Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 23(6): e202100643, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35080802

RESUMO

Azoreductases require NAD(P)H to reduce azo dyes but the high cost of NAD(P)H limits its application. Formate dehydrogenase (FDH) allows NAD(P)+ recycling and therefore, the fusion of these two biocatalysts seems promising. This study investigated the changes to the fusion protein involving azoreductase (AzoRo) of Rhodococcus opacus 1CP and FDH (FDHC23S and FDHC23SD195QY196H ) of Candida boidinii in different positions with His-tag as the linker. The position affected enzyme activities as AzoRo activity decreased by 20-fold when it is in the N-terminus of the fusion protein. FDHC23S +AzoRo was the most active construct and was further characterized. Enzymatic activities of FDHC23S +AzoRo decreased compared to parental enzymes but showed improved substrate scope - accepting bulkier dyes. Moreover, pH has an influence on the stability and activity of the fusion protein because at pH 6 (pH that is suboptimal for FDH), the dye reduction decreased to more than 50 % and this could be attributed to the impaired NADH supply for the AzoRo part.


Assuntos
Formiato Desidrogenases , NAD , Biocatálise , Corantes , Formiato Desidrogenases/química , NAD/metabolismo , Nitrorredutases/metabolismo
2.
Chemistry ; 28(55): e202201430, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35758216

RESUMO

Natural photosynthesis is a highly unified biocatalytic system, which coupled cofactor (NAD(P)H) regeneration and enzymatic CO2 reduction efficiently for solar energy conversion. Mimicking nature, a novel system with Rh complex covalently grafted onto NH2 -functionalized polymeric carbon nitride (NH2 -PCN) was constructed. The integrated connection of the light-harvesting and electron mediation modules as Rhm3 -N-PCN could promote the efficient NAD+ reduction to NADH. As a result, the integrated system exhibited a conversion of ∼66 % within 20 minutes. By further coupling in situ generated NADH with formate dehydrogenase (FDH), a photoenzymatic production of formic acid (HCOOH) from CO2 was accomplished. Moreover, by immobilizing FDH onto a hydrophobic membrane, an enhanced HCOOH production of ∼5.0 mM can be obtained due to the concentrated CO2 on the gas-liquid-solid three-phase interface. Our work herein provides an integrated strategy for coupling the anchored electron mediator with immobilized enzyme for enhanced artificial photosynthesis.


Assuntos
Formiato Desidrogenases , NAD , Dióxido de Carbono/química , Enzimas Imobilizadas , Formiato Desidrogenases/química , Nitrilas , Regeneração
3.
Angew Chem Int Ed Engl ; 61(31): e202206283, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35585038

RESUMO

Coenzyme NADH regeneration is crucial for sustained photoenzymatic catalysis of CO2 reduction. However, light-driven NADH regeneration still suffers from the low regeneration efficiency and requires the use of a homogeneous Rh complex. Herein, a Rh complex-based electron transfer unit was chemically attached onto the linker of the MIL-125-NH2 . The coupling between the light-harvesting iminopyridine unit and electron-transferring Rh-complex facilitated the photo-induced electron transfer for the NADH regeneration with the yield of 66.4 % in 60 mins for 5 cycles. The formate dehydrogenase was further deposited onto the hydrophobic layer of the membrane by a reverse filtering technique, which forms the gas-liquid-solid reaction interface around the enzyme site. It gave an enhanced formic acid yield of 9.5 mM in 24 hours coupled with the in situ regenerated NADH. The work could shed light on the construction of integrated inorganic-enzyme hybrid systems for artificial photosynthesis.


Assuntos
Estruturas Metalorgânicas , Dióxido de Carbono/química , Estruturas Metalorgânicas/química , NAD/química , Regeneração
4.
Angew Chem Int Ed Engl ; 61(3): e202111804, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34705321

RESUMO

Electrochemical regeneration of reduced nicotinamide adenine dinucleotide (NADH) is an extremely important challenge for the electroenzymatic synthesis of many valuable chemicals. Although some important progress has been made with modified electrodes concerning the reduction of NAD+ , the scale-up is difficult due to mass transport limitations inherent to large-size electrodes. Here, we propose instead to employ a dispersion of electrocatalytically active modified microparticles in the bulk of a bipolar electrochemical cell. In this way, redox reactions occur simultaneously on all of these individual microelectrodes without the need of a direct electrical connection. The concept is validated by using [Rh(Cp*)(bpy)Cl]+ functionalized surfaces, either of carbon felt as a reference material, or carbon microbeads acting as bipolar objects. In the latter case, enzymatically active 1,4-NADH is electroregenerated at the negatively polarized face of the particles. The efficiency of the system can be fine-tuned by controlling the electric field in the reaction compartment and the number of dispersed microelectrodes. This wireless bioelectrocatalytic approach opens up very interesting perspectives for electroenzymatic synthesis in the bulk phase.


Assuntos
Complexos de Coordenação/química , NAD/química , Ródio/química , Catálise , Técnicas Eletroquímicas
5.
Molecules ; 24(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336696

RESUMO

9α-Hydroxy-4-androstene-3,17-dione (9-OH-AD) is one of the significant intermediates for the preparation of ß-methasone, dexamethasone, and other steroids. In general, the key enzyme that enables the biotransformation of 4-androstene-3,17-dione (AD) to 9-OH-AD is 3-phytosterone-9α-hydroxylase (KSH), which consists of two components: a terminal oxygenase (KshA) and ferredoxin reductase (KshB). The reaction is carried out with the concomitant oxidation of NADH to NAD+. In this study, the more efficient 3-phytosterone-9α-hydroxylase oxygenase (KshC) from the Mycobacterium sp. strain VKM Ac-1817D was confirmed and compared with reported KshA. To evaluate the function of KshC on the bioconversion of AD to 9-OH-AD, the characterization of KshC and the compounded system of KshB, KshC, and NADH was constructed. The optimum ratio of KSH oxygenase to reductase content was 1.5:1. An NADH regeneration system was designed by introducing a formate dehydrogenase, further confirming that a more economical process for biological transformation from AD to 9-OH-AD was established. A total of 7.78 g of 9-OH-AD per liter was achieved through a fed-batch process with a 92.11% conversion rate (mol/mol). This enzyme-mediated hydroxylation method provides an environmentally friendly and economical strategy for the production of 9-OH-AD.


Assuntos
Androstenos/metabolismo , Biotransformação , Formiato Desidrogenases/metabolismo , Oxigenases de Função Mista/metabolismo , NAD/metabolismo , Oxirredução , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilação , Redes e Vias Metabólicas
6.
Angew Chem Int Ed Engl ; 58(16): 5376-5381, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30761713

RESUMO

The synthesis of fully conjugated sp2 -carbon covalent organic frameworks (COF) is extremely challenging given the difficulty of the formation of very stable carbon-carbon double bonds (-C=C-). Here, we report the successful preparation of a 2D COF (TP-COF) based on triazine as central planar units bridged by sp2 -carbon linkers through the -C=C- condensation reaction. High-resolution-transmission electron microscopy (HRTEM) clearly confirmed the tessellated hexagonal pore structure with a pore center-to-center distance of 2 nm. Powder X-ray diffraction (PXRD) together with structural simulations revealed an AA stacking mode of the obtained layered structure. TP-COF turned out to be an excellent semiconductor material with a LUMO energy of -3.23 eV and a band gap of 2.36 eV. Excitingly, this novel sp2 -carbon conjugated TP-COF exhibited unprecedented coenzyme regeneration efficiency and can significantly boost the coenzyme-assisted synthesis of l-glutamate to a record-breaking 97 % yield within 12 minutes.

7.
Appl Microbiol Biotechnol ; 101(2): 647-657, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27761634

RESUMO

1,3-Propanediol (1,3-PDO) is a monomer for the synthesis of various polyesters. It is widely used in industries including cosmetics, solvents, and lubricants. Here, the multi-modular engineering was used to improve the concentration and tolerance of 1,3-PDO in Klebsiella pneumoniae. Firstly, the concentration of 1,3-PDO was increased by 25 %, while the concentrations of by-products were reduced considerably through one-step evolution which focused on the glycerol pathway. In addition, the 1,3-PDO tolerance was improved to 150 g L-1. Secondly, co-substrate transport system was regulated, and the 1,3-PDO concentration, yield, and productivity of the mutant were improved to 76.4 g L-1, 0.53 mol mol-1, and 2.55 g L-1 h-1, respectively. Finally, NADH regeneration was introduced and the recombinant strain was successfully achieved with a high productivity of 2.69 g L-1 h-1. The concentration and yield of 1,3-PDO were also improved to 86 g L-1 and 0.59 mol mol-1. This strategy described here provides an approach of achieving a superior strain which is able to produce 1,3-PDO with high productivity and yield.


Assuntos
Vias Biossintéticas/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Engenharia Metabólica , Propilenoglicóis/metabolismo , Tolerância a Medicamentos , Klebsiella pneumoniae/efeitos dos fármacos , Recombinação Genética
8.
Molecules ; 22(11)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140277

RESUMO

BACKGROUND: l-Phenyllactic acid (l-PLA)-a valuable building block in the pharmaceutical and chemical industry-has recently emerged as an important monomer in the composition of the novel degradable biocompatible material of polyphenyllactic acid. However, both normally chemically synthesized and naturally occurring phenyllactic acid are racemic, and the product yields of reported l-PLA synthesis processes remain unsatisfactory. METHODS: We developed a novel recombinant Escherichia coli strain, co-expressing l-lactate dehydrogenase (l-LDH) from Lactobacillus plantarum subsp. plantarum and glucose dehydrogenase (GDH) from Bacillus megaterium, to construct a recombinant oxidation/reduction cycle for whole-cell biotransformation of phenylpyruvic acid (PPA) into chiral l-PLA in an enantioselective and continuous manner. RESULTS: During fed-batch bioconversion with intermittent PPA feeding, l-PLA yield reached 103.8 mM, with an excellent enantiomeric excess of 99.7%. The productivity of l-PLA was as high as 5.2 mM·h-1 per OD600 (optical density at 600 nm) of whole cells. These results demonstrate the efficient production of l-PLA by the one-pot biotransformation system. Therefore, this stereoselective biocatalytic process might be a promising alternative for l-PLA production.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Glucose 1-Desidrogenase/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactatos/metabolismo , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Biotransformação , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Glucose 1-Desidrogenase/genética , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/genética , Lactatos/química , Ácido Láctico , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Ácidos Fenilpirúvicos/química
9.
Beilstein J Org Chem ; 10: 2556-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383127

RESUMO

A hybrid enzymatic/photocatalytic approach for the conversion of CO2 into methanol is described. For the approach discussed here, the production of one mol of CH3OH from CO2 requires three enzymes and the consumption of three mol of NADH. Regeneration of the cofactor NADH from NAD(+) was achieved by using visible-light-active, heterogeneous, TiO2-based photocatalysts. The efficiency of the regeneration process is enhanced by using a Rh(III)-complex for facilitating the electron and hydride transfer from the H-donor (water or a water-glycerol solution) to NAD(+). This resulted in the production of 100 to 1000 mol of CH3OH from one mol of NADH, providing the possibility for practical application.

10.
Bioresour Technol ; 403: 130843, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777233

RESUMO

The malic enzyme (ME) catalyzes the synthesis of L-malic acid (L-MA) from pyruvic acid and CO2 with NADH as the reverse reaction of L-MA decarboxylation. Carboxylation requires excess pyruvic acid, limiting its application. In this study, it was determined that CO2 was the carboxyl donor by parsing the effects of HCO3- and CO2, which provided a basis for improving the L-MA yield. Moreover, the concentration ratio of pyruvic acid to NADH was reduced from 70:1 to 5:1 using CO2 to inhibit decarboxylation and to introduce the ME mutant A464S with a 2-fold lower Km than that of the wild type. Finally, carboxylation was coupled with NADH regeneration, resulting in a maximum L-MA yield of 77 % based on the initial concentration of pyruvic acid. Strategic modifications, including optimal reactant ratios and efficient mutant ME, significantly enhanced L-MA synthesis from CO2, providing a promising approach to the biotransformation process.


Assuntos
Biocatálise , Dióxido de Carbono , Malato Desidrogenase , Malatos , Ácido Pirúvico , Malatos/metabolismo , Dióxido de Carbono/metabolismo , Malato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , NAD/metabolismo , Descarboxilação , Cinética , Mutação
11.
Chemosphere ; 353: 141491, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395365

RESUMO

Photocatalysis has emerged as a promising approach for generating solar chemical and organic transformations under the solar light spectrum, employing polymer photocatalysts. In this study, our aim is to achieve the regeneration of NADH and fixation of nitroarene compounds, which hold significant importance in various fields such as pharmaceuticals, biology, and chemistry. The development of an in-situ nature-inspired artificial photosynthetic pathway represents a challenging task, as it involves harnessing solar energy for efficient solar chemical production and organic transformation. In this work, we have successfully synthesized a novel artificial photosynthetic polymer, named TFc photocatalyst, through the Friedel-Crafts alkylation reaction between triptycene (T) and a ferrocene motif (Fc). The TFC photocatalyst is a promising material with excellent optical properties, an appropriate band gap, and the ability to facilitate the regeneration of NADH and the fixation of nitroarene compounds through photocatalysis. These characteristics are necessary for several applications, including organic synthesis and environmental remediation. Our research provides a significant step forward in establishing a reliable pathway for the regeneration and fixation of solar chemicals and organic compounds under the solar light spectrum.


Assuntos
NAD , Energia Solar , Fotossíntese , Luz , Luz Solar , Compostos Orgânicos/química
12.
ChemSusChem ; 17(12): e202301868, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38342756

RESUMO

Photocatalysis is an eco-friendly method to regenerate nicotinamide (NADH) cofactors, which is essential for biotransformation over oxidoreductases. Organic polymers exhibit high stability, biocompatibility and functional designability as photocatalysts, but still suffering from rapid charge recombination. Herewith the heteroatom structural engineering of donor-π-acceptor (D-π-A) conjugated porous polymers were conducted to promote charge transfer and photocatalytic NADH regeneration. The electron delocalization of polymer photocatalysts can be readily tuned by changing the electron density of the donor unit, leading to faster charge separation and better photocatalytic performance. The optimum sulfur-doped polymer exhibits the highest NADH regeneration yield of 47.4 % in 30 min and 94.1 % in 4 h, which can drive the biocatalytic C=C bond reduction of 2-cyclohexen-1-one by ene-reductase, giving the corresponding cyclohexanone yield of 96.7 % in 10 h. Moreover, the oxygen-doped polymer, from biomass derived 2,5-diformylfuran, exhibits comparable photocatalytic activity to the sulfur-doped CPP, suggesting the potential of furan as alternative donor unit to thiophene.

13.
Photochem Photobiol ; 100(1): 41-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37458262

RESUMO

Aloe vera-derived graphene (ADG) coupled system photocatalyst, mimicking natural photosynthesis, is one of the most promising ways for converting solar energy into ammonia (NH3 ) and nicotinamide adenine dinucleotide (NADH) that have been widely used to make the numerous chemicals such as fertilizer and fuel. In this study, we report the synthesis of the aloe vera-derived graphene-coupled phenosafranin (ADGCP) acting as a highly efficient photocatalyst for the generation of NH3 and regeneration of NADH from nitrogen (N2 ) and oxidized form of nicotinamide adenine dinucleotide (NAD+ ). The results show a benchmark instance for mimicking natural photosynthesis activity as well as the practical applications for the solar-driven selective formation of NH3 and the regeneration of NADH by using the newly designed photocatalyst.


Assuntos
Aloe , Grafite , Fenazinas , NAD/metabolismo , Amônia , Aloe/metabolismo , Fotossíntese
14.
Photochem Photobiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943225

RESUMO

Elevated global pollution level is the prime reason that contributes to the onset of various harmful health diseases. The products of Biginelli reaction are enormously used in the pharmaceutical industry as they have antiviral, antibacterial, and calcium channel modulation abilities. This work reports a novel eosin Y sensitized boron graphitic carbon nitride (EY-Ben-g-C3N4) as a photocatalyst that efficiently produced 3,4-dihydropyrimidine-2-(1H)-one by the Biginelli reaction of benzaldehyde, urea, and methyl acetoacetate. The photocatalyst EY-Ben-g-C3N4 showed a successful generation of 3,4-dihydropyrimidine-2-(1H)-one (Biginelli product) in good yield via photocatalysis which is an eco-friendly method and has facile operational process. In addition to the production of Biginelli products, the photocatalyst also showed a remarkable NADH regeneration of 81.18%. The incorporation of g-C3N4 with boron helps increase the surface area and the incorporation of eosin Y which is an inexpensive and non-toxic dye, and in Ben-g-C3N4, enhanced the light-harvesting capacity of the photocatalyst. The production of 3,4-dihydropyrimidine-2-(1H)-one and NADH by the EY-Ben-g-C3N4 photocatalyst is attributed to the requisite band gap, high molar absorbance, low rate of charge recombination, and increased capacity of the photocatalyst to harvest solar light energy.

15.
Biotechnol Bioeng ; 110(9): 2395-404, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23475631

RESUMO

Toxic compounds, such as formic acid, furfural, and hydroxymethylfurfural (HMF) generated during pretreatment of corn stover (CS) at high temperature and low pH, inhibit growth of Zymomonas mobilis and lower the conversion efficiency of CS to biofuel and other products. The inhibition of toxic compounds is considered as one of the major technical barriers in the lignocellulose bioconversion. In order to detoxify and/or degrade these toxic compounds by the model ethanologenic strain Z. mobilis itself in situ the fermentation medium, we constructed a recombinant Z. mobilis ZM4 (pHW20a-fdh) strain that is capable of degrading toxic inhibitor, formate. This is accomplished by cloning heterologous formate dehydrogenase gene (fdh) from Saccharomyces cerevisiae and by coupling this reaction of NADH regeneration reaction system with furfural and HMF degradation in the recombinant Z. mobilis strain. The NADH regeneration reaction also improved both the energy efficiency and cell physiological activity of the recombinant organism, which were definitely confirmed by the improved cell growth, ethanol yield, and ethanol productivity during fermentation with CS hydrolysate.


Assuntos
Biocombustíveis/análise , Etanol , Zymomonas/genética , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Etanol/análise , Etanol/metabolismo , Fermentação , Formiato Desidrogenases/genética , Formiatos/análise , Formiatos/metabolismo , Proteínas Fúngicas/genética , NAD/análise , NAD/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Zea mays/metabolismo , Zymomonas/metabolismo , Zymomonas/fisiologia
16.
ChemSusChem ; 16(5): e202201956, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482031

RESUMO

Herein, a Zr-based dual-ligand MOFs with pre-installed Rh complex was employed for NADH regeneration in situ and also used for immobilization of formic acid dehydrogenase (FDH) in order to realize a highly efficient CO2 fixation system. Then, based on the detailed investigations into the photochemical and electrochemical properties, it is demonstrated that the introduction of the photosensitive meso-tetra(4-carboxyphenyl) porphin (TCPP) ligands increased the catalytic active sites and improved photoelectric properties. Furthermore, the electron mediator Rh complex, anchored on the zirconium-based dual-ligand MOFs, enhanced the efficiency of electron transfer efficiency and facilitated the separation of photogenerated electrons and holes. Compared with UiO-66-NH2 , Rh-H2 TCPP-UiO-66-NH2 exhibits an optimized valence band structure and significantly improved photocatalytic activity for NAD+ reduction, resulting the synthesis of formic acid from CO2 increased from 150 µg mL-1 (UiO-66-NH2 ) to 254 µg mL-1 (Rh-H2 TCPP-UiO-66-NH2 ). Moreover, the assembled photocatalyst-enzyme coupled system also allows facile recycling of expensive electron mediator, enzyme, and photocatalyst.

17.
ACS Appl Mater Interfaces ; 15(10): 12855-12863, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36859767

RESUMO

The electroenzymatic valorization of biomass derivatives into valuable biochemicals has a promising outlook. However, bottlenecks including poor electron transfer between the electrode surface and oxidoreductase, inefficient regeneration of cofactors, and high cost of enzymes and electron mediators hindered the realistic applications of the technique. Herein, to address the above technical barriers, a novel bio-electrocatalytic system that integrates the electrochemical NADH regeneration and enzymatic reaction was constructed, using an orderly assembled composite bioelectrode consisting of an outer immobilized enzyme layer and a sandwiched redox mediator rhodium complex layer. The as-prepared composite bioelectrode was further applied for the highly selective hydrogenation of furfural into furfural alcohol. Results indicated that the enzyme activity was significantly improved, while the furfural valorization was promoted by effective interfacial electron transition and co-factor regeneration on the composite bioelectrode. Considerable high furfural conversion (96.4%) can be achieved accompanied by a furfural alcohol selectivity of 90.0% at -1.2 V (vs Ag/AgCl). The novel composite bioelectrode also showed good stability and reusability. Up to 85.1% of the original furfural alcohol selectivity can be preserved after 10 times of recycling. This work presents a promising green alternative for the valorization of furfural, which also shows great potential extending to the valorization of other biomass compounds.


Assuntos
Elétrons , Furaldeído , Furaldeído/química , Furaldeído/metabolismo , Furanos/química , Oxirredução
18.
Photochem Photobiol ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088069

RESUMO

The photocatalytic oxidation and generation/regeneration of amines to imines and leucodopaminechrome (LDC)/NADH are subjects of intense interest in contemporary research. Imines serve as crucial intermediates for the synthesis of solar fuels, fine chemicals, agricultural chemicals, and pharmaceuticals. While significant progress has been made in developing efficient processes for the oxidation and generation/regeneration of secondary amines, the oxidation of primary amines has received comparatively less attention until recently. This discrepancy can be attributed to the high reactivity of imines generated from primary amines, which are prone to dehydrogenation into nitriles. In this study, we present the synthesis and characterization of a novel polymer-based photocatalyst, denoted as PMMA-DNH, designed for solar light-harvesting applications. PMMA-DNH incorporates the light-harvesting molecule dinitrophenyl hydrazine (DNH) at varying concentrations (5%, 10%, 20%, 30%, and 40%). Leveraging its high molar extinction coefficient and slow charge recombination, the 30% DNH-incorporated PMMA photocatalyst proves to be particularly efficient. This photocatalytic system demonstrates exceptional yields (96.5%) in imine production and high generation/regeneration rates for LDC/NADH (65.27%/78.77%). The research presented herein emphasizes the development and application of a newly engineered polymer-based photocatalyst, which holds significant promise for direct solar-assisted chemical synthesis in diverse commercial applications.

19.
J Colloid Interface Sci ; 652(Pt A): 1043-1052, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639926

RESUMO

Visible-light-driven nicotinamide adenine dinucleotide (NADH) regeneration is one of the most effective measures, and cadmium sulfide (CdS) materials are typically used as low-cost photocatalysts. The CdS photocatalysts, however, still suffer from low regeneration efficiency and poor cycle stability. In this work, the CdS quantum dots (QDs) less than 10 nm embedded onto silica gel (CdS QDs/Silica gel) were constructed for visible-light-driven NADH regeneration by a successive ionic layer adsorption reaction and ball milling method. Results demonstrate that the photosensitivity of the CdS QDs/Silica gel composite was 31 times higher than that of the bulk CdS. Moreover, the conduction band (CB) edge of the CdS QDs/Silica gel composite is -1.34 eV, which is more negative 0.5 eV than that of the bulk CdS. The obtained CdS QDs/Silica gel composites showed the highest NADH regeneration yields of 68.8% under visible-light (LED, 420 nm) illumination and can be reused for over 40 cycles. Finally, the bioactivity of NADH toward enzyme catalysis is further confirmed by the hydrogenation of benzaldehyde to benzyl alcohol catalyzed with an alcohol dehydrogenase as enzyme catalysis.

20.
ACS Synth Biol ; 12(2): 471-481, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36457250

RESUMO

Efficient extracellular electron transfer (EET) of exoelectrogens is critical for practical applications of various bioelectrochemical systems. However, the low efficiency of electron transfer remains a major bottleneck. In this study, a modular engineering strategy, including broadening the sources of the intracellular electron pool, enhancing intracellular nicotinamide adenine dinucleotide (NADH) regeneration, and promoting electron release from electron pools, was developed to redirect electron flux into the electron transfer chain in Shewanella oneidensis MR-1. Among them, four genes include gene SO1522 encoding a lactate transporter for broadening the sources of the intracellular electron pool, gene gapA encoding a glyceraldehyde-3-phosphate dehydrogenase and gene mdh encoding a malate dehydrogenase in the central carbon metabolism for enhancing intracellular NADH regeneration, and gene ndh encoding NADH dehydrogenase on the inner membrane for releasing electrons from intracellular electron pools into the electron-transport chain. Upon assembly of the four genes, electron flux was directly redirected from the electron donor to the electron-transfer chain, achieving 62% increase in intracellular NADH levels, which resulted in a 3.5-fold enhancement in the power density from 59.5 ± 3.2 mW/m2 (wild type) to 270.0 ± 12.7 mW/m2 (recombinant strain). This study confirmed that redirecting electron flux from the electron donor to the electron-transfer chain is a viable approach to enhance the EET rate of S. oneidensis.


Assuntos
Elétrons , Shewanella , NAD/metabolismo , Transporte de Elétrons , Shewanella/genética , Shewanella/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa