Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Br J Nutr ; 120(6): 665-680, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30176959

RESUMO

Necrotising enterocolitis (NEC) is a devastating disease that typically affects formula-fed premature infants, suggesting that dietary components may influence disease pathogenesis. TAG are the major fat components of infant formula, and their digestion requires pancreatic lipases, which may be naturally deficient in premature neonates. We hypothesise that NEC develops partly from the accumulation of incompletely digested long-chain TAG-containing unsaturated fatty acids within the intestinal epithelial cells, leading to oxidative stress and enterocyte damage. We further hypothesise that the administration of a formula that contains reduced TAG ('pre-digested fat') that do not require lipase action may reduce NEC severity. To test these hypotheses, we induced NEC in neonatal mice using three different fat formulations, namely 'standard fat', 'pre-digested fat' or 'very low fat', and determined that mice fed 'standard fat' developed severe NEC, which was significantly reduced in mice fed 'pre-digested fat' or 'very low fat'. The expression level of the critical fat-digesting enzyme carboxyl ester lipase was significantly lower in the newborn compared with older pups, leading to impaired fat digestion. The accumulation of mal-digested fat resulted in the significant accumulation of fat droplets within the intestinal epithelium of the distal ileum, resulting in the generation of reactive oxygen species and intestinal inflammation. Strikingly, these changes were prevented in pups fed 'pre-digested fat' or 'very low fat' formulas. These findings suggest that nutritional formula containing a pre-digested fat system may overcome the natural lipase deficiency of the premature gut, and serve as a novel approach to prevent NEC.


Assuntos
Dieta , Gorduras na Dieta/farmacologia , Digestão , Enterocolite Necrosante/metabolismo , Fórmulas Infantis/química , Mucosa Intestinal/efeitos dos fármacos , Triglicerídeos/farmacologia , Animais , Animais Recém-Nascidos , Gorduras na Dieta/metabolismo , Enterocolite Necrosante/etiologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/patologia , Ácidos Graxos Insaturados/metabolismo , Alimentos Formulados , Humanos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Inflamação/etiologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Lipase/metabolismo , Camundongos , Estresse Oxidativo , Índice de Gravidade de Doença , Triglicerídeos/metabolismo
2.
Biosci Biotechnol Biochem ; 82(2): 312-319, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29316860

RESUMO

Advanced glycation end products (AGEs) formed from glyceraldehyde (Gcer) and glycolaldehyde (Gcol) are involved in the pathogenesis of diabetic complications, via interactions with a receptor for AGEs (RAGE). In this study, we aimed to elucidate the RAGE-binding structure in Gcer and Gcol-derived AGEs and identify the minimal moiety recognized by RAGE. Among Gcer and Gcol-derived AGEs, GLAP (glyceraldehyde-derived pyridinium) and GA-pyridine elicited toxicity in PC12 neuronal cells. The toxic effects of GLAP and GA-pyridine were suppressed in the presence of anti-RAGE antibody or the soluble form of RAGE protein. Furthermore, the cytotoxicity test using GLAP analog compounds indicated that the 3-hydroxypyridinium (3-HP) structure is sufficient for RAGE-dependent toxicity. Surface plasmon resonance analysis showed that 3-HP derivatives directly interact with RAGE. These results indicate that GLAP and GA-pyridine are RAGE-binding epitopes, and that 3-HP, a common moiety of GLAP and GA-pyridine, is essential for the interaction with RAGE.


Assuntos
Citotoxinas/química , Citotoxinas/toxicidade , Piridinas/química , Piridinas/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Animais , Gliceraldeído/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos
3.
J Clin Exp Hepatol ; 13(1): 116-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647403

RESUMO

The incidence of alcoholic-associated hepatitis (AH) is increasing. The treatment options for severe AH (sAH) are scarce and limited to corticosteroid therapy which showed limited mortality benefit in short-term use only. Therefore, there is a dire need for developing safe and effective therapies for patients with sAH and to improve their high mortality rates.This review article focuses on the current novel therapeutics targeting various mechanisms in the pathogenesis of alcohol-related hepatitis. Anti-inflammatory agents such as IL-1 inhibitor, Pan-caspase inhibitor, Apoptosis signal-regulating kinase-1, and CCL2 inhibitors are under investigation. Other group of agents include gut-liver axis modulators, hepatic regeneration, antioxidants, and Epigenic modulators. We describe the ongoing clinical trials of some of the new agents for alcohol-related hepatitis. Conclusion: A combination of therapies was investigated, possibly providing a synergistic effect of drugs with different mechanisms. Multiple clinical trials of novel therapies in AH remain ongoing. Their result could potentially make a difference in the clinical course of the disease. DUR-928 and granulocyte colony-stimulating factor had promising results and further trials are ongoing to evaluate their efficacy in the large patient sample.

4.
JHEP Rep ; 5(4): 100687, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36923240

RESUMO

Background & Aims: Acetaminophen (APAP)-induced acute liver injury (AILI) is a leading cause of acute liver failure (ALF). N-acetylcysteine (NAC) is only effective within 24 h after APAP intoxication, raising an urgent need for alternative approaches to treat this disease. This study aimed to test whether cathelicidin (Camp), which is a protective factor in chronic liver diseases, protects mice against APAP-induced liver injury and ALF. Methods: A clinically relevant AILI model and an APAP-induced ALF model were generated in mice. Genetic and pharmacological approaches were used to interfere with the levels of cathelicidin in vivo. Results: An increase in hepatic pro-CRAMP/CRAMP (the precursor and mature forms of mouse cathelicidin) was observed in APAP-intoxicated mice. Upregulated cathelicidin was derived from liver-infiltrating neutrophils. Compared with wild-type littermates, Camp knockout had no effect on hepatic injury but dampened hepatic repair in AILI and reduced survival in APAP-induced ALF. CRAMP administration reversed impaired liver recovery observed in APAP-challenged Camp knockout mice. Delayed CRAMP, CRAMP(1-39) (the extended form of CRAMP), or LL-37 (the mature form of human cathelicidin) treatment exhibited a therapeutic benefit for AILI. Co-treatment of cathelicidin and NAC in AILI displayed a stronger hepatoprotective effect than NAC alone. A similar additive effect of CRAMP(1-39)/LL-37 and NAC was observed in APAP-induced ALF. The pro-reparative role of cathelicidin in the APAP-damaged liver was attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced neutrophil phagocytosis of necrotic cell debris in an autocrine manner. Conclusions: Cathelicidin reduces APAP-induced liver injury and ALF in mice by promoting liver recovery via facilitating inflammation resolution, suggesting a therapeutic potential for late-presenting patients with AILI with or without ALF. Impact and implications: Acetaminophen-induced acute liver injury is a leading cause of acute liver failure. The efficacy of N-acetylcysteine, the only clinically approved drug against acetaminophen-induced acute liver injury, is significantly reduced for late-presenting patients. We found that cathelicidin exhibits a great therapeutic potential in mice with acetaminophen-induced liver injury or acute liver failure, which makes up for the limitation of N-acetylcysteine therapy by specifically promoting liver repair after acetaminophen intoxication. The pro-reparative role of cathelicidin, as a key effector molecule of neutrophils, in the APAP-injured liver is attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced phagocytic function of neutrophils in an autocrine manner.

5.
Respir Med Case Rep ; 37: 101640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345568

RESUMO

Inhalational injury to the upper and lower airway occurs due to thermal or chemical irritation causing airway edema, capillary leak, mucin, and fibrin debris forming clots and soot. The use of unfractionated heparin (UFH) nebulization was found to be effective by dissolving airway clots. We report a case of inhalational burn injury where UFH nebulization led to a better outcome. A healthy male was trapped in a residential room during a fire in the building. He sustained facial, neck, upper chest, and left upper extremity burns accounting for 25% of body surface area. He was intubated at the site and started on supportive care. In the surgical intensive care unit, bronchoscopy showed severe tracheobronchial burn injury; a thorough lavage was done, started on UFH and N-acetylcysteine nebulization (NAC). The patient improved, and his trachea was extubated on day 6. In our patient, unfractionated heparin nebulization was beneficial as the patient was extubated early without landing to acute respiratory distress syndrome.

6.
JACC Basic Transl Sci ; 7(6): 525-540, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35818509

RESUMO

The association between migraine and patent foramen ovale (PFO) has been documented. We aimed to investigate platelet activation, prothrombotic phenotype, and oxidative stress status of migraineurs with PFO on 100 mg/day aspirin, before and 6 months after PFO closure. Data show that, before PFO closure, expression of the classical platelet activation markers is comparable in patients and aspirin-treated healthy subjects. Conversely, MHA-PFO patients display an increased prothrombotic phenotype (higher tissue factorpos platelets and microvesicles and thrombin-generation potential), sustained by an altered oxidative stress status. This phenotype, which is more controlled by P2Y12-blockade than by aspirin, reverted after PFO closure together with a complete migraine remission. (pLatelEts And MigRaine iN patEnt foRamen Ovale [LEARNER]; NCT03521193).

7.
Toxicol Rep ; 9: 1929-1937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518453

RESUMO

Ziziphus abyssinica root bark is widely used in folk medicine to manage liver diseases, particularly, jaundice but its effect on paracetamol-induced liver toxicity (PILT) has not yet been validated. This study explored the ameliorative effect of ethanolic root bark extract of Ziziphus abyssinica (ZAE) against PILT in rats. The flavonoid and phenolic content of ZAE was evaluated using Folin-Ciocalteau and aluminium trichloride colorimetric methods, respectively. Antioxidant activity of ZAE was determined in vitro by evaluating its ferrous reducing antioxidant capacity (FRAC) as well as DPPH and nitic oxide (NO) radicals scavenging activities. Sprague-Dawley rats were assigned to six groups (n = 6) and administered with normal saline (10 mL/kg, p.o.), N-acetylcysteine (50 mg/kg, i.p.) and ZAE (30, 100, and 300 mg/kg, p.o.) respectively for seven days after which they received paracetamol (PCM, 3000 mg/kg, p.o.). Animals were sacrificed 48 h after paracetamol administration under light anaesthesia and assessed for liver toxicity and oxidative stress. Total flavonoid and phenolic contents of ZAE were 1313.425 µg/mL quercetin equivalence and 268.31 µg/mL gallic acid equivalence respectively. ZAE exhibited marked FRAC as well as DPPH and NO radical scavenging activities with IC50s of 80.41 ± 1.56, 67.56 ± 1.11 and 7.11 ± 1.48 µg/mL respectively. ZAE and N-acetylcysteine significantly (p < 0.05) reduced the paracetamol-mediated elevation of serum total bilirubin, proteins and activity of liver enzymes (AST, ALP, and ALT). Similarly, ZAE increased hepatic glutathione, total thiols and catalase activity of the paracetamol intoxicated rats. Morphological changes associated with the paracetamol hepatotoxicity were also ameliorated by ZAE. Overall, the hepatoprotective effect of ZAE may be related to its antioxidant property.

8.
Biochem Biophys Rep ; 29: 101213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128081

RESUMO

Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.

9.
J Clin Exp Hepatol ; 12(5): 1360-1370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157143

RESUMO

Acute-on-chronic liver failure (ACLF) is a clinical syndrome that occurs in patients with cirrhosis and is characterised by acute deterioration, organ failure and high short-term mortality. Alcohol is one of the leading causes of ACLF and the most frequently reported aetiology of underlying chronic liver disease. Among patients with alcoholic hepatitis (AH), ACLF is a frequent and severe complication. It is characterised by both immune dysfunction associated to an increased risk of infection and high-grade systemic inflammation that ultimately induce organ failure. Diagnosis and severity of ACLF determine AH prognosis, and therefore, ACLF prognostic scores should be used in severe AH with organ failure. Corticosteroids remain the first-line treatment for severe AH but they seem insufficient when ACLF is associated. Novel therapeutic targets to contain the excessive inflammatory response and reduce infection have been identified and are under investigation. With liver transplantation remaining one of the most effective therapies for severe AH and ACLF, adequate organ allocation represents a growing challenge. Hence, a clear understanding of the pathophysiology, clinical implications and management strategies of ACLF in AH is essential for hepatologists, which is narrated briefly in this review.

10.
Front Physiol ; 12: 658518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366878

RESUMO

BACKGROUND: Ciliary defects cause heterogenous phenotypes related to mutation burden which lead to impaired development. A previously reported homozygous deletion in the Man1a2 gene causes lethal respiratory failure in newborn pups and decreased lung ciliation compared with wild type (WT) pups. The effects of heterozygous mutation, and the potential for rescue are not known. PURPOSE: We hypothesized that survival and lung ciliation, (a) would decrease progressively in Man1a2 +/- heterozygous and Man1a2 -/- null newborn pups compared with WT, and (b) could be enhanced by gestational treatment with N-Acetyl-cysteine (NAC), an antioxidant. METHODS: Man1a2+/- adult mice were fed NAC or placebo from a week before breeding through gestation. Survival of newborn pups was monitored for 24 h. Lungs, liver and tails were harvested for morphology, genotyping, and transcriptional profiling. RESULTS: Survival (p = 0.0001, Kaplan-Meier) and percent lung ciliation (p = 0.0001, ANOVA) measured by frequency of Arl13b+ respiratory epithelial cells decreased progressively, as hypothesized. Compared with placebo, gestational NAC treatment enhanced (a) lung ciliation in pups with each genotype, (b) survival in heterozygous pups (p = 0.017) but not in WT or null pups. Whole transcriptome of lung but not liver demonstrated patterns of up- and down-regulated genes that were identical in living heterozygous and WT pups, and completely opposite to those in dead heterozygous and null pups. Systems biology analysis enabled reconstruction of protein interaction networks that yielded functionally relevant modules and their interactions. In these networks, the mutant Man1a2 enzyme contributes to abnormal synthesis of proteins essential for lung development. The associated unfolded protein, hypoxic and oxidative stress responses can be mitigated with NAC. Comparisons with the developing human fetal lung transcriptome show that NAC likely restores normal vascular and epithelial tube morphogenesis in Man1a2 mutant mice. CONCLUSION: Survival and lung ciliation in the Man1a2 mutant mouse, and its improvement with N-Acetyl cysteine is genotype-dependent. NAC-mediated rescue depends on the central role for oxidative and hypoxic stress in regulating ciliary function and organogenesis during development.

11.
J Clin Exp Hepatol ; 11(5): 623-627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511825

RESUMO

Metabolic associated fatty liver disease, previously known as nonalcoholic fatty liver disease, is the most common cause of chronic liver disease across all ethnic groups; however, it remains enormously underestimated.1 , 2 Sepsis, hepatotoxic medications and malnutrition in the acute settings on top of unknown cirrhosis can lead to decompensation and various metabolic complications. Pyroglutamic acidosis is a rarely recognised cause for unexplained high anion gap metabolic acidosis that is felt to be frequently underdiagnosed. Particular patients at risk include women, the elderly, those on regular paracetamol and those suffering with malnourishment or sepsis. Other risk factors include alcohol abuse and chronic liver disease (3). We present the case of a patient with recurrent episodes of pyroglutamic acidosis and encephalopathy in the context of undiagnosed nonalcoholic fatty liver disease with cirrhosis.

12.
Acta Pharm Sin B ; 11(6): 1513-1525, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34221865

RESUMO

Ferroptosis is a type of cell death accompanied by iron-dependent lipid peroxidation, thus stimulating ferroptosis may be a potential strategy for treating gastric cancer, therapeutic agents against which are urgently required. Jiyuan oridonin A (JDA) is a natural compound isolated from Jiyuan Rabdosia rubescens with anti-tumor activity, unclear anti-tumor mechanisms and limited water solubility hamper its clinical application. Here, we showed a2, a new JDA derivative, inhibited the growth of gastric cancer cells. Subsequently, we discovered for the first time that a2 induced ferroptosis. Importantly, compound a2 decreased GPX4 expression and overexpressing GPX4 antagonized the anti-proliferative activity of a2. Furthermore, we demonstrated that a2 caused ferrous iron accumulation through the autophagy pathway, prevention of which rescued a2 induced ferrous iron elevation and cell growth inhibition. Moreover, a2 exhibited more potent anti-cancer activity than 5-fluorouracil in gastric cancer cell line-derived xenograft mice models. Patient-derived tumor xenograft models from different patients displayed varied sensitivity to a2, and GPX4 downregulation indicated the sensitivity of tumors to a2. Finally, a2 exhibited well pharmacokinetic characteristics. Overall, our data suggest that inducing ferroptosis is the major mechanism mediating anti-tumor activity of a2, and a2 will hopefully serve as a promising compound for gastric cancer treatment.

13.
Toxicol Rep ; 8: 376-385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680863

RESUMO

One of the global burdens of health care is an alcohol-associated liver disease (ALD) and liver-related death which is caused due to acute or chronic consumption of alcohol. Chronic consumption of alcohol damage the normal defense mechanism of the liver and likely to disturb the gut barrier system, mucosal immune cells, which leads to decreased nutrient absorption. Therapy of ALD depends upon the spectrum of liver injury that causes fatty liver, hepatitis, and cirrhosis. The foundation of therapy starts with abstinence from alcohol. Corticosteroids are used for the treatment of ALD but due to poor acceptance, continuing mortality, and identification of tumor necrosis factor-alpha as an integral component in pathogenesis, recent studies focus on pentoxifylline and, antitumor necrosis factor antibody to neutralize cytokines in the therapy of severe alcoholic hepatitis. Antioxidants also play a significant role in the treatment but till today there is no universally accepted therapy available for any stage of ALD. The treatment aspects need to restore the gut functions and require nutrient-based treatments to regulate the functions of the gut system and prevent liver injury. The vital action of saturated fatty acids greatly controls the gut barrier. Overall, this review mainly focuses on the mechanism of alcohol-induced metabolic dysfunction, contribution to liver pathogenesis, the effect of pregnancy, and targeted therapy of ALD.

14.
Acta Pharm Sin B ; 11(12): 3791-3805, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024307

RESUMO

Acetaminophen (APAP) overdose can induce liver injury and is the most frequent cause of acute liver failure in the United States. We investigated the role of p62/SQSTM1 (referred to as p62) in APAP-induced liver injury (AILI) in mice. We found that the hepatic protein levels of p62 dramatically increased at 24 h after APAP treatment, which was inversely correlated with the hepatic levels of APAP-adducts. APAP also activated mTOR at 24 h, which is associated with increased cell proliferation. In contrast, p62 knockout (KO) mice showed increased hepatic levels of APAP-adducts detected by a specific antibody using Western blot analysis but decreased mTOR activation and cell proliferation with aggravated liver injury at 24 h after APAP treatment. Surprisingly, p62 KO mice recovered from AILI whereas the wild-type mice still sustained liver injury at 48 h. We found increased number of infiltrated macrophages in p62 KO mice that were accompanied with decreased hepatic von Willebrand factor (VWF) and platelet aggregation, which are associated with increased cell proliferation and improved liver injury at 48 h after APAP treatment. Our data indicate that p62 inhibits the late injury phase of AILI by increasing autophagic selective removal of APAP-adducts and mitochondria but impairs the recovery phase of AILI likely by enhancing hepatic blood coagulation.

15.
Toxicol Rep ; 8: 962-970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026559

RESUMO

Hepatic encephalopathy (HE) following acute and chronic liver failure is defined as a complex of neuropsychiatric abnormalities, such as discrete personal changes, sleep disorder, forgetfulness, confusion, and decreasing the level of consciousness to coma. The use and design of suitable animal models that represent clinical features and pathological changes of HE are valuable to map the molecular mechanisms that result in HE. Among different types of animal models, thioacetamide (TAA) has been used extensively for the induction of acute liver injury and HE. This agent is not directly hepatotoxic but its metabolites induce liver injury through the induction of oxidative stress and produce systemic inflammation similar to that seen in acute HE patients. In this short review article, we shortly review the most important pathological findings in animal models of acute HE following the administration of TAA.

16.
Acta Pharm Sin B ; 11(12): 3740-3755, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024303

RESUMO

Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.

17.
Acta Pharm Sin B ; 11(10): 3060-3091, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33977080

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.

18.
World Allergy Organ J ; 13(10): 100473, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33133334

RESUMO

BACKGROUND: Allergic rhinitis (AR) is a type I hypersensitivity mediated by IgE in the nose. Thioredoxin-interacting protein (TXNIP) plays a pivotal role in the process of producing reactive oxygen species (ROS). Resveratrol is a TXNIP inhibitor. Nonetheless, its role and mechanism in AR are still undetermined. The present study aimed to explore the effect and mechanism of resveratrol on an ovalbumin (OVA) induced mouse model of AR. METHODS: AR murine model was established using OVA and administrated intranasally with resveratrol or N-acetylcysteine (NAC). Hematoxylin and eosin (HE) stain was used for evaluating eosinophils. Immunohistochemistry (IHC) staining and real-time PCR were employed to evaluate immunolabeling and mRNA expression of TXNIP in nasal mucosas of mice. Malondialdehyde (MDA) level and superoxide dismutase (SOD) activity in nasal tissue homogenates were measured using MDA and SOD Assay Kit. Concentrations of OVA-specific IgE and histamines in serum, and OVA-specific IgE, PGD2, LTC4, ECP, IL-4, IL-5, IL-6, IL-33 and TNF-α in nasal lavage fluid (NLF) were assayed by ELISA. In vitro studies, western blotting, real-time PCR, ELISA, ROS detecting dye DCFH-DA, MDA, and SOD Assay Kit were performed to evaluate the effects and mechanisms of OVA, resveratrol or NAC on spleen mononuclear cells. RESULTS: We found significant alternations of sneezing, nasal rubbing, inflammatory cytokines, eosinophil numbers, TXNIP, MDA, and SOD levels in resveratrol or NAC treated mice compared with untreated AR mice. In cultured spleen mononuclear cells, TXNIP, MDA, SOD, ROS and inflammatory cytokines levels were altered by OVA but reversed by resveratrol or NAC. CONCLUSIONS: Resveratrol could effectively alleviate murine AR by inhibiting TXNIP-oxidative stress pathway.

19.
Mol Genet Metab Rep ; 25: 100641, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32923369

RESUMO

Ethylmalonic encephalopathy (EE) is a rare metabolic disorder caused by dysfunction of ETHE1 protein, a mitochondrial dioxygenase involved in hydrogen sulfide (H2S) detoxification. EE is usually a fatal disease with a severe clinical course mainly associated with developmental delay and regression, recurrent petechiae, orthostatic acrocyanosis, and chronic diarrhoea. Treatment includes antioxidants, antibiotics that lower H2S levels and antispastic medications, which are not curative. The mutations causing absence of the ETHE1 protein, as is the case for the described patient, usually entail a severe fatal phenotype. Although there are rare reported cases with mild clinical findings, the mechanism leading to these milder cases is also unclear. Here, we describe an 11-year-old boy with an ETHE1 gene mutation who has no neurocognitive impairment but chronic diarrhoea, which is controlled by oral medical treatment, and progressive spastic paraparesis that responded to Achilles tendon lengthening.

20.
J Clin Exp Hepatol ; 10(4): 322-328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655235

RESUMO

BACKGROUND: Acute liver failure (ALF) is the leading cause for emergency liver transplantation (LT) all over the world. We looked at the profile of cases who required LT for ALF from a single centre to identify the possible predictors of poor outcomes. METHODOLOGY: During the 10-year period starting from 2007, 320 cases of ALF were treated at our institution, of which 70 (median age 24 years, Male:Female 1:2) underwent LT. Retrospective analyses of these 70 patients were performed. RESULTS: Etiology was identifiable in 73% (n = 51) of cases (yellow phosphorous [YP] poisoning [n = 16], Hepatitis A virus [HAV] [n = 15], Hepatitis B virus [HBV] [n = 5], Hepatitis E virus [HEV] [n = 1], anti-tubercular therapy [ATT] induced [n = 6], acute Wilson's [n = 3], and autoimmune [n = 5]]. Upon meeting King's College Hospital criteria, 69 had live donor LT (61 right lobe grafts, three left lobe grafts, five left lateral segment grafts) and one had deceased donor LT. Among these, there were five auxiliary partial orthotopic grafts and four ABO-incompatible transplants. Overall, 90-day mortality was 35.7% (n = 25), predominantly due to sepsis. Significant risk factors for mortality on multivariate analysis included indeterminate etiology, pre-op renal dysfunction, and Grade IV hepatic encephalopathy (HE). Cumulative 10-year survival of the remaining survivors was 95.6% (n = 45). CONCLUSION: LT for ALF carries high perioperative mortality (35.7%) in those presenting with indeterminate etiology, pre-op renal dysfunction, and Grade IV HE. Nevertheless, if they survive the perioperative period, long-term survival is excellent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa