Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(32): 11303-11315, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32444496

RESUMO

The Arf GTPase-activating protein (Arf GAP) with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) establishes a connection between the cell membrane and the cortical actin cytoskeleton. The formation, maintenance, and turnover of actin filaments and bundles in the actin cortex are important for cell adhesion, invasion, and migration. Here, using actin cosedimentation, polymerization, and depolymerization assays, along with total internal reflection fluorescence (TIRF), confocal, and EM analyses, we show that the N-terminal N-BAR domain of ASAP1 directly binds to F-actin. We found that ASAP1 homodimerization aligns F-actin in predominantly unipolar bundles and stabilizes them against depolymerization. Furthermore, the ASAP1 N-BAR domain moderately reduced the spontaneous polymerization of G-actin. The overexpression of the ASAP1 BAR-PH tandem domain in fibroblasts induced the formation of actin-filled projections more effectively than did full-length ASAP1. An ASAP1 construct that lacked the N-BAR domain failed to induce cellular projections. Our results suggest that ASAP1 regulates the dynamics and the formation of higher-order actin structures, possibly through direct binding to F-actin via its N-BAR domain. We propose that ASAP1 is a hub protein for dynamic protein-protein interactions in mechanosensitive structures, such as focal adhesions, invadopodia, and podosomes, that are directly implicated in oncogenic events. The effect of ASAP1 on actin dynamics puts a spotlight on its function as a central signaling molecule that regulates the dynamics of the actin cytoskeleton by transmitting signals from the plasma membrane.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Camundongos , Células NIH 3T3 , Ligação Proteica , Transdução de Sinais
2.
EMBO Rep ; 18(11): 2051-2066, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893863

RESUMO

Endocytic processes are facilitated by both curvature-generating BAR-domain proteins and the coordinated polymerization of actin filaments. Under physiological conditions, the N-BAR protein Bin1 has been shown to sense and curve membranes in a variety of cellular processes. Recent studies have identified Bin1 as a risk factor for Alzheimer's disease, although its possible pathological function in neurodegeneration is currently unknown. Here, we report that Bin1 not only shapes membranes, but is also directly involved in actin binding through its BAR domain. We observed a moderate actin bundling activity by human Bin1 and describe its ability to stabilize actin filaments against depolymerization. Moreover, Bin1 is also involved in stabilizing tau-induced actin bundles, which are neuropathological hallmarks of Alzheimer's disease. We also provide evidence for this effect in vivo, where we observed that downregulation of Bin1 in a Drosophila model of tauopathy significantly reduces the appearance of tau-induced actin inclusions. Together, these findings reveal the ability of Bin1 to modify actin dynamics and provide a possible mechanistic connection between Bin1 and tau-induced pathobiological changes of the actin cytoskeleton.


Assuntos
Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Tauopatias/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas tau/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Clonagem Molecular , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo
3.
Cell Mol Life Sci ; 74(13): 2413-2438, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28243699

RESUMO

The BAR domain is the eponymous domain of the "BAR-domain protein superfamily", a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Humanos , Fosforilação , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas
4.
J Struct Biol ; 194(3): 375-82, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27016283

RESUMO

The 30kDa N-BAR domain of the human Bin1 protein is essential for the generation of skeletal muscle T-tubules. By electron cryo-microscopy and electron cryo-tomography with a direct electron detector, we found that Bin1-N-BAR domains assemble into scaffolds of low long-range order that form flexible membrane tubules. The diameter of the tubules closely matches the curved shape of the N-BAR domain, which depends on the composition of the target membrane. These insights are fundamental to our understanding of T-tubule formation and function in human skeletal muscle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Nucleares/química , Domínios Proteicos/fisiologia , Multimerização Proteica , Sarcolema/ultraestrutura , Proteínas Supressoras de Tumor/química , Microscopia Crioeletrônica , Humanos , Proteínas de Membrana/metabolismo , Membranas/ultraestrutura , Músculo Esquelético/química , Músculo Esquelético/ultraestrutura , Tomografia
5.
Bio Protoc ; 13(12): e4699, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37397795

RESUMO

Bin/Amphiphysin/Rvs (BAR) proteins are known as classical membrane curvature generators during endocytosis. Amphiphysin, a member of the N-BAR sub-family of proteins that contain a characteristic amphipathic sequence at the N-terminus of the BAR domain, is involved in clathrin-mediated endocytosis. Full-length amphiphysin contains a ~ 400 amino acid long disordered linker connecting the N-BAR domain and a C-terminal Src homology 3 (SH3) domain. We express and purify recombinant amphiphysin and its N-BAR domain along with an N-terminal glutathione-S-transferase (GST) tag. The GST tag allows extraction of the protein of interest using affinity chromatography and is removed in the subsequent protease treatment and ion-exchange chromatography steps. In the case of the N-BAR domain, cleavage of the GST tag was found to cause precipitation. This issue can be minimized by adding glycerol to the protein purification buffers. In the final step, size exclusion chromatography removes any potential oligomeric species. This protocol has also been successfully used to purify other N-BAR proteins, such as endophilin, Bin1, and their corresponding BAR domains. Graphical overview.

6.
Curr Protein Pept Sci ; 24(10): 865-877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37218192

RESUMO

INTRODUCTION: The proteins of the Bin/Amphiphysin/Rvs167 (BAR) domain superfamily are believed to induce membrane curvature. PICK1 is a distinctive protein that consists of both a BAR and a PDZ domain, and it has been associated with numerous diseases. It is known to facilitate membrane curvature during receptor-mediated endocytosis. In addition to understanding how the BAR domain facilitates membrane curvature, it's particularly interesting to unravel the hidden links between the structural and mechanical properties of the PICK1 BAR domain. METHODS: This paper employs steered molecular dynamics (SMD) to investigate the mechanical properties associated with structural changes in the PICK1 BAR domains. RESULTS: Our findings suggest that not only do helix kinks assist in generating curvature of BAR domains, but they may also provide the additional flexibility required to initiate the binding between BAR domains and the membrane. CONCLUSION: We have observed a complex interaction network within the BAR monomer and at the binding interface of the two BAR monomers. This network is crucial for maintaining the mechanical properties of the BAR dimer. Owing to this interaction network, the PICK1 BAR dimer exhibits different responses to external forces applied in opposite directions.


Assuntos
Proteínas de Transporte , Simulação de Dinâmica Molecular , Proteínas de Transporte/metabolismo , Ligação Proteica , Domínios Proteicos , Membrana Celular/metabolismo
7.
Dev Cell ; 43(5): 577-587.e5, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29173819

RESUMO

Cell migration is essential for morphogenesis, organ formation, and homeostasis, with relevance for clinical conditions. The migration of primordial germ cells (PGCs) is a useful model for studying this process in the context of the developing embryo. Zebrafish PGC migration depends on the formation of cellular protrusions in form of blebs, a type of protrusion found in various cell types. Here we report on the mechanisms allowing the inflation of the membrane during bleb formation. We show that the rapid expansion of the protrusion depends on membrane invaginations that are localized preferentially at the cell front. The formation of these invaginations requires the function of Cdc42, and their unfolding allows bleb inflation and dynamic cell-shape changes performed by migrating cells. Inhibiting the formation and release of the invaginations strongly interfered with bleb formation, cell motility, and the ability of the cells to reach their target.


Assuntos
Membrana Celular/metabolismo , Movimento Celular/fisiologia , Forma Celular/fisiologia , Células Germinativas/citologia , Peixe-Zebra , Actinas/metabolismo , Animais , Estruturas da Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Células Germinativas/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa