Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(27): e2123090119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759670

RESUMO

Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is essential for cellular energy metabolism coupling NADH oxidation to proton translocation. The mechanism of proton translocation by complex I is still under debate. Its membrane arm contains an unusual central axis of polar and charged amino acid residues connecting the quinone binding site with the antiporter-type subunits NuoL, NuoM, and NuoN, proposed to catalyze proton translocation. Quinone chemistry probably causes conformational changes and electrostatic interactions that are propagated through these subunits by a conserved pattern of predominantly lysine, histidine, and glutamate residues. These conserved residues are thought to transfer protons along and across the membrane arm. The distinct charge distribution in the membrane arm is a prerequisite for proton translocation. Remarkably, the central subunit NuoM contains a conserved glutamate residue in a position that is taken by a lysine residue in the two other antiporter-type subunits. It was proposed that this charge asymmetry is essential for proton translocation, as it should enable NuoM to operate asynchronously with NuoL and NuoN. Accordingly, we exchanged the conserved glutamate in NuoM for a lysine residue, introducing charge symmetry in the membrane arm. The stably assembled variant pumps protons across the membrane, but with a diminished H+/e- stoichiometry of 1.5. Thus, charge asymmetry is not essential for proton translocation by complex I, casting doubts on the suggestion of an asynchronous operation of NuoL, NuoM, and NuoN. Furthermore, our data emphasize the importance of a balanced charge distribution in the protein for directional proton transfer.


Assuntos
Membrana Celular , Complexo I de Transporte de Elétrons , Proteínas de Escherichia coli , NADH Desidrogenase , Substituição de Aminoácidos , Membrana Celular/química , Sequência Conservada , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamatos/química , Glutamatos/genética , Lisina/química , Lisina/genética , NADH Desidrogenase/química , NADH Desidrogenase/genética , Prótons , Quinonas/química
2.
Prostate ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004950

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a condition generally associated with advanced age in men that can be accompanied by bothersome lower urinary tract symptoms (LUTS) including intermittency, weak stream, straining, urgency, frequency, and incomplete bladder voiding. Pharmacotherapies for LUTS/BPH include alpha-blockers, which relax prostatic and urethral smooth muscle and 5ɑ-reductase inhibitors such as finasteride, which can block conversion of testosterone to dihydrotestosterone thereby reducing prostate volume. Celecoxib is a cyclooxygenase-2 inhibitor that reduces inflammation and has shown some promise in reducing prostatic inflammation and alleviating LUTS for some men with histological BPH. However, finasteride and celecoxib can reduce mitochondrial function in some contexts, potentially impacting their efficacy for alleviating BPH-associated LUTS. METHODS: To determine the impact of these pharmacotherapies on mitochondrial function in prostate tissues, we performed immunostaining of mitochondrial Complex I (CI) protein NADH dehydrogenase [ubiquinone] iron-sulfur protein 3 (NDUFS3) and inflammatory cells on BPH specimens from patients naïve to treatment, or who were treated with celecoxib and/or finasteride for 28 days, as well as prostate tissues from male mice treated with celecoxib or vehicle control for 28 days. Quantification and statistical correlation analyses of immunostaining were performed. RESULTS: NDUFS3 immunostaining was decreased in BPH compared to normal adjacent prostate. Patients treated with celecoxib and/or finasteride had significantly decreased NDUFS3 in both BPH and normal tissues, and no change in inflammatory cell infiltration compared to untreated patients. Mice treated with celecoxib also displayed a significant decrease in NDUFS3 immunostaining and no change in inflammatory cell infiltration. CONCLUSIONS: These findings suggest that celecoxib and/or finasteride are associated with an overall decrease in NDUFS3 levels in prostate tissues but do not impact the presence of inflammatory cells, suggesting a decline in mitochondrial CI function in the absence of enhanced inflammation. Given that BPH has recently been associated with increased prostatic mitochondrial dysfunction, celecoxib and/or finasteride may exacerbate existing mitochondrial dysfunction in some BPH patients thereby potentially limiting their overall efficacy in providing metabolic stability and symptom relief.

3.
Appl Environ Microbiol ; 90(5): e0041424, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38563750

RESUMO

Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.


Assuntos
Proteínas de Bactérias , Lactococcus lactis , NADH Desidrogenase , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/enzimologia , Transporte de Elétrons , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Regulação Bacteriana da Expressão Gênica , Fermentação
4.
Brain ; 146(4): 1328-1341, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36350566

RESUMO

Leber hereditary optic neuropathy (LHON) is an important example of mitochondrial blindness with the m.11778G>A mutation in the MT-ND4 gene being the most common disease-causing mtDNA variant worldwide. The REFLECT phase 3 pivotal study is a randomized, double-masked, placebo-controlled trial investigating the efficacy and safety of bilateral intravitreal injection of lenadogene nolparvovec in patients with a confirmed m.11778G>A mutation, using a recombinant adeno-associated virus vector 2, serotype 2 (rAAV2/2-ND4). The first-affected eye received gene therapy; the fellow (affected/not-yet-affected) eye was randomly injected with gene therapy or placebo. The primary end point was the difference in change from baseline of best-corrected visual acuity (BCVA) in second-affected/not-yet-affected eyes treated with lenadogene nolparvovec versus placebo at 1.5 years post-treatment, expressed in logarithm of the minimal angle of resolution (LogMAR). Forty-eight patients were treated bilaterally and 50 unilaterally. At 1.5 years, the change from baseline in BCVA was not statistically different between second-affected/not-yet-affected eyes receiving lenadogene nolparvovec and placebo (primary end point). A statistically significant improvement in BCVA was reported from baseline to 1.5 years in lenadogene nolparvovec-treated eyes: -0.23 LogMAR for the first-affected eyes of bilaterally treated patients (P < 0.01); and -0.15 LogMAR for second-affected/not-yet-affected eyes of bilaterally treated patients and the first-affected eyes of unilaterally treated patients (P < 0.05). The mean improvement in BCVA from nadir to 1.5 years was -0.38 (0.052) LogMAR and -0.33 (0.052) LogMAR in first-affected and second-affected/not-yet-affected eyes treated with lenadogene nolparvovec, respectively (bilateral treatment group). A mean improvement of -0.33 (0.051) LogMAR and -0.26 (0.051) LogMAR was observed in first-affected lenadogene nolparvovec-treated eyes and second-affected/not-yet-affected placebo-treated eyes, respectively (unilateral treatment group). The proportion of patients with one or both eyes on-chart at 1.5 years was 85.4% and 72.0% for bilaterally and unilaterally treated patients, respectively. The gene therapy was well tolerated, with no systemic issues. Intraocular inflammation, which was mostly mild and well controlled with topical corticosteroids, occurred in 70.7% of lenadogene nolparvovec-treated eyes versus 10.2% of placebo-treated eyes. Among eyes treated with lenadogene nolparvovec, there was no difference in the incidence of intraocular inflammation between bilaterally and unilaterally treated patients. Overall, the REFLECT trial demonstrated an improvement of BCVA in LHON eyes carrying the m.11778G>A mtDNA mutation treated with lenadogene nolparvovec or placebo to a degree not reported in natural history studies and supports an improved benefit/risk profile for bilateral injections of lenadogene nolparvovec relative to unilateral injections.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , DNA Mitocondrial/genética , Terapia Genética , Inflamação/etiologia , Mutação/genética , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia
5.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654744

RESUMO

Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite Leishmania as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some Leishmania species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (Leishmania infantum, Li) and a fully operational (Leishmania major, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by Leishmania, not even by complex I-expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places Leishmania NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I-overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of Leishmania, we genetically validate NDH2-an enzyme without a counterpart in mammals-as a candidate target for leishmanicidal drugs.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Leishmania/enzimologia , NADH Desidrogenase/metabolismo , Animais , Transporte de Elétrons , Leishmania/fisiologia , Leishmaniose/enzimologia , Mutação , NADH Desidrogenase/genética , Oxirredução
6.
Parasitol Res ; 123(2): 116, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289423

RESUMO

Acanthamoeba castellanii, a ubiquitous protozoan, is responsible for significant diseases such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. A crucial survival strategy of A. castellanii involves the formation of highly resistant cysts during adverse conditions. This study delves into the cellular processes underpinning encystment, focusing on gene expression changes related to reactive oxygen species (ROS) balance, with a particular emphasis on mitochondrial processes. Our findings reveal a dynamic response within the mitochondria during encystment, with the downregulation of key enzymes involved in oxidative phosphorylation (COX, AOX, and NADHalt) during the initial 48 h, followed by their overexpression at 72 h. This orchestrated response likely creates a pro-oxidative environment, facilitating encystment. Analysis of other ROS processing enzymes across the cell reveals differential expression patterns. Notably, antioxidant enzymes, such as catalases, glutaredoxins, glutathione S-transferases, peroxiredoxins, and thioredoxins, mirror the mitochondrial trend of downregulation followed by upregulation. Additionally, glycolysis and gluconeogenesis are downregulated during the early stages in order to potentially balance the metabolic requirement of the cyst. Our study underscores the importance of ROS regulation in Acanthamoeba encystment. Understanding these mechanisms offers insights into infection control and identifies potential therapeutic targets. This work contributes to unraveling the complex biology of A. castellanii and may aid in combatting Acanthamoeba-related infections. Further research into ROS and oxidase enzymes is warranted, given the organism's remarkable respiratory versatility.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Cistos , Humanos , Acanthamoeba castellanii/genética , Espécies Reativas de Oxigênio , Catalase
7.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473924

RESUMO

The molecular entity responsible for catalyzing ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (Fd-CEF) remains unidentified. To reveal the in vivo molecular mechanism of Fd-CEF, evaluating ferredoxin reduction-oxidation kinetics proves to be a reliable indicator of Fd-CEF activity. Recent research has demonstrated that the expression of Fd-CEF activity is contingent upon the oxidation of plastoquinone. Moreover, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In this study, we analyzed the impact of reduced Fd on Fd-CEF activity by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed as the mediator of Fd-CEF, and pgr5hope1 exhibited a comparable CO2 assimilation rate and the same reduction-oxidation level of PQ as the wild type. However, P700 oxidation was suppressed with highly reduced Fd in pgr5hope1, unlike in the wild type. As anticipated, the Fd-CEF activity was enhanced in pgr5hope1 compared to the wild type, and its activity further increased with the oxidation of PQ due to the elevated CO2 assimilation rate. This in vivo research clearly demonstrates that the expression of Fd-CEF activity requires not only reduced Fd but also oxidized PQ. Importantly, PGR5 was found to not catalyze Fd-CEF, challenging previous assumptions about its role in this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/metabolismo , Ferredoxinas/metabolismo , Transporte de Elétrons , Elétrons , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Oxirredução , Proteínas de Arabidopsis/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
8.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792214

RESUMO

BACKGROUND: Staphylococcus aureus is a common pathogenic microorganism in humans and animals. Type II NADH oxidoreductase (NDH-2) is the only NADH:quinone oxidoreductase present in this organism and represents a promising target for the development of anti-staphylococcal drugs. Recently, myricetin, a natural flavonoid from vegetables and fruits, was found to be a potential inhibitor of NDH-2 of S. aureus. The objective of this study was to evaluate the inhibitory properties of myricetin against NDH-2 and its impact on the growth and expression of virulence factors in S. aureus. RESULTS: A screening method was established to identify effective inhibitors of NDH-2, based on heterologously expressed S. aureus NDH-2. Myricetin was found to be an effective inhibitor of NDH-2 with a half maximal inhibitory concentration (IC50) of 2 µM. In silico predictions and enzyme inhibition kinetics further characterized myricetin as a competitive inhibitor of NDH-2 with respect to the substrate menadione (MK). The minimum inhibitory concentrations (MICs) of myricetin against S. aureus strains ranged from 64 to 128 µg/mL. Time-kill assays showed that myricetin was a bactericidal agent against S. aureus. In line with being a competitive inhibitor of the NDH-2 substrate MK, the anti-staphylococcal activity of myricetin was antagonized by MK-4. In addition, myricetin was found to inhibit the gene expression of enterotoxin SeA and reduce the hemolytic activity induced by S. aureus culture on rabbit erythrocytes in a dose-dependent manner. CONCLUSIONS: Myricetin was newly discovered to be a competitive inhibitor of S. aureus NDH-2 in relation to the substrate MK. This discovery offers a fresh perspective on the anti-staphylococcal activity of myricetin.


Assuntos
Flavonoides , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Flavonoides/farmacologia , Flavonoides/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Antibacterianos/farmacologia , Antibacterianos/química , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Humanos , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo
9.
J Biol Chem ; 298(8): 102182, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752362

RESUMO

The ion-pumping NQR complex is an essential respiratory enzyme in the physiology of many pathogenic bacteria. This enzyme transfers electrons from NADH to ubiquinone through several cofactors, including riboflavin (vitamin B2). NQR is the only enzyme reported that is able to use riboflavin as a cofactor. Moreover, the riboflavin molecule is found as a stable neutral semiquinone radical. The otherwise highly reactive unpaired electron is stabilized via an unknown mechanism. Crystallographic data suggested that riboflavin might be found in a superficially located site in the interface of NQR subunits B and E. However, this location is highly problematic, as the site does not have the expected physiochemical properties. In this work, we have located the riboflavin-binding site in an amphipathic pocket in subunit B, previously proposed to be the entry site of sodium. Here, we show that this site contains absolutely conserved residues, including N200, N203, and D346. Mutations of these residues decrease enzymatic activity and specifically block the ability of NQR to bind riboflavin. Docking analysis and molecular dynamics simulations indicate that these residues participate directly in riboflavin binding, establishing hydrogen bonds that stabilize the cofactor in the site. We conclude that riboflavin is likely bound in the proposed pocket, which is consistent with enzymatic characterizations, thermodynamic studies, and distance between cofactors.


Assuntos
Quinona Redutases , Vibrio cholerae , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Oxirredução , Quinona Redutases/química , Riboflavina/genética , Sódio/metabolismo , Vibrio cholerae/metabolismo
10.
Ann Bot ; 132(1): 133-162, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37409716

RESUMO

BACKGROUND AND AIMS: The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns. METHOD: A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP. KEY RESULTS: Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential. CONCLUSIONS: Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.

11.
Microb Cell Fact ; 22(1): 137, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496040

RESUMO

As a concentrated energy source with high added value, hydrogen has great development prospects, with special emphasis on sustainable microbial production as a replacement for traditional fossil fuels. In this study, λ-Red recombination was used to alter the activity of Complex I by single and combined knockout of nuoE, nuoF and nuoG. In addition, the conversion of malic to pyruvic acid was promoted by overexpressing the maeA gene, which could increase the content of NADH and formic acid in the bacterial cells. Compared to the original strain, hydrogen production was 65% higher in the optimized strain IAM1183-EFG/M, in which the flux of the formic acid pathway was increased by 257%, the flux of the NADH pathway was increased by 13%, and the content of metabolites also changed significantly. In further bioreactor, the total hydrogen production of the scale-up IAM1183-EFG/M after 44 h of fermentation was 4.76 L, which increased by 18% compared with the starting strain. This study provides a new direction for future exploration of microbial hydrogen production by combinatorial modification of multiple genes.


Assuntos
Enterobacter aerogenes , Enterobacter aerogenes/genética , NAD/metabolismo , Fermentação , Hidrogênio/metabolismo
12.
Parasitol Res ; 122(3): 769-779, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36604333

RESUMO

Paramphistomosis is caused by paramphistome or amphistome parasites, including Fischoederius elongatus, Gastrothylax crumenifer, Orthocoelium parvipapillatum, and Paramphistomum epiclitum. The control and prevention of these parasite outbreaks are difficult because of the wide occurrence of these species. Besides, the clinical manifestations and their egg characteristics are similar to those of other intestinal flukes in the paramphistome group, leading to misdiagnosis. Here, we employed DNA barcoding using NADH dehydrogenase (ubiquinone, alpha 1) (ND1) and cytochrome c oxidase subunit I (COI), coupled with high-resolution melting analysis (Bar-HRM), for species differentiation. As a result, ParND1_3 and ParCOI4 resulted in positive amplification in the paramphistomes and Fasciola gigantica, with significantly different melting curves for each species. The melting temperatures of each species obtained clearly differed. Regarding sensitivity, the limit of detection (LoD) for all species of paramphistomes was 1 pg/µl. Our findings suggest that Bar-HRM using ParND1_3 is highly suitable for the differentiation of paramphistome species. This approach can be used in parasite detection and epidemiological studies in cattle.


Assuntos
Doenças dos Bovinos , Fasciola , Paramphistomatidae , Infecções por Trematódeos , Bovinos , Animais , Código de Barras de DNA Taxonômico , Infecções por Trematódeos/parasitologia , Reação em Cadeia da Polimerase , Paramphistomatidae/genética , Fasciola/genética , Doenças dos Bovinos/parasitologia
13.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003681

RESUMO

Mitochondrial dysfunction contributes to numerous chronic diseases, and mitochondria are targets for various toxins and xenobiotics. Therefore, the development of drugs or therapeutic strategies targeting mitochondria is an important task in modern medicine. It is well known that the primary, although not the sole, function of mitochondria is ATP generation, which is achieved by coupled respiration. However, a high membrane potential can lead to uncontrolled reactive oxygen species (ROS) production and associated dysfunction. For over 50 years, scientists have been studying various synthetic uncouplers, and for more than 30 years, uncoupling proteins that are responsible for uncoupled respiration in mitochondria. Additionally, the proteins of the mitochondrial alternative respiratory pathway exist in plant mitochondria, allowing noncoupled respiration, in which electron flow is not associated with membrane potential formation. Over the past two decades, advances in genetic engineering have facilitated the creation of various cellular and animal models that simulate the effects of uncoupled and noncoupled respiration in different tissues under various disease conditions. In this review, we summarize and discuss the findings obtained from these transgenic models. We focus on the advantages and limitations of transgenic organisms, the observed physiological and biochemical changes, and the therapeutic potential of uncoupled and noncoupled respiration.


Assuntos
Doenças Metabólicas , Consumo de Oxigênio , Animais , Animais Geneticamente Modificados , Mitocôndrias/metabolismo , Respiração Celular , Doenças Metabólicas/metabolismo , Respiração , Espécies Reativas de Oxigênio/metabolismo
14.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569521

RESUMO

The activity of ferredoxin (Fd)-dependent cyclic electron flow (Fd-CEF) around photosystem I (PSI) was determined in intact leaves of Arabidopsis thaliana. The oxidation rate of Fd reduced by PSI (vFd) and photosynthetic linear electron flow activity are simultaneously measured under actinic light illumination. The vFd showed a curved response to the photosynthetic linear electron flow activity. In the lower range of photosynthetic linear flow activity with plastoquinone (PQ) in a highly reduced state, vFd clearly showed a linear relationship with photosynthetic linear electron flow activity. On the other hand, vFd increased sharply when photosynthetic linear electron flow activity became saturated with oxidized PQ as the net CO2 assimilation rate increased. That is, under higher photosynthesis conditions, we observed excess vFd resulting in electron flow over photosynthetic linear electron flow. The situation in which excess vFd was observed was consistent with the previous Fd-CEF model. Thus, excess vFd could be attributed to the in vivo activity of Fd-CEF. Furthermore, the excess vFd was also observed in NAD(P)H dehydrogenase-deficient mutants localized in the thylakoid membrane. The physiological significance of the excessive vFd was discussed.


Assuntos
Arabidopsis , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/metabolismo , Ferredoxinas/metabolismo , Transporte de Elétrons , Elétrons , Clorofila , Fotossíntese/fisiologia , Oxirredução , Luz
15.
EMBO Rep ; 21(5): e45832, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202364

RESUMO

The success of Staphylococcus aureus as a pathogen is due to its capability of fine-tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy-yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH-dependent aerobic respiration on the physiology of S. aureus. Differing from many pathogens, S. aureus has two type-2 respiratory NADH dehydrogenases (NDH-2s) but lacks the respiratory ion-pumping NDHs. Here, we show that the NDH-2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α-toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two-component system, which responds to fatty acids regulation, is responsible for the link between NADH-dependent respiration and virulence in S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , NAD , Staphylococcus aureus/genética , Virulência
16.
Ecotoxicol Environ Saf ; 239: 113593, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567928

RESUMO

Endosulfan, a neurotoxic, highly persistent organochlorine insecticide, is known for its acute and chronic toxicity. We have shown that a single sublethal dose of endosulfan caused high induction of oxidative stress in the liver and brain by altering the antioxidant status, as shown by reduction in the antioxidant enzymes SOD, GPx, GST, GR along with increased ROS and lipid peroxidation. The cerebral region in the brain showed a higher level of oxidative stress than the cerebellum, revealing differential sensitivity of the brain regions to endosulfan. Depletion of natural antioxidants causes the imbalance of redox status in cells, and the role of mitochondrial distress causally related to the cellular oxidative stress in vivo is not well understood. We have shown that reduction in the mitochondrial NADH dehydrogenase activity in the brain is associated with the induction of ROS in endosulfan-treated rats. Although oxidative stress is induced in both the liver and brain, the oxidative damage to the brain has implications for the toxic outcome in view of the brain's lower antioxidant defenses and high oxygen consumption.


Assuntos
Antioxidantes , Endossulfano , NADH Desidrogenase , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Endossulfano/toxicidade , Glutationa/metabolismo , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/patologia , NADH Desidrogenase/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
17.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430571

RESUMO

Hypoxic stress occurs in various physiological and pathological states, such as aging, disease, or high-altitude exposure, all of which pose a challenge to many organs in the body, necessitating adaptation. However, the exact mechanisms by which hypoxia affects advanced brain function (learning and memory skills in particular) remain unclear. In this study, we investigated the effects of hypoxic stress on hippocampal function. Specifically, we studied the effects of the dysfunction of mitochondrial oxidative phosphorylation using global proteomics. First, we found that hypoxic stress impaired cognitive and motor abilities, whereas it caused no substantial changes in the brain morphology or structure of mice. Second, bioinformatics analysis indicated that hypoxia affected the expression of 516 proteins, of which 71.1% were upregulated and 28.5% were downregulated. We demonstrated that mitochondrial function was altered and manifested as a decrease in NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 expression, accompanied by increased reactive oxygen species generation, resulting in further neuronal injury. These results may provide some new insights into how hypoxic stress alters hippocampal function via the dysfunction of mitochondrial oxidative phosphorylation.


Assuntos
Mitocôndrias , Proteômica , Camundongos , Animais , Mitocôndrias/metabolismo , Hipocampo/metabolismo , Hipóxia/metabolismo , Neurônios/metabolismo
18.
Molecules ; 27(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684429

RESUMO

Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.


Assuntos
Antioxidantes , Doenças Mitocondriais , Medicina de Precisão , Anticonvulsivantes/uso terapêutico , Antioxidantes/uso terapêutico , DNA Mitocondrial/genética , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Proteínas Mitocondriais/metabolismo
19.
J Biol Chem ; 295(9): 2544-2554, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31974161

RESUMO

Mammalian mitochondria assemble four complexes of the respiratory chain (RCI, RCIII, RCIV, and RCV) by combining 13 polypeptides synthesized within mitochondria on mitochondrial ribosomes (mitoribosomes) with over 70 polypeptides encoded in nuclear DNA, translated on cytoplasmic ribosomes, and imported into mitochondria. We have previously observed that mitoribosome assembly is inefficient because some mitoribosomal proteins are produced in excess, but whether this is the case for other mitochondrial assemblies such as the RCs is unclear. We report here that pulse-chase stable isotope labeling with amino acids in cell culture (SILAC) is a valuable technique to study RC assembly because it can reveal considerable differences in the assembly rates and efficiencies of the different complexes. The SILAC analyses of HeLa cells indicated that assembly of RCV, comprising F1/Fo-ATPase, is rapid with little excess subunit synthesis, but that assembly of RCI (i.e. NADH dehydrogenase) is far less efficient, with dramatic oversynthesis of numerous proteins, particularly in the matrix-exposed N and Q domains. Unassembled subunits were generally degraded within 3 h. We also observed differential assembly kinetics for individual complexes that were immunoprecipitated with complex-specific antibodies. Immunoprecipitation with an antibody that recognizes the ND1 subunit of RCI co-precipitated a number of proteins implicated in FeS cluster assembly and newly synthesized ubiquinol-cytochrome c reductase Rieske iron-sulfur polypeptide 1 (UQCRFS1), the Rieske FeS protein in RCIII, reflecting some coordination between RCI and RCIII assemblies. We propose that pulse-chase SILAC labeling is a useful tool for studying rates of protein complex assembly and degradation.


Assuntos
Complexo I de Transporte de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , ATPases Translocadoras de Prótons/genética , Técnicas de Cultura de Células/métodos , Núcleo Celular/genética , DNA/genética , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/química , Células HeLa , Humanos , Marcação por Isótopo/métodos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/metabolismo , NADH Desidrogenase/química , Peptídeos/genética , Transporte Proteico/genética , ATPases Translocadoras de Prótons/química
20.
Am J Hum Genet ; 102(3): 460-467, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29429571

RESUMO

Respiratory chain complex I deficiency is the most frequently identified biochemical defect in childhood mitochondrial diseases. Clinical symptoms range from fatal infantile lactic acidosis to Leigh syndrome and other encephalomyopathies or cardiomyopathies. To date, disease-causing variants in genes coding for 27 complex I subunits, including 7 mitochondrial DNA genes, and in 11 genes encoding complex I assembly factors have been reported. Here, we describe rare biallelic variants in NDUFB8 encoding a complex I accessory subunit revealed by whole-exome sequencing in two individuals from two families. Both presented with a progressive course of disease with encephalo(cardio)myopathic features including muscular hypotonia, cardiac hypertrophy, respiratory failure, failure to thrive, and developmental delay. Blood lactate was elevated. Neuroimaging disclosed progressive changes in the basal ganglia and either brain stem or internal capsule. Biochemical analyses showed an isolated decrease in complex I enzymatic activity in muscle and fibroblasts. Complementation studies by expression of wild-type NDUFB8 in cells from affected individuals restored mitochondrial function, confirming NDUFB8 variants as the cause of complex I deficiency. Hereby we establish NDUFB8 as a relevant gene in childhood-onset mitochondrial disease.


Assuntos
Encefalopatias/genética , Complexo I de Transporte de Elétrons/deficiência , Doença de Leigh/genética , Doenças Mitocondriais/genética , Mutação/genética , Sequência de Aminoácidos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Fosforilação Oxidativa , Linhagem , Porinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa