Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Exp Eye Res ; 248: 110074, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251120

RESUMO

Reactive oxygen species (ROS) play a significant role in toxicity to the retina in a variety of diseases. N-acetylcysteine (NAC), N-acetylcysteine amide (NACA) and the dimeric di-N-acetylcysteine amide (diNACA) were evaluated in terms of protecting retinal cells, in vitro, in a variety of stress models. Three types of rat retinal cell cultures were utilized in the study: macroglial-only cell cultures, neuron-only retinal ganglion cell (RGC) cultures, and mixed cultures containing retinal glia and neurons. Ability of test agents to attenuate oxidative stress in all cultures was ascertained. In addition, capability of agents to protect against a variety of alternate clinically-relevant stressors, including excitotoxins and mitochondrial electron transport chain inhibitors, was also evaluated. Capacity of test agents to elevate cellular levels of reduced glutathione under normal and compromised conditions was also determined. NAC, NACA and diNACA demonstrated concentration-dependent cytoprotection against oxidative stress in all cultures. These three compounds, however, had differing effects against a variety of alternate insults to retinal cells. The most protective agent was NACA, which was most potent against the most stressors (including oxidative stress, mitochondrial impairment by antimycin A and azide, and glutamate-induced excitotoxicity). Similar to NAC, NACA increased glutathione levels in non-injured cells, although diNACA did not, suggesting a different, unknown mechanism of antioxidant activity for the latter. In support of this, diNACA was the only agent to attenuate rotenone-induced toxicity in mitochondria. NAC, NACA and diNACA exhibited varying degrees of antioxidant activity, i.e., protected cultured rat retinal cells from a variety of stressors which were designed to mimic aspects of the pathology of different retinal diseases. A general rank order of activity was observed: NACA ≥ diNACA > NAC. These results warrant further exploration of NACA and diNACA as antioxidant therapeutics for the treatment of retinal diseases, particularly those involving oxidative stress. Furthermore, we have defined the battery of tests carried out as the "Wood, Chidlow, Wall and Casson (WCWC) Retinal Antioxidant Indices"; we believe that these are of great value for screening molecules for potential to reduce retinal oxidative stress in a range of retinal diseases.

2.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628913

RESUMO

Oxidative stress with a depletion of glutathione is a key factor in the initiation and progression of Alzheimer's disease (AD). N-Acetylcysteine (NAC), a glutathione precursor, provides neuroprotective effects in AD animal models. Its amide form, N-Acetylcysteine amide (NACA), has an extended bioavailability compared to NAC. This study evaluates the neuroprotective effects of NACA against Aß1-42 peptide-induced AD-like pathology in rats. Male Wistar rats (2.5 months old) were divided into five groups: Normal Control (NC), Sham (SH), Aß, Aß + NACA and NACA + Aß + NACA (n = 8 in all groups). AD-like pathology was induced by the intracerebroventricular infusion of Aß1-42 peptide into the lateral ventricle. NACA (75 mg/kg) was administered either as a restorative (i.e., injection of NACA for 7 consecutive days after inducing AD-like pathology (Aß + N group)), or as prophylactic (for 7 days before and 7 days after inducing the pathology (N + Aß + N group)). Learning and memory, neurogenesis, expression of AD pathology markers, antioxidant parameters, neuroprotection, astrogliosis and microgliosis were studied in the hippocampus and the prefrontal cortex. All data were analyzed with a one-way ANOVA test followed by Bonferroni's multiple comparison test. NACA treatment reversed the cognitive deficits and reduced oxidative stress in the hippocampus and prefrontal cortex. Western blot analysis for Tau, Synaptophysin and Aß, as well as a histopathological evaluation through immunostaining for neurogenesis, the expression of neurofibrillary tangles, ß-amyloid peptide, synaptophysin, neuronal morphology and gliosis, showed a neuroprotective effect of NACA. In conclusion, this study demonstrates the neuroprotective effects of NACA against ß-amyloid induced AD-like pathology.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Masculino , Ratos , Animais , Acetilcisteína/farmacologia , Ratos Wistar , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Sinaptofisina , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides , Gliose/induzido quimicamente , Gliose/tratamento farmacológico , Glutationa
3.
J Thromb Thrombolysis ; 43(2): 209-216, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27804000

RESUMO

Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H2O2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.


Assuntos
Acetilcisteína/farmacologia , Apoptose , Plaquetas/efeitos dos fármacos , Estresse Oxidativo , Acetilcisteína/química , Amidas , Permeabilidade da Membrana Celular , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Substâncias Protetoras/química , Silanos/química , Silanos/farmacologia , Relação Estrutura-Atividade
4.
BMC Ophthalmol ; 17(1): 54, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446133

RESUMO

BACKGROUND: The present study sought to evaluate the efficacy of N-acetylcysteine amide (NACA) eye drops in reversing the cataract formation induced by sodium selenite in male Wistar rat pups. METHODS: Forty male Wistar rat pups were randomly divided into a control group, an N-acetylcysteine amide-only group, a sodium selenite-induced cataract group, and a NACA-treated sodium selenite-induced cataract group. Sodium selenite was injected intraperitoneally on postpartum day 10, whereas N-acetylcysteine amide was injected intraperitoneally on postpartum days 9, 11, and 13 in the respective groups. Cataracts were evaluated at the end of week 2 (postpartum day 14) when the rat pups opened their eyes. N-acetylcysteine amide eye drops were administered beginning on week 3 until the end of week 4 (postpartum days 15 to 30), and the rats were sacrificed at the end of week 4. Lenses were isolated and examined for oxidative stress parameters such as glutathione, lipid peroxidation, and calcium levels along with the glutathione reductase and thioltransferase enzyme activities. Casein zymography and Western blot of m-calpain were performed using the water soluble fraction of lens proteins. RESULTS: Morphological examination of the lenses in the NACA-treated group indicated that NACA was able to reverse the cataract grade. In addition, glutathione level, thioltransferase activity, m-calpain activity, and m-calpain level (as assessed by Western blot) were all significantly higher in the NACA-treated group than in the sodium selenite-induced cataract group. Furthermore, sodium selenite- injected rat pups had significantly higher levels of malondialdehyde, glutathione reductase enzyme activity, and calcium levels, which were reduced to control levels upon treatment with NACA. CONCLUSIONS: The data suggest that NACA has the potential to significantly improve vision and decrease the burden of cataract-related loss of function. Prevention and reversal of cataract formation could have a global impact. Development of pharmacological agents like NACA may eventually prevent cataract formation in high-risk populations and may prevent progression of early-stage cataracts. This brings a paradigm shift from expensive surgical treatment of cataracts to relatively inexpensive prevention of vision loss.


Assuntos
Acetilcisteína/análogos & derivados , Catarata/prevenção & controle , Cristalino/metabolismo , Estresse Oxidativo , Acetilcisteína/administração & dosagem , Animais , Western Blotting , Catarata/induzido quimicamente , Catarata/diagnóstico , Modelos Animais de Doenças , Cristalino/efeitos dos fármacos , Masculino , Soluções Oftálmicas , Ratos , Ratos Wistar , Ácido Selenioso/toxicidade
5.
Antioxidants (Basel) ; 13(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38539884

RESUMO

Albumin (HSA) is the most abundant circulating protein and plays a pivotal role in maintaining the redox state of the plasma. Three HSA proteoforms have been identified based on the redox state of cysteine 34. These proteoforms comprise of the reduced state (HSA-SH) referred to as mercaptoalbumin, non-mercaptoalbumin-1, containing a disulfide with small thiols such as cysteine (HSA-Cys), and non-mercaptoalbumin-2, representing the higher oxidized proteoform. Several clinical studies have shown a relationship between an individual's serum HSA redox status and the severity of diseases such as heart failure, diabetes mellitus, and liver disease. Furthermore, when HSA undergoes oxidation, it can worsen certain health conditions and contribute to their advancement. This study aimed to evaluate the ability of the redox compounds AD4/NACA and the thioredoxin mimetic (TXM) peptides TXM-CB3, TXM-CB13, and TXM-CB30 to regenerate HSA-SH and to enhance its redox activity. The HSA proteoforms were quantified by LC-MS, and the antioxidant activity was determined using dichlorofluorescin. Each of the compounds exhibited a significant increase in HSA-SH and a reduction in HSA-Cys levels. The increase in HSA-SH was associated with a recovery of its antioxidant activity. In this work, we unveil a novel mechanistic facet of the antioxidant activity of AD4/NACA and TXM peptides. These results suggest an additional therapeutic approach for addressing oxidative stress-related conditions.

6.
Antioxidants (Basel) ; 12(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37507934

RESUMO

In the present study, we tested the effect of small-molecular-weight redox molecules on collagen-induced platelet aggregation. We used N-acetylcysteine amide (AD4/NACA), the amide form of N-acetylcysteine (NAC), a thiol antioxidant with improved lipophilicity and bioavailability compared to NAC, and the thioredoxin-mimetic (TXM) peptides, TXM-CB3, TXM-CB13, and TXM-CB30. All compounds significantly inhibited platelet aggregation induced by collagen, with TXM-peptides and AD4 being more effective than NAC. The levels of TxB2 and 12-HETE, the main metabolites derived from the cyclooxygenase and lipoxygenase pathways following platelet activation, were significantly reduced in the presence of AD4, TXM peptides, or NAC, when tested at the highest concentration (0.6 mM). The effects of AD4, TXM-peptides, and NAC were also tested on the clotting time (CT) of whole blood. TXM-CB3 and TXM-CB30 showed the greatest increase in CT. Furthermore, two representative compounds, TXM-CB3 and NAC, showed an increase in the anti-oxidant free sulfhydryl groups of plasma detected via Ellman's method, suggesting a contribution of plasma factors to the antiaggregating effects. Our results suggest that these small-molecular-weight redox peptides might become useful for the prevention and/or treatment of oxidative stress conditions associated with platelet activation.

7.
Orphanet J Rare Dis ; 17(1): 231, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710564

RESUMO

BACKGROUND: Cystinosis is a rare autosomal recessive lysosomal storage disease, associated with high morbidity and mortality. Mutations in the CTNS gene disable a membrane protein responsible for the transport of cystine out of the lysosome. Loss of transporter function leads to intralysosomal cystine accumulation and long-term damage to various tissues and organs, including the kidneys, eyes, liver, muscles, pancreas, and brain. The only cystine-depletion therapy for treatment of cystinosis is cysteamine which requires frequent administration of high doses and often causes gastrointestinal pain as well as pungent sulfurous odor in patients. The current in vitro study evaluated antioxidants, N-acetylcysteine amide (NACA; NPI-001) and (2R,2R')-3,3'-disulfanediyl bis(2-acetamidopropanamide) (diNACA; NPI-002), as potential treatments for cystinosis. METHODS: Cytotoxicity of cysteamine, NACA and diNACA was evaluated in cultured human cystinotic fibroblasts (HCFs). HCFs were cultured in 96 well plates incubated for 0-72 h in the presence of 25, 50 or 75 µM each of either cysteamine, NACA or diNACA along with an untreated control. Media was removed and cell viability assessed. Next, cystine-depleting activities of cysteamine, NACA and diNACA were screened in HCFs cell culture utilizing an inexpensive, proven colorimetric assay. HCFs were seeded and allowed to reach approximately 80% confluence before the addition of the test articles: 50 µM of either cysteamine, NACA or diNACA in media along with an untreated control. HCFs were incubated, harvested, and cystine was reduced to cysteine, the concentration of which was then determined per quantity of protein compared to a cysteine standard. Statistically significant cystine depletion was determined by paired t-test versus untreated control (p < 0.05). RESULTS: Neither cysteamine, NACA nor diNACA at 25, 50 or 75 µM caused cytotoxicity in HCFs. Treatment with all tested concentrations (25, 50 or 75 µM) of either NACA or diNACA at 48 or 72 h resulted in statistically significant increases in cell viability, relative to untreated control, whereas the higher concentrations (50 or 75 µM) of cysteamine achieved statistical significance at both timepoints but not the lowest concentration (25 µM). All test articles depleted cystine from HCFs compared to control. NACA depletion of cystine was statistically superior to cysteamine at 6, 24 and 48 h and numerically greater at 72 h. DiNACA depletion of cystine was statistically superior to cysteamine at 6 and 48 h, slightly numerically greater at 24 h and slightly less at 72 h. CONCLUSIONS: NACA and diNACA were non cytotoxic to HCFs and significantly increased cell viability. Cystine reduction was determined as percent of control after incubation with 50 µM of NACA, diNACA or cysteamine in HCFs cell culture for 6, 24, 48 and 72 h. Of the three test articles, NACA exhibited most rapid and greatest potency in cystine reduction. Rank order potency for cystine reduction over time was observed, NACA > diNACA ≥ cysteamine. Therefore, further study of NACA and diNACA as potential treatments for cystinosis is warranted.


Assuntos
Cistinose , Técnicas de Cultura de Células , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Cisteína/metabolismo , Cisteína/uso terapêutico , Cistina/metabolismo , Cistina/uso terapêutico , Cistinose/tratamento farmacológico , Cistinose/genética , Cistinose/metabolismo , Fibroblastos/metabolismo , Humanos
8.
Biochem Biophys Rep ; 29: 101213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128081

RESUMO

Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.

9.
Exp Neurol ; 337: 113536, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264635

RESUMO

The inability to reliably replicate mitochondrial DNA (mtDNA) by mitochondrial DNA polymerase gamma (POLG) leads to a subset of common mitochondrial diseases associated with neuronal death and depletion of neuronal mtDNA. Defining disease mechanisms in neurons remains difficult due to the limited access to human tissue. Using human induced pluripotent stem cells (hiPSCs), we generated functional dopaminergic (DA) neurons showing positive expression of dopaminergic markers TH and DAT, mature neuronal marker MAP2 and functional synaptic markers synaptophysin and PSD-95. These DA neurons were electrophysiologically characterized, and exhibited inward Na + currents, overshooting action potentials and spontaneous postsynaptic currents (sPSCs). POLG patient-specific DA neurons (POLG-DA neurons) manifested a phenotype that replicated the molecular and biochemical changes found in patient post-mortem brain samples namely loss of complex I and depletion of mtDNA. Compared to disease-free hiPSC-derived DA neurons, POLG-DA neurons exhibited loss of mitochondrial membrane potential, loss of complex I and loss of mtDNA and TFAM expression. POLG driven mitochondrial dysfunction also led to neuronal ROS overproduction and increased cellular senescence. This deficit was selectively rescued by treatment with N-acetylcysteine amide (NACA). In conclusion, our study illustrates the promise of hiPSC technology for assessing pathogenetic mechanisms associated with POLG disease, and that NACA can be a promising potential therapy for mitochondrial diseases such as those caused by POLG mutation.


Assuntos
Acetilcisteína/análogos & derivados , Antioxidantes/uso terapêutico , DNA Polimerase gama/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/uso terapêutico , Potenciais de Ação , Senescência Celular/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Potenciais Pós-Sinápticos Excitadores , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Canais de Sódio/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 591-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31768573

RESUMO

Anxiety disorders are highly prevalent and a leading cause of disability worldwide. Their etiology is related to stress, an adaptive response of the organism to restore homeostasis, in which oxidative stress and glutamatergic hyperactivity are involved. N-Acetylcysteine (NAC) is a multitarget approved drug proved to be beneficial in the treatment of various mental disorders. Nevertheless, NAC has low membrane permeability and poor bioavailability and its limited delivery to the brain may explain inconsistencies in the literature. N-Acetylcysteine amide (AD4) is a synthetic derivative of NAC in which the carboxyl group was modified to an amide. The amidation of AD4 improved lipophilicity and blood-brain barrier permeability and enhanced its antioxidant properties. The purpose of this study was to investigate the effects of AD4 on behavioral and biochemical parameters in zebrafish anxiety models. Neither AD4 nor NAC induced effects on locomotion and anxiety-related parameters in the novel tank test. However, in the light/dark test, AD4 (0.001 mg/L) increased the time spent in the lit side in a concentration 100 times lower than NAC (0.1 mg/L). In the acute restraint stress protocol, NAC and AD4 (0.001 mg/L) showed anxiolytic properties without meaningful effects on oxidative status. The study suggests that AD4 has anxiolytic effects in zebrafish with higher potency than the parent compound. Additional studies are warranted to characterize the anxiolytic profile of AD4 and its potential in the management of anxiety disorders.


Assuntos
Acetilcisteína/análogos & derivados , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra
11.
Eur J Pharm Sci ; 143: 105158, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740394

RESUMO

N-acetylcysteine amide (NACA) is the amide derivative of N-acetylcysteine (NAC) that is rapidly converted to NAC after systemic administration. It has emerged as a promising thiol antioxidant for multiple indications; however, the pharmacokinetic property is yet unclear due to lack of an accurate quantification method. The present investigation aimed to develop an analytical method for simultaneous quantification of NACA and NAC in plasma. A new reagent (2-(methylsulfonyl)-5-phenyl-1,3,4-oxadiazole, MPOZ) was introduced for thiol stabilization during sample processing and storage. Further, we utilized tris (2-carboxyethyl) phosphine (TCEP) to reduce the oxidized forms of NACA and NAC. After derivatization, NACA-MPOZ and NAC-MPOZ were quantified using liquid chromatography-mass spectrometry (LC-MS). The new method was validated and found to have high specificity, linearity, accuracy, precision, and recovery for the quantification of NACA and NAC in plasma. Furthermore, the formed derivatives of NACA and NAC were stable for 48 h under different conditions. The method was utilized in pharmacokinetic study which showed that the bioavailability of NACA is significantly higher than NAC (67% and 15%, respectively). The pharmacokinetic of NACA obeyed a two-compartment open model. The glutathione (GSH)-replenishing capacity was found to be three to four-fold higher after the administration of NACA compared to that observed after the administration of NAC. In conclusion, the present method is simple, robust and reproducible, and can be utilized in both experimental and clinical studies. NACA might be considered as a prodrug for NAC. Furthermore, this is the first report describing the pharmacokinetics and bioavailability of NACA in mouse.


Assuntos
Acetilcisteína/análogos & derivados , Pró-Fármacos/farmacocinética , Acetilcisteína/sangue , Acetilcisteína/farmacocinética , Animais , Disponibilidade Biológica , Feminino , Glutationa/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Compostos de Sulfidrila/química
12.
Free Radic Biol Med ; 161: 305-320, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980537

RESUMO

In the long and intensive search for effective treatments to counteract the toxicity of the chemical warfare (CW) agent sulphur mustard (H; bis(2-chloroethyl) sulphide), the most auspicious and consistent results have been obtained with the drug N-acetylcysteine (NAC), particularly with respect to its therapeutic use against the effects of inhaled H. It is a synthetic cysteine derivative that has been used in a wide variety of clinical applications for decades and a wealth of information exists on its safety and protective properties against a broad range of toxicants and disease states. Its primary mechanism of action is as a pro-drug for the synthesis of the antioxidant glutathione (GSH), particularly in those circumstances where oxidative stress has exhausted intracellular GSH stores. It impacts a number of pathways either directly or through its GSH-related antioxidant and anti-inflammatory properties, which make it a prime candidate as a potential treatment for the wide range of deleterious cellular effects that H is acknowledged to cause in exposed individuals. This report reviews the available literature on the protection afforded by NAC against the toxicity of H in a variety of model systems, including its efficacy in treating the long-term chronic lung effects of H that have been demonstrated in Iranian veterans exposed during the Iran-Iraq War (1980-1988). Although there is overwhelming evidence supporting this drug as a potential medical countermeasure against this CW agent, there is a requirement for carefully controlled clinical trials to determine the safety, efficacy and optimal NAC dosage regimens for the treatment of inhaled H.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Acetilcisteína , Substâncias para a Guerra Química/toxicidade , Glutationa , Humanos , Irã (Geográfico) , Gás de Mostarda/toxicidade
13.
Artigo em Inglês | MEDLINE | ID: mdl-30708342

RESUMO

Studies of N-acetylcysteine amide (NACA) in nonclinical models have demonstrated various antioxidant, anti-apoptotic, anti-inflammatory and neuroprotective effects, and it is currently being developed as a treatment for retinitis pigmentosa. Sensitive LC-MS/MS methods were developed and validated to quantitate reduced and total NACA and its major metabolite, N-acetylcysteine (NAC), in human plasma to support clinical studies involving NACA. To trap and stabilize reduced NACA and NAC at the time of collection, whole blood was immediately treated with 2-chloro-1-methylpyridinium iodide (CMPI) to convert free thiols to 1-methylpyridinyl thioether derivatives. Plasma was harvested and frozen until samples were assayed using protein precipitation and an LC-MS/MS separation based on hydrophilic-interaction chromatography (HILIC). To process NACA and NAC present as disulfides, an intermediate portion of the extract was further subjected to reduction with tris(2-carboxyethyl) phosphine; the released thiols were then reacted with CMPI, extracted, and analyzed as before, to measure total thiols. The method for NACA and NAC, whether free/reduced or total, covered a range from 50 ng/mL to 50 µg/mL in human plasma and required a single 25 µL plasma sample. Up to 180 samples could be assayed in a single session. The inter-run mean bias and precision (%CV) were within ±5% for the free thiol method and within ±8.5% for the total thiol method. Benchtop, freeze/thaw, and long-term stability were evaluated and acceptable. The NAC/NACA method applied to a clinical study demonstrated incurred sample reproducibility of 95.5% for NAC and 99.1% for NACA.


Assuntos
Acetilcisteína/análogos & derivados , Acetilcisteína/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Acetilcisteína/química , Estabilidade de Medicamentos , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
14.
Front Neurol ; 10: 650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297080

RESUMO

Traumatic brain injury resulting from exposure to blast overpressure (BOP) is associated with neuropathology including impairment of the blood-brain barrier (BBB). This study examined the effects of repeated exposure to primary BOP and post-blast treatment with an antioxidant, N-acetylcysteine amide (NACA) on the integrity of BBB. Anesthetized rats were exposed to three 110 kPa BOPs separated by 0.5 h. BBB integrity was examined in vivo via a cranial window allowing imaging of pial microcirculation by intravital microscopy. Tetramethylrhodamine isothiocyanate Dextran (TRITC-Dextran, mw = 40 kDa or 150 kDa) was injected intravenously 2.5 h after the first BOP exposure and the leakage of TRITC-Dextran from pial microvessels into the brain parenchyma was assessed. The animals were randomized into 6 groups (n = 5/group): four groups received 40 kDa TRITC-Dextran (BOP-40, sham-40, BOP-40 NACA, and sham-40 NACA), and two groups received 150 kDa TRITC-Dextran (BOP-150 and sham-150). NACA treated groups were administered NACA 2 h after the first BOP exposure. The rate of TRITC-Dextran leakage was significantly higher in BOP-40 than in sham-40 group. NACA treatment significantly reduced TRITC-Dextran leakage in BOP-40 NACA group and sham-40 NACA group presented the least amount of leakage. The rate of leakage in BOP-150 and sham-150 groups was comparable to sham-40 NACA and thus these groups were not assessed for the effects of NACA. Collectively, these data suggest that BBB integrity is compromised following BOP exposure and that NACA treatment at a single dose may significantly protect against blast-induced BBB breakdown.

15.
Drug Des Devel Ther ; 12: 4117-4127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584276

RESUMO

BACKGROUND: Increasing evidence demonstrate N-acetylcysteine amide (NACA) provides neuroprotection and attenuated oxidative stress in rats following traumatic brain injury (TBI). The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) signal pathway is activated after TBI and provides a protective effect against TBI. However, the function and mechanism of NACA in mice after TBI remain unknown. This study was to evaluate the neuroprotection of NACA and the potential action of the Nrf2-ARE pathway in a weight-drop mouse model of TBI. MATERIALS AND METHODS: Four groups of animals were randomly divided into sham, TBI, TBI+vehicle, and TBI+NACA (100 mg/kg, administered intraperitoneally). The protein levels of Nrf2, heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase-1 (NQO1), cleaved caspase-3 and the mRNA levels of HO-1 and NQO1 were detected. The neurobehavior, neuronal degeneration, apoptosis and oxidative stress were also assessed. RESULTS: Treatment with NACA significantly improved neurologic status at days 1 and 3 following TBI. Moreover, NACA promoted Nrf2 activation a day after TBI. The protein and mRNA levels of HO-1 and NQO1 were upregulated by NACA. Meanwhile, NACA treatment significantly reduced the level of malondialdehyde (MDA) and enhanced the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx), which indicated NACA attenuated oxidative stress following TBI. NACA prominently reduced the protein level of cleaved caspase-3 and TUNEL-positive cells, indicating its antiapoptotic effect. Additionally, Fluoro-Jade C staining showed NACA alleviated neuronal degeneration a day after TBI. CONCLUSIONS: Our study reveals that NACA potentially provides neuroprotection via the activation of the Nrf2-ARE signaling pathway after TBI in mice.


Assuntos
Acetilcisteína/farmacologia , Elementos de Resposta Antioxidante , Antioxidantes/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos ICR , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/genética , Degeneração Neural , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
16.
Front Neurol ; 8: 219, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634463

RESUMO

Blast-induced traumatic brain injury is associated with acute and possibly chronic elevation of intracranial pressure (ICP). The outcome after TBI is dependent on the progression of complex processes which are mediated by oxidative stress. So far, no effective pharmacological protection against TBI exists. In this study, rats were exposed to a single or repetitive blast overpressure (BOP) at moderate intensities of 72 or 110 kPa in a compressed air-driven shock tube. The degree and duration of the increase in ICP were proportional to the intensity and frequency of the blast exposure(s). In most cases, a single dose of antioxidant N-acetylcysteine amide (NACA) (500 mg/kg) administered intravenously 2 h after exposure to BOP significantly attenuated blast-induced increase in ICP. A single dose of NACA was not effective in improving the outcome in the group of animals that were subjected to repetitive blast exposures at 110 kPa on the same day. In this group, two treatments with NACA at 2 and 4 h post-BOP exposure resulted in significant attenuation of elevated ICP. Treatment with NACA prior to BOP exposure completely prevented the elevation of ICP. The findings indicate that oxidative stress plays an important role in blast-induced elevated ICP as treatment with NACA-ameliorated ICP increase, which is frequently related to poor functional recovery after TBI.

17.
Front Neurol ; 8: 744, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387038

RESUMO

BACKGROUND: No new therapies for traumatic brain injury (TBI) have been officially translated into current practice. At the tissue and cellular level, both inflammatory and oxidative processes may be exacerbated post-injury and contribute to further brain damage. N-acetylcysteine (NAC) has the potential to downregulate both processes. This review focuses on the potential neuroprotective utility of NAC and N-acetylcysteine amide (NACA) post-TBI. METHODS: Medline, Embase, Cochrane Library, and ClinicalTrials.gov were searched up to July 2017. Studies that examined clinical and laboratory effects of NAC and NACA post-TBI in human and animal studies were included. Risk of bias was assessed in human and animal studies according to the design of each study (randomized or not). The primary outcome assessed was the effect of NAC/NACA treatment on functional outcome, while secondary outcomes included the impact on biomarkers of inflammation and oxidation. Due to the clinical and methodological heterogeneity observed across studies, no meta-analyses were conducted. RESULTS: Our analyses revealed only three human trials, including two randomized controlled trials (RCTs) and 20 animal studies conducted using standardized animal models of brain injury. The two RCTs reported improvement in the functional outcome post-NAC/NACA administration. Overall, the evidence from animal studies is more robust and demonstrated substantial improvement of cognition and psychomotor performance following NAC/NACA use. Animal studies also reported significantly more cortical sparing, reduced apoptosis, and lower levels of biomarkers of inflammation and oxidative stress. No safety concerns were reported in any of the studies included in this analysis. CONCLUSION: Evidence from the animal literature demonstrates a robust association for the prophylactic application of NAC and NACA post-TBI with improved neurofunctional outcomes and downregulation of inflammatory and oxidative stress markers at the tissue level. While a growing body of scientific literature suggests putative beneficial effects of NAC/NACA treatment for TBI, the lack of well-designed and controlled clinical investigations, evaluating therapeutic outcomes, prognostic biomarkers, and safety profiles, limits definitive interpretation and recommendations for its application in humans at this time.

18.
J Clin Neurosci ; 22(9): 1477-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26100161

RESUMO

We examined the effects of N-acetylcysteine amide (NACA) in the secondary inflammatory response following a novel method of focal penetrating traumatic brain injury (TBI) in rats. N-acetylcysteine (NAC) has limited but well-documented neuroprotective effects after experimental central nervous system ischemia and TBI, but its bioavailability is very low. We tested NACA, a modified form of NAC with higher membrane and blood-brain barrier permeability. Focal penetrating TBI was produced in male Sprague-Dawley rats randomly selected for NACA treatment (n=5) and no treatment (n=5). In addition, four animals were submitted to sham surgery. After 2 hours or 24 hours the brains were removed, fresh frozen, cut in 14 µm coronal sections and subjected to immunohistochemistry, immunofluorescence, Fluoro-Jade and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. All treated animals were given 300 mg/kg NACA intraperitoneally (IP) 2 minutes post trauma. The 24 hour survival group was given an additional bolus of 300 mg/kg IP after 4 hours. NACA treatment decreased neuronal degeneration by Fluoro-Jade at 24 hours with a mean change of 35.0% (p<0.05) and decreased TUNEL staining indicative of apoptosis at 2 hours with a mean change of 38.7% (p<0.05). Manganese superoxide dismutase (MnSOD) increased in the NACA treatment group at 24 hours with a mean change of 35.9% (p<0.05). Levels of migrating macrophages and activated microglia (Ox-42/CD11b), nitric oxide-producing inflammatory enzyme iNOS, peroxynitrite marker 3-nitrotyrosine, NFκB translocated to the nuclei, cytochrome C and Bcl-2 were not affected. NACA treatment decreased neuronal degeneration and apoptosis and increased levels of antioxidative enzyme MnSOD. The antiapoptotic effect was likely regulated by pathways other than cytochrome C. Therefore, NACA prevents brain tissue damage after focal penetrating TBI, warranting further studies towards a clinical application.


Assuntos
Acetilcisteína/análogos & derivados , Apoptose/efeitos dos fármacos , Lesões Encefálicas/patologia , Fármacos Neuroprotetores/farmacologia , Acetilcisteína/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Traumatismos Cranianos Penetrantes/patologia , Marcação In Situ das Extremidades Cortadas , Masculino , Ratos , Ratos Sprague-Dawley
19.
Exp Neurol ; 257: 95-105, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24805071

RESUMO

Mitochondrial dysfunction is becoming a pivotal target for neuroprotective strategies following contusion spinal cord injury (SCI) and the pharmacological compounds that maintain mitochondrial function confer neuroprotection and improve long-term hindlimb function after injury. In the current study we evaluated the efficacy of cell-permeating thiol, N-acetylcysteine amide (NACA), a precursor of endogenous antioxidant glutathione (GSH), on mitochondrial function acutely, and long-term tissue sparing and hindlimb locomotor recovery following upper lumbar contusion SCI. Some designated injured adult female Sprague-Dawley rats (n=120) received either vehicle or NACA (75, 150, 300 or 600mg/kg) at 15min and 6h post-injury. After 24h the total, synaptic, and non-synaptic mitochondrial populations were isolated from a single 1.5cm spinal cord segment (centered at injury site) and assessed for mitochondrial bioenergetics. Results showed compromised total mitochondrial bioenergetics following acute SCI that was significantly improved with NACA treatment in a dose-dependent manner, with maximum effects at 300mg/kg (n=4/group). For synaptic and non-synaptic mitochondria, only 300mg/kg NACA dosage showed efficacy. Similar dosage (300mg/kg) also maintained mitochondrial GSH near normal levels. Other designated injured rats (n=21) received continuous NACA (150 or 300mg/kg/day) treatment starting at 15min post-injury for one week to assess long-term functional recovery over 6weeks post-injury. Locomotor testing and novel gait analyses showed significantly improved hindlimb function with NACA that were associated with increased tissue sparing at the injury site. Overall, NACA treatment significantly maintained acute mitochondrial bioenergetics and normalized GSH levels following SCI, and prolonged delivery resulted in significant tissue sparing and improved recovery of hindlimb function.


Assuntos
Acetilcisteína/análogos & derivados , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Acetilcisteína/uso terapêutico , Animais , Modelos Animais de Doenças , Método Duplo-Cego , Sistemas de Liberação de Medicamentos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/patologia , Coxeadura Animal/tratamento farmacológico , Coxeadura Animal/etiologia , Mitocôndrias/enzimologia , Atividade Motora/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/complicações , Sinapses/efeitos dos fármacos , Sinapses/enzimologia , Sinapses/patologia , Sinapses/ultraestrutura , Fatores de Tempo
20.
Exp Neurol ; 261: 291-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25079371

RESUMO

N-acetylcysteine, a precursor to the potent antioxidant glutathione, has been investigated as a potential therapeutic agent for several decades; however, inconsistent efficacy has been reported for diseases of the central nervous system, postulated to result from restricted passage of this molecule across the blood-brain/spinal cord barriers and cellular membranes, resulting in low bioavailability. The amide form of N-acetylcysteine (NACA) overcomes these limitations while maintaining a high antioxidant potential, and shows promise for combating secondary pathogenesis attributed to oxidative stress. Neurotrauma precipitates a rapid and prolonged disruption of mitochondrial bioenergetics, whereby the production of reactive oxygen species overwhelms the endogenous antioxidant capacity of the cells. Two noteworthy papers from collaborative teams have recently been published in Experimental Neurology, in which NACA was applied to rodent models of traumatic brain and spinal cord injury, respectively. Using sensitive methods to measure respiratory rates in isolated mitochondrial populations, treatment with NACA was shown to maintain mitochondrial function and boost antioxidant reserves, which corresponded with improvements in structural and functional outcomes in both studies. This commentary aims to highlight key findings from this research in a broader context, with an emphasis on methodological advances, future research possibilities, and potential applicability to brain and/or spinal cord injured patients.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/fisiopatologia , Metabolismo Energético/fisiologia , Mitocôndrias/fisiologia , Acetilcisteína/química , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Metabolismo Energético/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa