Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biomol NMR ; 75(1): 71-82, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33475951

RESUMO

The monitoring of non-enzymatic post-translational modifications (PTMs) in therapeutic proteins is important to ensure drug safety and efficacy. Together with methionine and asparagine, aspartic acid (Asp) is very sensitive to spontaneous alterations. In particular, Asp residues can undergo isomerization and peptide-bond hydrolysis, especially when embedded in sequence motifs that are prone to succinimide formation or when followed by proline (Pro). As Asp and isoAsp have the same mass, and the Asp-Pro peptide-bond cleavage may lead to an unspecific mass difference of + 18 Da under native conditions or in the case of disulfide-bridged cleavage products, it is challenging to directly detect and characterize such modifications by mass spectrometry (MS). Here we propose a 2D NMR-based approach for the unambiguous identification of isoAsp and the products of Asp-Pro peptide-bond cleavage, namely N-terminal Pro and C-terminal Asp, and demonstrate its applicability to proteins including a therapeutic monoclonal antibody (mAb). To choose the ideal pH conditions under which the NMR signals of isoAsp and C-terminal Asp are distinct from other random coil signals, we determined the pKa values of isoAsp and C-terminal Asp in short peptides. The characteristic 1H-13C chemical shift correlations of isoAsp, N-terminal Pro and C-terminal Asp under standardized conditions were used to identify these PTMs in lysozyme and in the therapeutic mAb rituximab (MabThera) upon prolonged storage under acidic conditions (pH 4-5) and 40 °C. The results show that the application of our 2D NMR-based protocol is straightforward and allows detecting chemical changes of proteins that may be otherwise unnoticed with other analytical methods.


Assuntos
Ácido Aspártico/química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Sequência de Aminoácidos , Asparagina/química , Isomerismo , Peptídeos/química , Relação Estrutura-Atividade
2.
Anal Chim Acta ; 1142: 48-55, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33280703

RESUMO

A challenge for shotgun proteomics is the identification of low abundance proteins, which is always hampered owing to the extreme complexity of protein digests and highly dynamic concentration range of proteins. To reduce the complexity of the peptide mixture, we developed a novel method to selectively enrich N-terminal proline peptides via hydrazide chemistry. This method consisted of ortho-phthalaldehyde (OPA) blocking of primary amines in peptides, reductive glutaraldehydation of N-terminal proline and solid phase hydrazide chemistry enrichment of aldehyde-modified N-terminal proline peptide. After enrichment, the number of detected peptides containing N-terminal proline increased from 1304 to 4039 and the ratio of N-terminal proline peptides jumped from 4.4% to 93.7%, showing good enrichment specificity towards N-terminal proline peptides. Besides, the ratio of identified peptides to proteins was decreased from 7.8 (29751/3811) to 1.5 (4347/2821), indicating that sample complexity was drastically reduced through this method. As a result, this novel approach for enriching N-terminal proline peptides is effective in identification of low abundance protein owing to the reduction of sample complexity.


Assuntos
Prolina , Proteômica , Aminas , Peptídeos , Proteínas
3.
Redox Biol ; 15: 135-142, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29247897

RESUMO

Macrophage migration inhibitory factor (MIF) is a chemokine-like protein and an important mediator in the inflammatory response. Unlike most other pro-inflammatory cytokines, a number of cell types constitutively express MIF and secretion occurs from preformed stores. MIF is an evolutionarily conserved protein that shows a remarkable functional diversity, including specific binding to surface CD74 and chemokine receptors and the presence of two intrinsic tautomerase and oxidoreductase activities. Several studies have shown that MIF is subject to post-translational modification, particularly redox-dependent modification of the catalytic proline and cysteine residues. In this review, we summarize and discuss MIF post-translational modifications and their effects on the biological properties of this protein. We propose that the redox-sensitive residues in MIF will be modified at sites of inflammation and that this will add further depth to the functional diversity of this intriguing cytokine.


Assuntos
Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Histocompatibilidade Classe II/genética , Fatores Inibidores da Migração de Macrófagos/genética , Oxirredução , Processamento de Proteína Pós-Traducional/genética , Sequência de Aminoácidos/genética , Animais , Cisteína/metabolismo , Humanos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Conformação Proteica
4.
ACS Med Chem Lett ; 1(6): 254-7, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24900204

RESUMO

Protein carbamylation is of great concern both in vivo and in vitro. Here, we report the first structural characterization of a protein carbamylated at the N-terminal proline. The unexpected carbamylation of the α-amino group of the least reactive codified amino acid has been detected in high-resolution electron density maps of a new crystal form of the HIV-1 protease/saquinavir complex. The carbamyl group is found coplanar to the proline ring with a trans conformation. The reaction of N-terminal with cyanate ion derived from the chaotropic agent urea was confirmed by mass spectra analysis on protease single crystals. Implications of carbamylation process in vitro and in vivo are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa