Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(17): e0081422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000849

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted between humans and minks, and some mutations in the spike (S) protein, especially in the receptor-binding domain (RBD), have been identified in mink-derived viruses. Here, we examined binding of the mink angiotensin-converting enzyme 2 (ACE2) receptor to mink-derived and important human-originating variants, and we demonstrated that most of the RBD variants increased the binding affinities to mink ACE2 (mkACE2). Cryo-electron microscopy structures of the mkACE2-RBD Y453F (with a Y-to-F change at position 453) and mkACE2-RBD F486L complexes helped identify the key residues that facilitate changes in mkACE2 binding affinity. Additionally, the data indicated that the Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and human vaccinated sera efficiently prevented infection of human cells by pseudoviruses expressing Y453F, F486L, or N501T RBD. Our findings provide an important molecular mechanism for the rapid adaptation of SARS-CoV-2 in minks and highlight the potential influence of the main mink-originating variants for humans. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a broad range of hosts. Mink-derived SARS-CoV-2 can transmit back to humans. There is an urgent need to understand the binding mechanism of mink-derived SARS-CoV-2 variants to mink receptor. In this study, we identified all mutations in the receptor-binding domain (RBD) of spike (S) protein from mink-derived SARS-CoV-2, and we demonstrated the enhanced binding affinity of mink angiotensin-converting enzyme 2 (ACE2) to most of the mink-derived RBD variants as well as important human-originating RBD variants. Cryo-electron microscopy structures revealed that the Y453F and F486L mutations enhanced the binding forces in the interaction interface. In addition, Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and the SARS-CoV-2 pseudoviruses with Y453F, F486L, or N501T mutations were neutralized by human vaccinated sera. Therefore, our results provide valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19/veterinária , Vison , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Monoclonais/metabolismo , COVID-19/virologia , Microscopia Crioeletrônica , Humanos , Mutação , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2/genética
2.
J Mol Graph Model ; 116: 108260, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35809511

RESUMO

The SARS-CoV-2 is an RNA-based virus and the most vital step of its survival is the attachment to hACE2 through its spike protein. Although SARS-CoV-2 has the ability to maintain high accurate replication and it can be accepted as a low mutation risked virus, it already showed more than nine thousand mutations in spike protein, of which 44 mutations are located within a 3.2 Å interacting distance from the hACE2 receptor. Mutations on spike protein, N501Y and N501T raised serious concerns for higher transmissibility and resistance towards current vaccines. In the current study, the mutational outcomes of N501Y and N501T on the hACE2-SARS CoV-2 spike protein complexation were analyzed by employing all-atom classic molecular dynamics (MD) simulations. These simulations revealed that both N501Y and N501T mutations increased the binding strength of spike protein to the host hACE2, predicted by binding free energy analysis via MM/GBSA rescoring scheme. This study highlights the importance of energy-based analysis for identifying mutational outcomes and will shed light on handling long-term and effective treatment strategies including repurposing anti-viral drugs, anti-SARS-CoV-2 antibodies, vaccines, and antisense based-therapies.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , Humanos , Mutação , Peptidil Dipeptidase A/química , Ligação Proteica , Receptores Virais/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
J Vet Diagn Invest ; 33(5): 939-942, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34109885

RESUMO

Large numbers of mink have been infected with SARS-CoV2 containing the spike protein Y453F mutation in Europe, causing zoonosis concerns. To evaluate the genetic characteristics of the U.S. and Canadian mink-derived SARS-CoV2 sequences, we analyzed all animal-derived (977) and all Canadian (19,529) and U.S. (173,277) SARS-CoV2 sequences deposited in GISAID from December 2019 to March 12, 2021, and identified 2 dominant novel variants, the N501T-G142D variant and N501T-G142D-F486L variant, in the U.S. mink-derived SARS-CoV2 sequences. These variants were not found in mink from Canada or other countries. The Y453F mutation was not identified in the mink-derived sequences in the United States and Canada. The N501T mutation occurred 2 mo earlier in humans than in mink in the United States, and the novel N501T-G142D and N501T-G142D-F486L variants were found in humans prior to mink. Our results suggest that the novel SARS-CoV2 variants may have evolved during human infection and were then transmitted to mink populations in the United States.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/veterinária , Canadá/epidemiologia , Vison/virologia , Mutação , RNA Viral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa