemination of pathogens, and indicating their utility for pathogen surveillance.


Assuntos
Moscas Domésticas , Microbiota , Muscidae , Feminino , Humanos , Animais , Moscas Domésticas/microbiologia , Bactérias , Manejo de Espécimes/veterinária
20.
Pestic Biochem Physiol ; 187: 105186, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127048

RESUMO

The house fly (Musca domestica L.) (Diptera: Muscidae) is a global vector that can transmit >250 human and animal diseases. The control of house flies has heavily relied on the application of various chemical insecticides. The carbamate insecticide propoxur has been widely used for the control of house flies, and resistance to propoxur has been documented in many house fly populations worldwide. Previous studies have identified several propoxur resistance-conferring mutations in the target protein acetylcholinesterase; however, the molecular basis for metabolic resistance to propoxur remains unknown. In this study, we investigated the involvement of CYP6G4, a cytochrome P450 overexpressed in many insecticide resistant populations of Musca domestica, in propoxur metabolism and resistance by using combined approaches of recombinant protein-based insecticide metabolism and the Drosophila GAL4/UAS transgenic system. The recombinant CYP6G4 and its redox partners (NADPH-dependent cytochrome P450 reductase and cytochrome b5) were functionally expressed in Escherichia coli. Metabolism experiments showed that CYP6G4 was able to transform propoxur with a turnover rate of around 0.79 min-1. Six metabolites were putatively identified, suggesting that CYP6G4 could metabolize propoxur via hydroxylation, O-depropylation and N-demethylation. Moreover, bioassay results showed that ectopic overexpression of CYP6G4 in fruit flies significantly increased their tolerance to propoxur. Our in vivo and in vitro data convincingly demonstrate that CYP6G4 contributes to propoxur metabolism and resistance.


Assuntos
Sistema Enzimático do Citocromo P-450 , Moscas Domésticas , Inseticidas , Acetilcolinesterase/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5 , Escherichia coli , Moscas Domésticas/enzimologia , Moscas Domésticas/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , NADP , NADPH-Ferri-Hemoproteína Redutase , Propoxur/farmacologia , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa