Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39326416

RESUMO

Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.

2.
Mol Ther ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169620

RESUMO

The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.

3.
Neurogenetics ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103709

RESUMO

Congenital Muscular Dystrophies (CMD) are phenotypically and genotypically heterogenous disorders with a prevalence of 0.68 to 2.5/100,000, contributing to significant morbidity and mortality. We aimed to study the phenotype-genotype spectrum of genetically confirmed cases of CMD. This was retrospective & descriptive study done at a quaternary care referral centre in south India. Genetically confirmed cases of CMDs seen between 2010 to 2020 were recruited. Detailed clinical history, including pedigree, MRI brain/muscle, next generation sequencing results of 61 CMD cases were collected. Collagen VI-related dystrophy (COL6-RD) (36%) was the most common subtype with variants frequently seen in COL6A1 gene. Other CMDs identified were LAMA2-RD (26%), alpha-dystroglycan-RD (19%), LMNA-RD (8%), CHKB-RD (7%) and SEPN1-RD (3%). Similar to previous cohorts, overall, missense variants were common in COL-6 RD. Variants in triple helical domain (THD) of COL6-RD were seen in 11/22 patients, 5 of whom were ambulatory contrary to previous literature citing severe disease with these variants. However, our follow-up period was shorter. In the LAMA2-RD, 2/16 patients were ambulatory & all 16 carried truncating variants. Among dystroglycanopathies, FKRP-RD was the commonest. Milder phenotype of FKRP- RD was observed with variant c.1343C > T, which was also a recurrent variant in our cohort. p.Arg249Trp variant in LMNA-CMD associated with early loss of ambulation was also identified in 1/5 of our patients who expired at age 2.8 years. The current retrospective series provides detailed clinical features and mutation patterns of genetically confirmed cases of CMD from a single center in India.

4.
Eur J Neurol ; 31(5): e16214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38226549

RESUMO

BACKGROUND AND PURPOSE: Myopathies are associated with classic signs and symptoms, but also with possible life-threatening complications that may require assistance in an emergency setting. This phenomenon is understudied in the literature. We aimed to assess the presentation, management, and outcomes of clinical manifestations potentially related to a muscle disorder requiring referral to the adult emergency department (ED) and hospitalization. METHODS: Anonymized patient data retrieved using the International Classification of Diseases, Ninth Revision codes related to muscle disorders over 4 years were retrospectively analyzed. Medical reports were evaluated to extract demographic and clinical variables, along with outcomes. Two groups were defined based on the presence (known diagnosis [KD] group) or absence (unknown diagnosis [UD] group) of a diagnosed muscle disorder at arrival. RESULTS: A total of 244 patients were included, 51% of whom were affected by a known myopathy, predominantly limb-girdle muscular dystrophies and myotonic dystrophies. The main reasons for ED visits in the KD group were respiratory issues, worsening of muscle weakness, and gastrointestinal problems. Heart complications were less prevalent. In the UD group, 27 patients received a new diagnosis of a specific primary muscle disorder after the ED access, mostly an inflammatory myopathy. Death during hospitalization was recorded in 26 patients, with a higher rate in the KD group and in patients affected by mitochondrial and inflammatory myopathies. Sepsis and dyspnea were associated with increased death risk. CONCLUSIONS: Respiratory complications are the most common reason for myopathic patients accessing the ED, followed by gastrointestinal issues. Infections are severe threats and, once hospitalized, these patients have relatively high mortality.


Assuntos
Doenças Musculares , Miosite , Adulto , Humanos , Estudos Retrospectivos , Hospitalização , Doenças Musculares/epidemiologia , Doenças Musculares/terapia , Miosite/complicações , Miosite/diagnóstico , Miosite/epidemiologia , Serviço Hospitalar de Emergência , Hospitais
5.
Bioessays ; 44(5): e2100270, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35229908

RESUMO

The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.


Assuntos
Fibronectinas , Distrofias Musculares , Distroglicanas/genética , Distroglicanas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Glicosilação , Humanos , Músculo Esquelético , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Mutação , Pentosiltransferases/genética , Pentosiltransferases/metabolismo
6.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732204

RESUMO

The extraocular muscles (EOMs) possess unique characteristics that set them apart from other skeletal muscles. These muscles, responsible for eye movements, exhibit remarkable resistance to various muscular dystrophies and aging, presenting a significant contrast to the vulnerability of skeletal muscles to these conditions. In this review, we delve into the cellular and molecular underpinnings of the distinct properties of EOMs. We explore their structural complexity, highlighting differences in fiber types, innervation patterns, and developmental origins. Notably, EOM fibers express a diverse array of myosin heavy-chain isoforms, retaining embryonic forms into adulthood. Moreover, their motor innervation is characterized by a high ratio of nerve fibers to muscle fibers and the presence of unique neuromuscular junctions. These features contribute to the specialized functions of EOMs, including rapid and precise eye movements. Understanding the mechanisms behind the resilience of EOMs to disease and aging may offer insights into potential therapeutic strategies for treating muscular dystrophies and myopathies affecting other skeletal muscles.


Assuntos
Envelhecimento , Músculos Oculomotores , Humanos , Músculos Oculomotores/fisiologia , Envelhecimento/fisiologia , Animais , Distrofias Musculares , Junção Neuromuscular/fisiologia , Junção Neuromuscular/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339055

RESUMO

MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Humanos , Músculo Esquelético/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Diferenciação Celular/genética , Distrofia Muscular de Duchenne/genética
9.
Mol Biol Rep ; 50(8): 6373-6379, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37318662

RESUMO

BACKGROUND: Congenital muscular dystrophies (CMDs) result from genetically inherited defects in the biosynthesis and/or the posttranslational modification (glycosylation) of laminin-α2 and α-dystroglycan (α-DG), respectively. The interaction between both proteins is responsible for the stability and integrity of the muscle cell. We aimed to study the expression profiles of both proteins in two classes of CMDs. SUBJECTS AND METHODS: Whole-exome sequencing (WES) was done for four patients with neuromuscular manifestations. The expression of core α-DG and laminin-α2 subunit in skin fibroblasts and MCF-7 cells was assessed by western blot. RESULTS: WES revealed two cases with nonsense mutations; c.2938G > T and c.4348 C > T, in LAMA2 encodes laminin-α2. It revealed also two cases with mutations in POMGNT1 encode protein O-mannose beta-1,2-N-acetylglucosaminyltransferase mutations. One patient had a missense mutation c.1325G > A, and the other had a synonymous variant c.636 C > T. Immunodetection of core α-DG in skin fibroblasts revealed the expression of truncated forms of core α-DG accompanied by reduced expression of laminin-α2 in POMGNT1-CMD patients and one patient with LAMA2-CMD. One patient with LAMA2-CMD had overexpression of laminin-α2 and expression of a low level of an abnormal form of increased molecular weight core α-DG. MCF-7 cells showed truncated forms of core α-CDG with an absent laminin-α2. CONCLUSION: A correlation between the expression pattern/level of core α-DG and laminin-α2 could be found in patients with different types of CMD.


Assuntos
Laminina , Distrofias Musculares , Humanos , Distroglicanas/genética , Distroglicanas/metabolismo , Fibroblastos/metabolismo , Laminina/genética , Distrofias Musculares/genética , Distrofias Musculares/complicações , Distrofias Musculares/metabolismo , Mutação/genética
10.
Brain ; 145(2): 596-606, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515763

RESUMO

Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Sarcoglicanopatias , Adulto , Criança , Humanos , Debilidade Muscular , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Estudos Retrospectivos , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
11.
Exp Cell Res ; 410(2): 112968, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34883113

RESUMO

Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.


Assuntos
Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/terapia , Cálcio/metabolismo , Metabolismo Energético , Humanos , Inflamação/patologia , Sódio/metabolismo
12.
Nanomedicine ; 47: 102623, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309185

RESUMO

In a context of drug repurposing, pentamidine (PTM), an FDA-approved antiparasitic drug, has been proposed to reverse the splicing defects associated in myotonic dystrophy type 1 (DM1). However, clinical use of PTM is hinder by substantial toxicity, leading to find alternative delivery strategies. In this work we proposed hyaluronic acid-based nanoparticles as a novel encapsulation strategy to efficiently deliver PTM to skeletal muscles cells. In vitro studies on C2C12 myoblasts and myotubes showed an efficient nanoparticles' internalization with minimal toxicity. More interestingly, our findings evidenced for the first time the endosomal escape of hyaluronic acid-based nanocarriers. Ex vivo studies showed an efficient nanoparticles' internalization within skeletal muscle fibers. Finally, the therapeutic efficacy of PTM-loaded nanosystems to reduce the number of nuclear foci has been demonstrated in a novel DM1 in vitro model. So far, current data demonstrated the potency of hyaluronic acid-based nanosystems as efficient nanocarrier for delivering PTM into skeletal muscle and mitigate DM1 pathology.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Pentamidina , Ácido Hialurônico , Músculo Esquelético
13.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628888

RESUMO

Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and ß-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease's pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Animais , Degradação Associada com o Retículo Endoplasmático , Peixe-Zebra/genética , Avaliação Pré-Clínica de Medicamentos , Larva
14.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902435

RESUMO

Fatigue is a major determinant of quality of life and motor function in patients affected by several neuromuscular diseases, each of them characterized by a peculiar physiopathology and the involvement of numerous interplaying factors. This narrative review aims to provide an overview on the pathophysiology of fatigue at a biochemical and molecular level with regard to muscular dystrophies, metabolic myopathies, and primary mitochondrial disorders with a focus on mitochondrial myopathies and spinal muscular atrophy, which, although fulfilling the definition of rare diseases, as a group represent a representative ensemble of neuromuscular disorders that the neurologist may encounter in clinical practice. The current use of clinical and instrumental tools for fatigue assessment, and their significance, is discussed. A summary of therapeutic approaches to address fatigue, encompassing pharmacological treatment and physical exercise, is also overviewed.


Assuntos
Doenças Musculares , Distrofias Musculares , Doenças Neuromusculares , Humanos , Qualidade de Vida , Fadiga
15.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176020

RESUMO

Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.


Assuntos
Doenças Musculares , Distrofias Musculares , Animais , Humanos , Peixe-Zebra/genética , Distrofias Musculares/genética , Animais Geneticamente Modificados/genética , Fibras Musculares Esqueléticas/patologia
16.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674691

RESUMO

The skeletal muscle has a very remarkable ability to regenerate upon injury under physiological conditions; however, this regenerative capacity is strongly diminished in physio-pathological conditions, such as those present in diseased or aged muscles. Many muscular dystrophies (MDs) are characterized by aberrant inflammation due to the deregulation of both the lymphoid and myeloid cell populations and the production of pro-inflammatory cytokines. Pathological inflammation is also observed in old muscles due to a systemic change in the immune system, known as "inflammaging". Immunomodulation represents, therefore, a promising therapeutic opportunity for different skeletal muscle conditions. However, the use of immunomodulatory drugs in the clinics presents several caveats, including their low stability in vivo, the need for high doses to obtain therapeutically relevant effects, and the presence of strong side effects. Within this context, the emerging field of nanomedicine provides the powerful tools needed to control the immune response. Nano-scale materials are currently being explored as biocarriers to release immunomodulatory agents in the damaged tissues, allowing therapeutic doses with limited off-target effects. In addition, the intrinsic immunomodulatory properties of some nanomaterials offer further opportunities for intervention that still need to be systematically explored. Here we exhaustively review the state-of-the-art regarding the use of nano-sized materials to modulate the aberrant immune response that characterizes some physio-pathological muscle conditions, such as MDs or sarcopenia (the age-dependent loss of muscle mass). Based on our learnings from cancer and immune tolerance induction, we also discuss further opportunities, challenges, and limitations of the emerging field of nano-immunomodulation.


Assuntos
Envelhecimento , Sarcopenia , Humanos , Idoso , Músculo Esquelético/patologia , Sarcopenia/patologia , Inflamação/patologia , Imunidade
17.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901738

RESUMO

Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.


Assuntos
Histona Desacetilases , Distrofia Muscular de Duchenne , Humanos , Histona Desacetilases/metabolismo , Distrofia Muscular de Duchenne/genética , Carbamatos/farmacologia , Músculo Esquelético/metabolismo , Inibidores de Histona Desacetilases/farmacologia
18.
J Gene Med ; 24(4): e3412, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075722

RESUMO

BACKGROUND: Limb-girdle muscular dystrophy (LGMD) comprises a heterogeneous group of diseases, affecting different muscles, predominantly skeletal muscles and cardiac muscles of the body. LGMD is classified into two main subtypes A and B, which are further subclassified into eight dominant and thirty recessive subtypes. Three genes, namely POPDC1, POPDC2 and POPDC3, encode popeye domain-containing protein (POPDC), and the variants of POPDC1 and POPDC3 genes have been associated with LGMD. METHODS: In the present study, we performed whole-exome sequencing (WES) analysis on a single-family to investigate the hallmark features of LGMD. The results of WES were further confirmed by Sanger sequencing and 3D protein modeling was also conducted. RESULTS: WES data analysis and Sanger sequencing revealed a homozygous missense variant (c.460A>G; p.Lys154Glu) at a highly conserved amino acid position in the POPDC3. Mutations in the POPDC3 gene have been previously associated with recessive limb-girdle muscular dystrophy type 26. 3D protein modeling further suggested that the identified variant might affect the POPDC3 structure and proper function. CONCLUSIONS: The present study confirms the role of POPDC3 in LGMD, and will facilitate genetic counseling of the family to mitigate the risks of the carrier or affects on future pregnancies.


Assuntos
Moléculas de Adesão Celular , Proteínas Musculares , Distrofia Muscular do Cíngulo dos Membros , Moléculas de Adesão Celular/genética , Homozigoto , Humanos , Proteínas Musculares/genética , Músculo Esquelético , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Mutação de Sentido Incorreto
19.
RNA Biol ; 19(1): 507-518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35388741

RESUMO

Muscular dystrophies are a group of rare and severe inherited disorders mainly affecting the muscle tissue. Duchene Muscular Dystrophy, Myotonic Dystrophy types 1 and 2, Limb Girdle Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy are some of the members of this family of disorders. In addition to the current diagnostic tools, there is an increasing interest for the development of novel non-invasive biomarkers for the diagnosis and monitoring of these diseases. miRNAs are small RNA molecules characterized by high stability in blood thus making them ideal biomarker candidates for various diseases. In this study, we present the first genome-wide next-generation small RNA sequencing in serum samples of five different types of muscular dystrophy patients and healthy individuals. We identified many small RNAs including miRNAs, lncRNAs, tRNAs, snoRNAs and snRNAs, that differentially discriminate the muscular dystrophy patients from the healthy individuals. Further analysis of the identified miRNAs showed that some miRNAs can distinguish the muscular dystrophy patients from controls and other miRNAs are specific to the type of muscular dystrophy. Bioinformatics analysis of the target genes for the most significant miRNAs and the biological role of these genes revealed different pathways that the dysregulated miRNAs are involved in each type of muscular dystrophy investigated. In conclusion, this study shows unique signatures of small RNAs circulating in five types of muscular dystrophy patients and provides a useful resource for future studies for the development of miRNA biomarkers in muscular dystrophies and for their involvement in the pathogenesis of the disorders.


Assuntos
MicroRNAs , Distrofias Musculares , Distrofia Miotônica , Biomarcadores , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética
20.
Exp Cell Res ; 409(1): 112908, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34736920

RESUMO

For decades now, cell transplantation has been considered a possible therapeutic strategy for muscular dystrophy, but failures have largely outnumbered success or at least encouraging outcomes. In this review we will briefly recall the history of cell transplantation, discuss the peculiar features of skeletal muscle, and dystrophic skeletal muscle in particular, that make the procedure complicated and inefficient. As there are many recent and exhaustive reviews on the various myogenic cell types that have been or will be transplanted, we will only briefly describe them and refer the reader to these reviews. Finally, we will discuss possible strategies to overcome the hurdles that prevent biological efficacy and hence clinical success.


Assuntos
Transplante de Células/métodos , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/terapia , Animais , Diferenciação Celular/fisiologia , Humanos , Desenvolvimento Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa