Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120886, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38648726

RESUMO

Intercropping-driven changes in nitrogen (N)-acquiring microbial genomes and functional expression regulate soil N availability and plant N uptake. However, present data seem to be limited to a specific community, obscuring the viewpoint of entire N-acquiring microbiomes and functions. Taking maize intercropped with legumes (peanut and soybean) and non-legumes (gingelly and sweet potato) as models, we studied the effects of intercropping on N transformations and N-acquiring microbiomes in rhizosphere soil across four maize growth stages. Meanwhile, we compiled promising strategies such as random forest analysis and structural equation model for the exploitation of the associations between microbe-driven N dynamics and soil-plant N trade-offs and maize productivity. Compared with monoculture, maize intercropping significantly increased the denitrification rate of rhizosphere soils across four maize growth stages, net N mineralization in the elongation and flowering stages, and the nitrification rate in the seedling and mature stages. The abundance of most N-acquiring microbial populations was influenced significantly by intercropping patterns and maize growth stages. Soil available N components (NH4+-N, NO3--N, and dissolved organic N content) showed a highly direct effect on plant N uptake, which mainly mediated by N transformations (denitrification rate) and N-acquiring populations (amoB, nirK3, and hzsB genes). Overall, the adaptation of N-acquiring microbiomes to changing rhizosphere micro-environments caused by intercropping patterns and maize development could promote soil N transformations and dynamics to meet demand of maize for N nutrient. This would offer another unique perspective to manage the benefits of the highly N-effective and production-effective intercropping ecosystems.


Assuntos
Nitrogênio , Rizosfera , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Nitrogênio/metabolismo , Solo/química , Microbiologia do Solo , Microbiota , Agricultura/métodos
2.
J Environ Manage ; 356: 120643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513582

RESUMO

Hydrothermal aqueous phase (HAP) contains abundant organics and nutrients, which have potential to partially replace chemical fertilizers for enhancing plant growth and soil quality. However, the underlying reasons for low available nitrogen (N) and high N loss in dryland soil remain unclear. A cultivation experiment was conducted using HAP or urea to supply 160 mg N kg-1 in dryland soil. The dynamic changes of soil organic matters (SOMs), pH, N forms, and N cycling genes were investigated. Results showed that SOMs from HAP stimulated urease activity and ureC, which enhanced ammonification in turn. The high-molecular-weight SOMs relatively increased during 5-30 d and then biodegraded during 30-90 d, which SUV254 changed from 0.51 to 1.47 to 0.29 L-1 m-1. This affected ureC that changed from 5.58 to 5.34 to 5.75 lg copies g-1. Relative to urea, addition HAP enhanced ON mineralization by 8.40 times during 30-90 d due to higher ureC. It decreased NO3-N by 65.35%-77.32% but increased AOB and AOA by 0.25 and 0.90 lg copies g-1 at 5 d and 90 d, respectively. It little affected nirK and increased nosZ by 0.41 lg copies g-1 at 90 d. It increased N loss by 4.59 times. The soil pH for HAP was higher than that for urea after 11 d. The comprehensive effects of high SOMs and pH, including ammonification enhancement and nitrification activity inhibition, were the primary causes of high N loss. The core idea for developing high-efficiency HAP fertilizer is to moderately inhibit ammonification and promote nitrification.


Assuntos
Fertilizantes , Solo , Nitrogênio/metabolismo , Microbiologia do Solo , Amônia , Nitrificação , Ureia
3.
J Environ Manage ; 370: 122669, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353241

RESUMO

Labile organic carbon (C) substrates could accelerate microbial transformation of soil N pool by stimulating the decomposition of large molecule organic N. However, it remains unclear how gross N transformation processes (protein depolymerization, amino acid uptake, microbial N mineralization and NH4+-N uptake rates) in response to individual C substrates. Typical paddy soil was incubated with the supplement of oxalic acid or glucose under simulated field water conditions for 16 days to assess the gross N transformation rates by 15N pool dilution assays. A mixture of 15N labeled amino acid was applied to gross protein depolymerization and amino acid uptake rates measurement, and 15N-(NH4)2SO4 was used to gross microbial N mineralization and NH4+-N uptake rates analyses. Oxalic acid supplement promoted the gross protein depolymerization, gross microbial uptake of amino acid, and gross N mineralization rates at the early stage. It was attributed that oxalic acid supplement urged microbes to decompose large molecular organic N to acquire amino acid derived C and excluded the superfluous N via mineralization as evidenced by the increase of NH4+-N. By contrast, glucose supplement diminished the gross N transformation processes, since microbes prefer to utilize the native NH4+-N to meet their N demand supported by the decreasing NH4+-N concentration in soil, and consequently inhibited the decomposition for the large molecule organic N. With the increase of microbial growth, especially for bacteria, glucose amendment stimulated the large molecular organic N depolymerization to acquire amino acid to maintain the microbial C/N stoichiometric balance. Compared to glucose treatment, oxalic acid supplement stimulated more N allocation into microbial growth but not for mineralization, and thus led to higher microbial N use efficiency, which was adverse for available inorganic N supply for rice growth in paddy ecosystem. Overall, this study emphasizes that low molecular organic C substrates of organic acid and glucose exerted contrasting influences on gross N transformation, and help to improve our understanding of the mechanism of the coupling biotransformation of C and N in paddy soil.

4.
Glob Chang Biol ; 29(24): 7117-7130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800353

RESUMO

Replacing synthetic fertilizer by organic manure has been shown to reduce emissions of nitrous oxide (N2 O), but the specific roles of ammonia oxidizing microorganisms and gross nitrogen (N) transformation in regulating N2 O remain unclear. Here, we examined the effect of completely replacing chemical fertilizer with organic manure on N2 O emissions, ammonia oxidizers, gross N transformation rates using a 13-year field manipulation experiment. Our results showed that organic manure reduced cumulative N2 O emissions by 16.3%-210.3% compared to chemical fertilizer. The abundance of ammonia oxidizing bacteria (AOB) was significantly lower in organic manure compared with chemical fertilizer during three growth stages of maize. Organic manure also significantly decreased AOB alpha diversity and changed their community structure. However, organic manure substitution increased the abundance of ammonia oxidizing archaea and the alpha diversity of comammox Nitrospira compared to chemical fertilizer. Interestingly, organic manure decreased organic N mineralization by 23.2%-32.9%, and autotrophic nitrification rate by 10.5%-45.4%, when compared with chemical fertilizer. This study also found a positive correlation between AOB abundance, organic N mineralization and gross autotrophic nitrification rate with N2 O emission, and their contribution to N2 O emission was supported by random forest analysis. Our study highlights the key roles of ammonia oxidizers and N transformation rates in predicting cropland N2 O.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Amônia/análise , Esterco , Nitrogênio/análise , Microbiologia do Solo , Oxirredução , Archaea , Nitrificação
5.
J Environ Manage ; 348: 119238, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820433

RESUMO

There are contrasting reports about whether and how vegetation types influence litter and soil properties. Accurate and comprehensive assessment of the complex relationship between vegetation types, litter and soil characteristics in semi-arid mountain landscapes is almost unknown. Thus, the purpose of this research was to study the effects of (1) Carpinus orientalis Miller., (2) Crataegus melanocarpa M.B., (3) Rhamnus pallasii Fisch. and C.A.Mey, (4) Agropyron longiaristatum Boiss, (5) Bromus tomentolus Bioss. and (6) Hordeum vulgare L. on litter properties and soil physical, chemical, biochemical and biological features in northern Iran. A sampling of the organic layer (litter) and mineral soil (30 × 30 cm) from a depth of 0-10 cm was done for all characteristics in the summer season and for soil microclimate and biological characteristics in the summer and fall seasons. A total of 90 litter samples, 90 soil samples in summer and 90 soil samples in fall (6 vegetation types × 2 seasons × 15 samples) were taken from the area and transferred to the laboratory. Results showed that the Carpinus improved litter properties, soil organic matter contents, total N and available nutrients (P, K, Ca and Mg) and enzyme activities (urease, acid phosphatase, arylsulfatase and invertase). In addition, the population of earthworm groups (epigeic, anecic, and endogeic), acarina, collembola, nematodes, protozoa (especially in the fall season) and bacteria and fungi (especially in the summer season) under Carpinus significantly increased. Data analysis demonstrated higher soil fertility and biological activities in the woody vegetation, which can be assigned to the higher litter input and nutrients. Overall, the findings of this study showed that woody vegetation, especially Carpinus, can improve soil properties at high altitudes of mountainous, semi-arid sites that are often considered as especially fragile and sensitive ecosystems.


Assuntos
Artrópodes , Ecossistema , Animais , Solo/química , Irã (Geográfico)
6.
Environ Sci Technol ; 56(17): 12745-12754, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35985002

RESUMO

The response of soil gross nitrogen (N) cycling to elevated carbon dioxide (CO2) concentration and temperature has been extensively studied in natural and semi-natural ecosystems. However, how these factors and their interaction affect soil gross N dynamics in agroecosystems, strongly disturbed by human activity, remains largely unknown. Here, a 15N tracer study under aerobic incubation was conducted to quantify soil gross N transformation rates in a paddy field exposed to elevated CO2 and/or temperature for 9 years in a warming and free air CO2 enrichment experiment. Results show that long-term exposure to elevated CO2 significantly inhibited or tended to inhibit gross N mineralization at elevated and ambient temperatures, respectively. The inhibition of soil gross N mineralization by elevating CO2 was aggravated by warming in this paddy field. The inhibition of gross N mineralization under elevated CO2 could be due to decreased soil pH. Long-term exposure to elevated CO2 also significantly reduced gross autotrophic nitrification at ambient temperature, probably due to decreased soil pH and gross N mineralization. In contrast, none of the gross N transformation rates were affected by long-term exposure to warming alone. Our study provides strong evidence that long-term dual exposure to elevated CO2 and temperature has a greater negative effect on gross N mineralization rate than the single exposure, potentially resulting in progressive N limitation in this agroecosystem and ultimately increasing demand for N fertilizer.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Ecossistema , Humanos , Nitrogênio , Microbiologia do Solo
7.
J Environ Manage ; 317: 115473, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751272

RESUMO

Plastic mulch is frequently used to increase crop yield, resulting in large quantities of residues accumulating in soil due to low recovery rates. However, the effects of microplastic residues from traditional and biodegradable plastic films on soil nitrogen (N) transformation and bioavailability are not well understood. Here, the main objectives were to examine the effects of micro-sized residues (diameter <5 mm) of polyethylene (PE) and biodegradable plastic mulch films (PLA) on the soil N in two contrasting soils (clay soil and sandy loam soil) in different temperatures (15 °C vs. 25 °C). Results showed that the microplastic presence showed a little effect on soil N transformation and bioavailability at 15 °C, but both microplastics significantly decreased NO3-, mineral N (MN), total dissolved N (TDN), the net cumulative N nitrification (Nn), and the net cumulative N mineralization (Nm) at 25 °C, indicating that microplastics decreased soil N bioavailability at elevated temperature. Meanwhile, the microplastics significantly reduced the temperature sensitivity (Q10) of N mineralization. The presence of microplastics changed the composition of soil mineral N with lower relative NO3- and higher NH4+ compared to the control in clay soil. The sandy loam soil was more susceptible to microplastic pollution compared to clay soil in N transformation, due to different textures and biochemistry properties in the two soils, which showed that microplastics have a significant soil heterogeneity-dependent effect on soil N processes. Therefore, the results underline that the effects of microplastic residues on soil N cycling can be partly linked to soil properties, suggesting the urgent need for further studies examining their impacts on soil nutrient cycling in different soil systems.


Assuntos
Plásticos Biodegradáveis , Solo , Disponibilidade Biológica , Argila , Microplásticos , Minerais , Nitrogênio/análise , Plásticos , Solo/química , Temperatura
8.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836579

RESUMO

Soil extracellular enzymes play a significant role in the N mineralization process. However, few studies have documented the linkage between enzyme activity and the microbial community that performs the function. This study examined the effects of inorganic and organic N fertilization on soil microbial communities and their N mineralization functions over 4 years. Soils were collected from silage corn field plots with four contrasting N treatments: control (no additional N), ammonium sulfate (AS; 100 and 200 kg of N ha-1), and compost (200 kg of N ha-1). Illumina amplicon sequencing was used to comprehensively assess the overall bacterial community (16S rRNA genes), bacterial ureolytic community (ureC), and bacterial chitinolytic community (chiA). Selected genes involved in N mineralization were also examined using quantitative real-time PCR and metagenomics. Enzymes (and marker genes) included protease (npr and sub), chitinase (chiA), urease (ureC), and arginase (rocF). Compost significantly increased diversity of overall bacterial communities even after one application, while ammonium fertilizers had no influence on the overall bacterial communities over four seasons. Bacterial ureolytic and chitinolytic communities were significantly changed by N fertilization. Compost treatment strongly elevated soil enzyme activities after 4 years of repeated application. Functional gene abundances were not significantly affected by N treatments, and they were not correlated with corresponding enzyme activities. N mineralization genes were recovered from soil metagenomes based on a gene-targeted assembly. Understanding how the structure and function of soil microbial communities involved with N mineralization change in response to fertilization practices may indicate suitable agricultural management practices that improve ecosystem services while reducing negative environmental consequences.IMPORTANCE Agricultural N management practices influence the enzymatic activities involved in N mineralization. However, specific enzyme activities do not identify the microbial species directly involved in the measured process, leaving the link between the composition of the microbial community and the production of key enzymes poorly understood. In this study, the application of high-throughput sequencing, real-time PCR, and metagenomics shed light on how the abundance and diversity of microorganisms involved in N mineralization respond to N management. We suggest that N fertilization has significantly changed bacterial ureolytic and chitinolytic communities.


Assuntos
Fertilizantes , Microbiota , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Agricultura , Nitrogênio/administração & dosagem , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Utah
9.
Glob Chang Biol ; 24(9): 3897-3910, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29569802

RESUMO

Rising atmospheric CO2 concentrations are expected to increase nitrous oxide (N2 O) emissions from soils via changes in microbial nitrogen (N) transformations. Several studies have shown that N2 O emission increases under elevated atmospheric CO2 (eCO2 ), but the underlying processes are not yet fully understood. Here, we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO2 , +20% relative to ambient concentrations (aCO2 ), for 15 years. We applied in the field an ammonium-nitrate fertilizer solution, in which either ammonium ( NH4+ ) or nitrate ( NO3- ) was labelled with 15 N. The simultaneous gross N transformation rates were analysed with a 15 N tracing model and a solver method. The results confirmed that after 15 years of eCO2 the N2 O emissions under eCO2 were still more than twofold higher than under aCO2 . The tracing model results indicated that plant uptake of NH4+ did not differ between treatments, but uptake of NO3- was significantly reduced under eCO2 . However, the NH4+ and NO3- availability increased slightly under eCO2 . The N2 O isotopic signature indicated that under eCO2 the sources of the additional emissions, 8,407 µg N2 O-N/m2 during the first 58 days after labelling, were associated with NO3- reduction (+2.0%), NH4+ oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased plant growth and root exudation under eCO2 provided an additional source of bioavailable supply of energy that triggered as a priming effect the stimulation of microbial soil organic matter (SOM) mineralization and fostered the activity of the bacterial nitrite reductase. The resulting increase in incomplete denitrification and therefore an increased N2 O:N2 emission ratio, explains the doubling of N2 O emissions. If this occurs over a wide area of grasslands in the future, this positive feedback reaction may significantly accelerate climate change.


Assuntos
Dióxido de Carbono/farmacologia , Pradaria , Nitrogênio/metabolismo , Óxido Nitroso/análise , Solo/química , Dióxido de Carbono/análise , Mudança Climática , Fertilizantes/análise , Nitratos/farmacologia , Microbiologia do Solo
10.
Ecotoxicol Environ Saf ; 153: 160-167, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29427977

RESUMO

The objective of this study was to determine responses of soil nitrogen (N) transformation, microbial biomass N, and urease activity to the combined effect of cadmium (Cd) toxicity (0 and 30 mg kg-1) and NaCl stress (0, 7.5 and 15 dS m-1) in a clay loam soil unamended (0%) or amended with alfalfa residues (1%, w/w). Cd, NaCl, and alfalfa residues were added to the soil, and the mixtures were incubated for 90 days under standard laboratory conditions (25 ±â€¯1 °C and 70% of water holding capacity [WHC]). The results showed that salinity increased soil Cd availability and toxicity and subsequently decreased soil microbial N transformations (i.e., potential ammonification and nitrification as well as net N mineralization), arginine ammonification and nitrification rates, microbial biomass N, and urease activity. The adverse effects of salinity on soil microbial properties were greater in Cd-polluted than unpolluted soils, at high than low salinity levels, but were lower in residue-amended than unamended soils. These effects were mainly attributed to the increased Cd availability under saline conditions or the decreased Cd availability with residue addition. All the measured soil microbial attributes showed a negative correlation with the available Cd content in the soil. The interaction or combined effects of Cd and NaCl on soil microbial attributes were mostly synergistic in residue-unamended soils but antagonistic in residue-amended soils. The addition of organic residues to Cd-polluted soils may moderate salinity effect, and thus could stimulate the activity of ammonifiers and nitrifiers, as well as urease.


Assuntos
Cádmio/toxicidade , Ciclo do Nitrogênio/efeitos dos fármacos , Nitrogênio/análise , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Biomassa , Medicago sativa/química , Salinidade , Urease/metabolismo
11.
Chemosphere ; 358: 142175, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679173

RESUMO

Carbamazepine (CBZ) is a widely used anticonvulsant drug that has been detected in aquatic environments. This study investigated the toxicity of its by-products (CBZ-BPs), which may surpass CBZ. Unlike the previous studies, this study offered a more systematic approach to identifying toxic BPs and inferring degradation pathways. Furthermore, quadrupole time-of-flight (QTOF) and density functional theory (DFT) calculations were employed to analyze CBZ-BP structures and degradation pathways. Evaluation of total organic carbon (TOC) and total nitrogen (TN) mineralization rates, revealed carbon (C) greater susceptibility to mineralization compared with nitrogen (N). Furthermore, three rules were established for CBZ decarbonization and N removal during degradation, observing the transformation of aromatic compounds into aliphatic hydrocarbons and stable N-containing organic matter over time. Five potentially highly toxic BPs were screened from 14 identified BPs, with toxicity predictions guiding the selection of commercial standards for quantification and true toxicity testing. Additionally, BP207 emerged as the most toxic, supported by the predictive toxicity accumulation model (PTAM). Notably, highly toxic BPs feature an acridine structure, indicating its significant contribution to toxicity. These findings offered valuable insights into the degradation mechanisms of emerging contaminants and the biosafety of aquatic environments during deep oxidation.


Assuntos
Carbamazepina , Peróxido de Hidrogênio , Poluentes Químicos da Água , Carbamazepina/toxicidade , Carbamazepina/química , Poluentes Químicos da Água/toxicidade , Peróxido de Hidrogênio/química , Raios Ultravioleta , Nitrogênio , Anticonvulsivantes/toxicidade , Anticonvulsivantes/química
12.
J Hazard Mater ; 478: 135528, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154476

RESUMO

Microplastics (MPs) in agricultural plastic film mulching system changes microbial functions and nutrient dynamics in soils. However, how biodegradable MPs impact the soil gross nitrogen (N) transformations and crop N uptake remain significantly unknown. In this study, we conducted a paired labeling 15N tracer experiment and microbial N-cycling gene analysis to investigate the dynamics and mechanisms of soil gross N transformation processes in soils amended with conventional (polyethylene, PE) and biodegradable (polybutylene adipate co-terephthalate, PBAT) MPs at concentrations of 0 %, 0.5 %, and 2 % (w/w). The biodegradable MPs-amended soils showed higher gross N mineralization rates (0.5-16 times) and plant N uptake rates (16-32 %) than soils without MPs (CK) and with conventional MPs. The MPs (both PE and PBAT) with high concentration (2 %) increased gross N mineralization rates compared to low concentration (0.5 %). Compare to CK, MPs decreased the soil gross nitrification rates, except for PBAT with 2 % concentration; while PE with 0.5 % concentration and PBAT with 2 % concentration increased but PBAT with 0.5 % concentration decreased the gross N immobilization rates significantly. The results indicated that there were both a concentration effect and a material effect of MPs on soil gross N transformations. Biodegradable MPs increased N-cycling gene abundance by 60-103 %; while there was no difference in the abundance of total N-cycling genes between soils without MPs and with conventional MPs. In summary, biodegradable MPs increased N cycling gene abundance by providing enriched nutrient substrates and enhancing microbial biomass, thereby promoting gross N transformation processes and maize N uptake in short-term. These findings provide insights into the potential consequences associated with the exposure of biodegradable MPs, particularly their impact on soil N cycling processes.


Assuntos
Microplásticos , Ciclo do Nitrogênio , Nitrogênio , Microbiologia do Solo , Poluentes do Solo , Solo , Nitrogênio/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Poliésteres/metabolismo , Poliésteres/química , Biodegradação Ambiental , Plásticos Biodegradáveis/metabolismo , Polietileno/metabolismo , Nitrificação
13.
Bioresour Technol ; 394: 130221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109975

RESUMO

Partial denitrification (PD) is an alternative to providing NO2- for the anaerobic ammonium oxidation (anammox) process. In this study, three upflow anaerobic sludge blankets (UASB) were used to investigate the effect of an external electric field on PD performance. The results indicated that the maximum nitrite transformation ratio (NTR) reached 76.3 %, with an average NTR of 54.1 %, in the presence of external electric field, whereas the average NTR of the control was only 49.8 %. The fitted maximum specific nitrate reduction rates of PD1, PD2, and PD3 were 83.7, 90.5, and 92.3 mg N g-1VSS h-1, respectively, according to the Haldane model analysis. Microbial community analysis demonstrated that the abundance of Thauera, Comamonas, and Accumulibacter increased with electric assistance. In summary, UASB reactor with electrodes set in the upper region was most feasible for the stable PD process, providing an alternative for developing a coupled PD-anammox process.


Assuntos
Desnitrificação , Esgotos , Anaerobiose , Nitrogênio/análise , Reatores Biológicos , Oxirredução , Nitritos
14.
Sci Total Environ ; 944: 173652, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38825209

RESUMO

Straw incorporation with nitrogen (N) fertilization is crucial for enhancing soil fertility and minimizing negative environmental impacts by altering the magnitude and direction of soil N transformation processes. However, the response of soil N transformations to long-term carbon (C) and N inputs, and their primary driving factors, remain poorly understood. Thus, a 15N tracing study was conducted to investigate the effects of straw incorporation (AS) and straw removal (NS) with N levels of 0, 150 and 250 kg N ha-1 per season (N0, N150 and N250) on gross N transformation rates in the North China Plain after 6-year trial. Results indicated that at N0, AS significantly increased soil microbial immobilization of nitrate (NO3--N, INO3) and autotrophic nitrification rates (ONH4) compared to NS. With N fertilization, AS increased gross N immobilization (Itotal), ammonium-N immobilization (NH4+-N, INH4), net NH4+-N immobilization (InetNH4) and net NH4+-N absorption rates (AnetNH4). Specifically, at N150, AS significantly increased recalcitrant organic N mineralization rate (MNrec), while significantly reducing ONH4, labile organic N mineralization (MNlab), and gross N mineralization rates (Mtotal). At N250, AnetNH4, MNlab, MNrec and ONH4 under AS were significantly higher than under NS. Nitrogen application significantly increased ONH4, Itotal and INO3 under two straw management practices, and enhanced INH4 and InetNH4 under AS. Compared to N250, N150 significantly increased INH4 and InetNH4 under AS, while decreasing Mtotal. Opposite results were observed under NS. Meanwhile, NO3--N and dissolved organic carbon (DOC) were master factors controlling immobilization, total nitrogen (TN), hydrolysable NH4+-N (HNN) and stable organic N significantly affected AnetNH4, while labile organic N were the key environmental factors affecting MNrec, all of which positively influenced the rates of assimilation, mineralization and clay mineral adsorption. Overall, this study provides new insights into reducing N fertilization under straw incorporation by quantifying soil N transformation processes.


Assuntos
Agricultura , Fertilizantes , Nitrogênio , Solo , China , Nitrogênio/análise , Solo/química , Agricultura/métodos , Nitrificação , Microbiologia do Solo , Monitoramento Ambiental , Água Subterrânea/química
15.
Bioresour Technol ; 367: 128235, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332857

RESUMO

This study explored the coupling relationships between denitrifiers and N-transformation using multi-level (DNA, RNA and enzyme) and multi-aspect (abundance, diversity, structure, key community, network pattern, and functional module) analyses during cattle-manure (CM) and biochar (CMB) composting. Amino sugar-N (ASN, 0.914) and hydrolysable unknown-N (-0.724) were main organic-N components mediating NH4+-N in CM and CMB, respectively. Biochar lowered nirK, nirS, and nosZ genes copies, up-regulated nir gene transcripts, and inhibited nitrite reductase (NIR) activity. For nirK-denitrifiers, Luteimonas was predominant taxa influencing NO2--N and amino acid-N (AAN). Unclassified_k_norank_d_Bacteria and unclassified_p_Proteobacteria regulated NO3--N and ASN, respectively. These three genera played crucial roles in mediating NIR activity and nosZ/nirK. For nirS-denitrifiers, Paracoccus and Pseudomonas mediated NH4+-N and AAN, respectively, and they were vital genera regulating NO3--N, ASN and NIR activity. Furthermore, nirK-denitrifiers was major contributor to denitrification. Overall, functional denitrifiers might simultaneously participate in multiple N-transformation processes.


Assuntos
Compostagem , Bovinos , Animais , Esterco/microbiologia , Nitrogênio , Desnitrificação/genética , Proteobactérias , Solo/química , Microbiologia do Solo
16.
Sci Total Environ ; 856(Pt 2): 159116, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179828

RESUMO

Soil net nitrogen (N) mineralization (Nmin) is a key process in the forest N cycle regulating the N availability of plant growth. However, it is unclear how N transformation responds to soil hydraulic properties changes. The soil inorganic N pools and N transformation in the early growing season in karst forestlands were investigated by using an intact soil core in situ incubation method. Three different typical vegetation types were selected. The results showed that the mean values of NH4+-N, NO3--N, and inorganic N were 1.05-1.36, 1.55-3.85, and 1.05-2.34 times greater for ferns than for shrubs. NO3--N and NH4+-N mainly occur at soil depths of 0-5 cm and 5-15 cm, respectively. The soil Nmin was 2.21-232.03 times higher at 0-5 cm than at the 10-15 cm. Net N immobilization was found for the juvenile ferns and shrubs at 5-15 cm. The Nmin of juvenile and mature ferns was 1.90-11.78 times and 1.17-16.20 times higher than shrubs, respectively, and shrubs had the highest Ks (69.91 mm h-1) but the lowest water-holding capacity. Both ferns and shrubs were able to hold more water and available water was richest in mature fern soil, which provided an extra water source for fern growth. Principal component analysis (PCA) was used to test whether the measured variables affected Nmin, and the results showed that soil organic matter (SOM), pH, and saturated volumetric water content (θs) were the main soil factors affecting Nmin. In addition, the NH4+-N, NO3--N, and inorganic N stocks were reduced by 3.98 %-59.04 %, 48.07 %-63.30 % and 8.18 %-57.37 % after rainwater input, respectively. Our findings suggest that soil inorganic N and Nmin in the karst forest were regulated by soil hydraulic properties. Changes in the soil hydraulic properties might therefore influence the functioning of soil N transformation.


Assuntos
Florestas , Solo , Solo/química , Nitrogênio/análise , China , Água , Carbonatos
17.
J Hazard Mater ; 455: 131527, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163892

RESUMO

Nitrate is a significant constituent of the total nitrogen pool in shallow aquifers and poses an escalating threat to groundwater resources, making it crucial to comprehend the source, conversion, and elimination of nitrogen using appropriate techniques. Although dual-isotope dynamics in nitrate have been widely used, uncertainties remain regarding the asynchronously temporal changes in δ18O-NO3- and δ15N-NO3- observed in hypoxic aquifers. This study aimed to investigate changes in nitrogen sources and transformations using temporal changes in field-based NO3- isotopic composition, hydro-chemical variables, and environmental DNA profiling, as the groundwater table varied. The results showed that the larger enrichment in δ18O-NO3- (+13‰) compared with δ15N-NO3- (-2‰) on average during groundwater table rise was due to a combination of factors, including high 18O-based atmospheric N deposition, canopies nitrification, and soil nitrification transported vertically by rainfalls, and 18O-enriched O2 produced through microbial and root respiration within denitrification. The strong association between functional gene abundance and nitrogen-related indicators suggests that anammox was actively processed with nitrification but in small bacterial population during groundwater table rise. Furthermore, bacterial species associated with nitrogen-associated gradients provided insight into subsurface nitrogen transformation, with Burkholderiaceae species and Pseudorhodobacter potentially serving as bioindicators of denitrification, while Candidatus Nitrotogn represents soil nitrification. Fluctuating groundwater tables can cause shifts in hydro-chemical and isotopic composition, which in turn can indicate changes in nitrogen sources and transformations. These changes can be used to improve input sources for mixture models and aid in microbial remediation of nitrate.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Nitrogênio/análise , Nitratos/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/química , Solo/química , China
18.
Water Res ; 235: 119837, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905735

RESUMO

Ecological restoration of wetland plants has emerged as an environmentally-friendly and less carbon footprint method for treating secondary effluent wastewater. Root iron plaque (IP) is located at the important ecological niches in constructed wetlands (CWs) ecosystem and is the critical micro-zone for pollutants migration and transformation. Root IP can affect the chemical behaviors and bioavailability of key elements (C, N, P) since its formation/dissolution is a dynamic equilibrium process jointly influenced by rhizosphere habitats. However, as an efficient approach to further explore the mechanism of pollutant removal in CWs, the dynamic formation of root IP and its function have not been fully studied, especially in substrate-enhanced CWs. This article concentrates on the biogeochemical processes between Fe cycling involved in root IP with carbon turnover, nitrogen transformation, and phosphorus availability in CWs rhizosphere. As IP has the potential to enhance pollutant removal by being regulated and managed, we summarized the critical factors affecting the IP formation from the perspective of wetland design and operation, as well as emphasizing the heterogeneity of rhizosphere redox and the role of key microbes in nutrient cycling. Subsequently, interactions between redox-controlled root IP and biogeochemical elements (C, N, P) are emphatically discussed. Additionally, the effects of IP on emerging contaminants and heavy metals in CWs rhizosphere are assessed. Finally, major challenges and outlooks for future research in regards to root IP are proposed. It is expected that this review can provide a new perspective for the efficient removal of target pollutants in CWs.


Assuntos
Poluentes Ambientais , Ferro , Áreas Alagadas , Ecossistema , Águas Residuárias , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos
19.
Environ Sci Pollut Res Int ; 30(54): 116162-116174, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910350

RESUMO

Nitrification inhibitors (NIs) are considered as an effective strategy for reducing nitrification rate and related environmental nitrogen (N) loss. However, whether plant-derived biological NIs had an advantage over chemical NIs in simultaneously inhibiting nitrification rate and N2O production remains unclear. Here, we conducted an aerobic 15N microcosmic incubation experiment to compare the effects of a biological NI (methyl 3-(4-hydroxyphenyl) propionate, MHPP) with three chemical NIs, 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin), dicyandiamide (DCD), and 3,4-dimethylpyrazole phosphate (DMPP) on (i) gross N mineralization and nitrification rate and (ii) the relative importance of nitrification and denitrification in N2O emission in a calcareous soil. The results showed that DMPP significantly inhibited m_gross rate (P < 0.05), whereas DCD, nitrapyrin, and MHPP only numerically inhibited it. Gross N nitrification (n_gross) rates were inhibited by 9.48% in the DCD treatment to 51.5% in the nitrapyrin treatment. Chemical NIs primarily affected the amoA gene abundance of ammonia-oxidizing bacteria (AOB), whereas biological NIs affected the amoA gene abundance of ammonia-oxidizing archaea (AOA) and AOB. AOB's community composition was more susceptible to NIs than AOA, and NIs mainly targeted Nitrosospira clusters of AOB. Chemical NIs of DCD, DMPP, and nitrapyrin proportionally reduced N2O production from nitrification and denitrification. However, the biological NI MHPP stimulated short-term N2O emission and increased the proportion of N2O from denitrification. Our findings showed that the influence of NIs on gross N mineralization rate (m_gross) was dependent on the NI type. MHPP exhibited a moderate n_gross inhibitory capacity compared with the three chemical NIs. The mechanisms of chemical and biological NIs inhibiting n_gross can be partly attributed to changes in the abundance and community of ammonia oxidizers. A more comprehensive evaluation is needed to determine whether biological NIs have advantages over chemical NIs in inhibiting greenhouse gas emissions.


Assuntos
Betaproteobacteria , Solo , Solo/química , Nitrificação , Amônia/análise , Iodeto de Dimetilfenilpiperazina/farmacologia , Microbiologia do Solo , Archaea , Fosfatos/farmacologia , Oxirredução
20.
Sci Total Environ ; 882: 163641, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080304

RESUMO

The effects of exotic plants on soil nitrogen (N) transformations may influence species invasion success. However, the complex interplay between invasive plant N uptake and N transformation in soils remains unclear. In the present study, a series of 15N-labeled pot experiments were carried out with Solidago canadensis L. (S. canadensis), an invasive plant, and the Ntrace tool was used to clarify the preferred inorganic N form and its effects on soil N transformation. According to the results, nitrate-N (NO3--N) uptake rates by S. canadensis were 2.38 and 2.28 mg N kg-1 d-1 in acidic and alkaline soil, respectively, which were significantly higher than the ammonium-N (NH4+-N) uptake rates (1.76 and 1.56 mg N kg-1 d-1, respectively), indicating that S. canadensis was a NO3--N-preferring plant, irrespective of pH condition. Gross N mineralization rate was 0.41 mg N kg-1 d-1 in alkaline soil in the presence of S. canadensis L., which was significantly lower than that in the control (no plant, CK, 2.44 mg N kg-1 d-1). Gross autotrophic nitrification rate also decreased from 5.95 mg N kg-1 d-1 in the CK to 0.04 mg N kg-1 d-1 in the presence of S. canadensis in alkaline soil. However, microbial N immobilization rate increased significantly from 1.09 to 2.16 mg N kg-1 d-1, and from 0.02 to 2.73 mg N kg-1 d-1 after S. canadensis planting, in acidic and alkaline soil, respectively. Heterotrophic nitrification rate was stimulated in the presence of S. canadensis to provide NO3--N to support the N requirements of plants and microbes. The results suggested that S. canadensis can influence the mineralization-immobilization turnover (MIT) to optimize its N requirements while limiting N supply for other plants in the system. The results of the present study enhance our understanding of the competitiveness and mechanisms of invasion of alien plants.


Assuntos
Solidago , Nitrogênio/análise , Solo , Nitrificação , Nitratos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa