RESUMO
Recalcitrant staphylococcal osteomyelitis may be due, in part, to the ability of Staphylococcus aureus to invade bone cells. However, osteoclasts and osteoblasts are now recognized to shape host responses to bacterial infection and we have recently described their ability to produce IFN-ß following S. aureus infection and limit intracellular bacterial survival/propagation. Here, we have investigated the ability of novel, rationally designed, nucleic acid nanoparticles (NANPs) to induce the production of immune mediators, including IFN-ß, following introduction into bone cells. We demonstrate the successful delivery of representative NANPs into osteoblasts and osteoclasts via endosomal trafficking when complexed with lipid-based carriers. Their delivery was found to differentially induce immune responses according to their composition and architecture via discrete cytosolic pattern recognition receptors. Finally, the utility of this nanoparticle technology was supported by the demonstration that immunostimulatory NANPs augment IFN-ß production by S. aureus infected bone cells and reduce intracellular bacterial burden.
Assuntos
Nanopartículas , Ácidos Nucleicos , Osteoblastos , Osteoclastos , Infecções Estafilocócicas , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/imunologia , Nanopartículas/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Animais , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/tratamento farmacológico , Camundongos , Interferon Tipo I/metabolismo , Humanos , Interferon beta/metabolismo , Adjuvantes Imunológicos/farmacologiaRESUMO
Nucleic acid nanoparticles, or NANPs, rationally designed to communicate with the human immune system, can offer innovative therapeutic strategies to overcome the limitations of traditional nucleic acid therapies. Each set of NANPs is unique in their architectural parameters and physicochemical properties, which together with the type of delivery vehicles determine the kind and the magnitude of their immune response. Currently, there are no predictive tools that would reliably guide the design of NANPs to the desired immunological outcome, a step crucial for the success of personalized therapies. Through a systematic approach investigating physicochemical and immunological profiles of a comprehensive panel of various NANPs, the research team developes and experimentally validates a computational model based on the transformer architecture able to predict the immune activities of NANPs. It is anticipated that the freely accessible computational tool that is called an "artificial immune cell," or AI-cell, will aid in addressing the current critical public health challenges related to safety criteria of nucleic acid therapies in a timely manner and promote the development of novel biomedical tools.
Assuntos
Nanopartículas , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/química , Monócitos , Nanopartículas/química , Interferons , Inteligência ArtificialRESUMO
Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.
Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Inativação Gênica , Melanoma , Nanopartículas , Proteínas de Neoplasias , Ácidos Nucleicos , 1-Acilglicerofosfocolina O-Aciltransferase/antagonistas & inibidores , 1-Acilglicerofosfocolina O-Aciltransferase/biossíntese , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacologiaRESUMO
Recent insights into the immunostimulatory properties of nucleic acid nanoparticles (NANPs) have demonstrated that variations in the shape, size, and composition lead to distinct patterns in their immunostimulatory properties. While most of these studies have used a single lipid-based carrier to allow for NANPs' intracellular delivery, it is now apparent that the platform for delivery, which has historically been a hurdle for therapeutic nucleic acids, is an additional means to tailoring NANP immunorecognition. Here, the use of dendrimers for the delivery of NANPs is compared to the lipid-based platform and the differences in resulting cytokine induction are presented.
Assuntos
Citocinas/metabolismo , Portadores de Fármacos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipídeos/químicaRESUMO
The relatively straightforward methods of designing and assembling various functional nucleic acids into nanoparticles offer advantages for applications in diverse diagnostic and therapeutic approaches. However, due to the novelty of this approach, nucleic acid nanoparticles (NANPs) are not yet used in the clinic. The immune recognition of NANPs is among the areas of preclinical investigation aimed at enabling the translation of these novel materials into clinical settings. NANPs' interactions with the complement system, coagulation systems, and immune cells are essential components of their preclinical safety portfolio. It has been established that NANPs' physicochemical properties-composition, shape, and size-determine their interactions with immune cells (primarily blood plasmacytoid dendritic cells and monocytes), enable recognition by pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), and mediate the subsequent cytokine response. However, unlike traditional therapeutic nucleic acids (e.g., CpG oligonucleotides), NANPs do not trigger a cytokine response unless they are delivered into the cells using a carrier. Recently, it was discovered that the type of carrier provides an additional tool for regulating both the spectrum and the magnitude of the cytokine response to NANPs. Herein, we review the current knowledge of NANPs' interactions with various components of the immune system to emphasize the unique properties of these nanomaterials and highlight opportunities for their use in vaccines and immunotherapy.
Assuntos
Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Nanopartículas/administração & dosagem , Ácidos Nucleicos/imunologia , Animais , Citocinas/imunologia , Humanos , Imunoterapia/métodos , Nanoestruturas/administração & dosagemRESUMO
RNAi-based technologies have shown biomedical potential; however, safe and efficient delivery of RNA remains a barrier for their broader clinical applications. Nucleic acid nanoparticles (NANPs) programmed to self-assemble and organize multiple therapeutic nucleic acids (TNAs) also became attractive candidates for diverse therapeutic options. Various synthetic nanocarriers are used to deliver TNAs and NANPs, but their clinical translation is limited due to immunotoxicity. Exosomes are cell-derived nanovesicles involved in cellular communication. Due to their ability to deliver biomolecules, exosomes are a novel delivery choice. In this study, we explored the exosome-mediated delivery of NANPs designed to target GFP. We assessed the intracellular uptake, gene silencing efficiency, and immunostimulation of exosomes loaded with NANPs. We also confirmed that interdependent RNA/DNA fibers upon recognition of each other after delivery, can conditionally activate NF-kB decoys and prevent pro-inflammatory cytokines. Our study overcomes challenges in TNA delivery and demonstrates future studies in drug delivery systems.
Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Nanopartículas/administração & dosagem , Ácidos Nucleicos/administração & dosagem , Linhagem Celular , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Microscopia de Força Atômica , NF-kappa B/genética , Nanopartículas/química , Interferência de RNARESUMO
Infusion reactions (IRs) create a translational hurdle for many novel therapeutics, including those utilizing nanotechnology. Nucleic acid nanoparticles (NANPs) are a novel class of therapeutics prepared by rational design of relatively short oligonucleotides to self-assemble into various programmable geometric shapes. While cytokine storm, a common type of IR, has halted clinical development of several therapeutic oligonucleotides, NANP technologies hold tremendous potential to bring these reactions under control by tuning the particle's physicochemical properties to the desired type and magnitude of the immune response. Recently, we reported the very first comprehensive study of the structureâ»activity relationship between NANPs' shape, size, composition, and their immunorecognition in human cells, and identified the phagolysosomal pathway as the major route for the NANPs' uptake and subsequent immunostimulation. Here, we explore the molecular mechanism of NANPs' recognition by primary immune cells, and particularly the contributing role of the Toll-like receptors. Our current study expands the understanding of the immune recognition of engineered nucleic acid-based therapeutics and contributes to the improvement of the nanomedicine safety profile.
Assuntos
Leucócitos Mononucleares/metabolismo , Nanopartículas/química , Ácidos Nucleicos/química , Células Cultivadas , Eletroporação , Humanos , Nanotecnologia/métodos , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismoRESUMO
Fibrous nanomaterials containing silica, titanium oxide, and carbon nanotubes are notoriously known for their undesirable inflammatory responses and associated toxicities that have been extensively studied in the environmental and occupational toxicology fields. Biopersistance and inflammation of "hard" nanofibers prevent their broader biomedical applications. To utilize the structural benefits of fibrous nanomaterials for functionalization with moieties of therapeutic significance while preventing undesirable immune responses, researchers employ natural biopolymersâRNA and DNAâto design "soft" and biodegradable nanomaterials with controlled immunorecognition. Nucleic acid nanofibers have been shown to be safe and efficacious in applications that do not require their delivery into the cells such as the regulation of blood coagulation. Previous studies demonstrated that unlike traditional therapeutic nucleic acids (e.g., CpG DNA oligonucleotides) nucleic acid nanoparticles (NANPs), when used without a carrier, are not internalized by the immune cells and, as such, do not induce undesirable cytokine responses. In contrast, intracellular delivery of NANPs results in cytokine responses that are dependent on the physicochemical properties of these nanomaterials. However, the structure-activity relationship of innate immune responses to intracellularly delivered fibrous NANPs is poorly understood. Herein, we employ the intracellular delivery of model RNA/DNA nanofibers functionalized with G-quadruplex-based DNA aptamers to investigate how their structural properties influence cytokine responses. We demonstrate that nanofibers' scaffolds delivered to the immune cells using lipofectamine induce interferon response via the cGAS-STING signaling pathway activation and that DNA aptamers incorporation shields the fibers from recognition by cGAS and results in a lower interferon response. This structure-activity relationship study expands the current knowledge base to inform future practical applications of intracellularly delivered NANPs as vaccine adjuvants and immunotherapies.
Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas , Nanotubos de Carbono , Ácidos Nucleicos , Ácidos Nucleicos/química , DNA/genética , RNA/genética , Nanopartículas/química , Interferons , Imunização , NucleotidiltransferasesRESUMO
Nucleic acid nanoparticles (NANPs) are increasingly used in preclinical investigations as delivery vectors. Tools that can characterize assembly and assess quality will accelerate their development and clinical translation. Standard techniques used to characterize NANPs, like gel electrophoresis, lack the resolution for precise characterization. Here, we introduce the use of charge detection mass spectrometry (CD-MS) to characterize these materials. Using this technique, we determined the mass of NANPs varying in size, shape, and molecular mass, NANPs varying in production quality due to formulations lacking component oligonucleotides, and NANPs functionalized with protein and nucleic acid-based secondary molecules. Based on these demonstrations, CD-MS is a promising tool to precisely characterize NANPs, enabling more precise assessments of the manufacturing and processing of these materials.
Assuntos
Espectrometria de Massas , Nanopartículas , Ácidos Nucleicos , Nanopartículas/química , Ácidos Nucleicos/química , Ácidos Nucleicos/análise , Tamanho da Partícula , DNA/químicaRESUMO
Nucleic acid nanoparticles (NANPs) are extensively investigated as diagnostic and therapeutic tools. These innovative particles can be composed of RNA, DNA, and/or modified nucleic acids. Due to the regulatory role of nucleic acids in the cellular system, NANPs have the ability to identify target molecules and regulate expression of genes in disease pathways. However, translation of NANPs in clinical settings is hindered due to inefficient intracellular delivery, chemical instability, and off-target immunostimulatory effects following immune recognition. The composition of nucleic acids forming NANPs has been demonstrated to influence immunorecognition, subcellular compartmentalization, and physicochemical properties of NANPs. This chapter first outlines the methods used to generate a panel of NANPs with a uniform shape, size, charge, sequence, and connectivity. This includes the procedures for replacing the RNA strands with DNA or chemical analogs in the designated NANPs. Second, this chapter will also describe experiments to assess the effect of the chemical modification on enzymatic and thermodynamic stability, delivery efficiency, and subcellular compartmentalization of NANPs.
Assuntos
Nanopartículas , Nanoestruturas , Ácidos Nucleicos , RNA , Ácidos Nucleicos/química , DNA/química , Nanopartículas/químicaRESUMO
The immune system has evolved to defend organisms against exogenous threats such as viruses, bacteria, fungi, and parasites by distinguishing between "self" and "non-self". In addition, it guards us against other diseases, such as cancer, by detecting and responding to transformed and senescent cells. However, for survival and propagation, the altered cells and invading pathogens often employ a wide range of mechanisms to avoid, inhibit, or manipulate the immunorecognition. As such, the development of new modes of therapeutic intervention to augment protective and prevent harmful immune responses is desirable. Nucleic acids are biopolymers essential for all forms of life and, therefore, delineating the complex defensive mechanisms developed against non-self nucleic acids can offer an exciting avenue for future biomedicine. Nucleic acid technologies have already established numerous approaches in therapy and biotechnology; recently, rationally designed nucleic acids nanoparticles (NANPs) with regulated physiochemical properties and biological activities has expanded our repertoire of therapeutic options. When compared to conventional therapeutic nucleic acids (TNAs), NANP technologies can be rendered more beneficial for synchronized delivery of multiple TNAs with defined stabilities, immunological profiles, and therapeutic functions. This review highlights several recent advances and possible future directions of TNA and NANP technologies that are under development for controlled immunomodulation.
Assuntos
Nanopartículas , Neoplasias , Ácidos Nucleicos , Humanos , Imunomodulação , Neoplasias/tratamento farmacológico , Imunidade , Nanopartículas/uso terapêutico , Nanopartículas/químicaRESUMO
We introduce a toehold-mediated strand displacement strategy for regulated shape-switching of nucleic acid nanoparticles (NANPs) enabling their sequential transformation from triangular to hexagonal architectures at isothermal conditions. The successful shape transitions were confirmed by electrophoretic mobility shift assays, atomic force microscopy, and dynamic light scattering. Furthermore, implementation of split fluorogenic aptamers allowed for monitoring the individual transitions in real time. Three distinct RNA aptamersâmalachite green (MG), broccoli, and mangoâwere embedded within NANPs as reporter domains to confirm shape transitions. While MG "lights up" within the square, pentagonal, and hexagonal constructs, the broccoli is activated only upon formation of pentagon and hexagon NANPs, and mango reports only the presence of hexagons. Moreover, the designed RNA fluorogenic platform can be employed to construct a logic gate that performs an AND operation with three single-stranded RNA inputs by implementing a non-sequential polygon transformation approach. Importantly, the polygonal scaffolds displayed promising potential as drug delivery agents and biosensors. All polygons exhibited effective cellular internalization followed by specific gene silencing when decorated with fluorophores and RNAi inducers. This work offers a new perspective for the design of toehold-mediated shape-switching nanodevices to activate different light-up aptamers for the development of biosensors, logic gates, and therapeutic devices in the nucleic acid nanotechnology.
Assuntos
Nanopartículas , Ácidos Nucleicos , RNA/genética , Nanotecnologia , Microscopia de Força Atômica , OligonucleotídeosRESUMO
The protocols described in this book chapter are meant to be used as an outline and guideline to explore the use of a cationic, polymeric, and synthetic carrier-poly (amidoamine) (PAMAM) dendrimers. The amine-terminated, hyperbranched structures have been identified as a vehicle for the delivery of nucleic acids. As such, clear protocols for the optimization of dendrimer usage should be set in place. This chapter details the experiments used to determine the ratio that dendrimers and nucleic acids should be complexed at through the use of binding assays, nuclease protection assays, and competitive binding assays.
Assuntos
Dendrímeros , Nanopartículas , Ácidos Nucleicos , Dendrímeros/química , Nanopartículas/química , PolímerosRESUMO
Nucleic acid nanotechnology utilizes natural and synthetic structural motifs to build versatile nucleic acid nanoparticles (NANPs). These rationally designed assemblies can be further equipped with functional nucleic acids and other molecules such as peptides, fluorescent dyes, etc. In addition to nucleic acids that directly interact with the regulated target gene transcripts, NANPs can display decoys, wherein the oligonucleotide stretches with transcription factor binding sequences, preventing transcription initiation. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a group of five crucial transcription factors regulating the pathogenesis of inflammatory diseases and cancer; as such, they are relevant targets for therapy. One therapeutic approach involves interdependent self-recognizing hybridized DNA/RNA fibers designed to bind NF-κB and prevent its interaction with the promotor region of NF-κB-dependent genes involved in inflammatory responses. Decoying NF-κB results in the inability to initiate transcription of regulated genes, showing a promising approach to gene regulation and gene therapy. The protocol described herein provides detailed steps for the synthesis of NF-κB decoy fibers, as well as their characterization using polyacrylamide gel electrophoresis (to confirm desired physicochemical properties and purity) and functional bioassays (to confirm desired biological activity).
Assuntos
Nanoestruturas , Ácidos Nucleicos , NF-kappa B/metabolismo , Oligonucleotídeos/genética , Oligonucleotídeos/química , Regulação da Expressão GênicaRESUMO
Nucleic acid nanoparticles (NANPs) composed of therapeutic DNA, RNA, or a hybrid of both are increasingly investigated for their targeted and tunable immunomodulatory properties. By taking advantage of the NANPs' unique and relatively straightforward self-assembling behavior, nucleic acid sequences can be designed from the bottom-up and specifically tailored to induce certain immune responses in mammalian cells (Johnson et al., Nucleic Acids Res 48:11785-11798, 2020). Although not yet used in the clinic, functionalized NANPs display promising advantages to be included in therapeutic applications. By adjusting the chemical composition of a limited selection of NANPs all sharing the same physicochemical properties, it is demonstrated how substituting RNA strands for different chemical analogs can increase the thermodynamic and enzymatic stability of NANPs. Altering the composition of NANPs also determines the cellular mechanisms which initiate immune responses, therefore impacting the subcellular targeting and delivery efficiency.
Assuntos
Nanopartículas , Nanoestruturas , Ácidos Nucleicos , Animais , RNA , Ácidos Nucleicos/química , DNA/química , Nanopartículas/química , MamíferosRESUMO
Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the targeted delivery of various therapeutics. However, despite their promise, further clinical translation of this innovative technology can be hindered by immunological off-target effects. All human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent studies have provided increasing evidence that in addition to NANPs' physicochemical properties and therapeutic effects, their interactions with cells of the immune system can be regulated through multiple independently programmable architectural parameters. The results further suggest that defined immunomodulation by NANPs can either support their immunoquiescent delivery or be used for conditional stimulation of beneficial immunological responses.
Assuntos
Nanopartículas/química , Ácidos Nucleicos/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Ácidos Nucleicos/imunologiaRESUMO
With recent advances in nanotechnology and therapeutic nucleic acids (TNAs), various nucleic acid nanoparticles (NANPs) have demonstrated great promise in diagnostics and therapeutics. However, the full realization of NANPs' potential necessitates the development of a safe, efficient, biocompatible, stable, tissue-specific, and non-immunogenic delivery system. Exosomes, the smallest extracellular vesicles and an endogenous source of nanocarriers, offer these advantages while avoiding complications associated with manufactured agents. The lipid membranes of exosomes surround a hydrophilic core, allowing for the simultaneous incorporation of hydrophobic and hydrophilic drugs, nucleic acids, and proteins. Additional capabilities for post-isolation exosome surface modifications with imaging agents, targeting ligands, and covalent linkages also pave the way for their diverse biomedical applications. This review focuses on exosomes: their biogenesis, intracellular trafficking, transportation capacities, and applications with emphasis on the delivery of TNAs and programmable NANPs. We also highlight some of the current challenges and discuss opportunities related to the development of therapeutic exosome-based formulations and their clinical translation.
Assuntos
Exossomos/metabolismo , Nanopartículas , Ácidos Nucleicos/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Humanos , Metabolismo dos Lipídeos/fisiologia , NanotecnologiaRESUMO
Nucleic acids have been utilized to construct an expansive collection of nanoarchitectures varying in design, physicochemical properties, cellular processing and biomedical applications. However, the broader therapeutic adaptation of nucleic acid nanoassemblies in general, and RNA-based nanoparticles in particular, have faced several challenges in moving towards (pre)clinical settings. For one, the large-batch synthesis of nucleic acids is still under development, with multi-stranded and chemically modified assemblies requiring greater production capacity while maintaining consistent medical-grade outputs. Furthermore, the unknown immunostimulation by these nanomaterials poses additional challenges, necessary to be overcome for optimizing future development of clinically approved RNA nanoparticles.
RESUMO
Programmable nucleic acid nanoparticles (NANPs) with precisely controlled functional compositions can regulate the conditional activation of various biological pathways and responses in human cells. However, the intracellular delivery of NANPs alone is hindered by their susceptibility to nuclease activity and inefficient crossing of biological membranes. In this work, we optimized the internalization and therapeutic performance of several representative NANPs delivered with mesoporous silica nanoparticles (MSNPs) tailored for efficient electrostatic association with NANPs. We compared the immunostimulatory properties of different NA-MS-NP complexes formed with globular, planar, and fibrous NANPs and demonstrated the maximum immunostimulation for globular NANPs. As a proof of concept, we assessed the specific gene silencing by NA-MS-NP complexes functionalized with siRNA targeting green fluorescent protein expressed in triple-negative human breast cancer cells. We showed that the fibrous NANPs have the highest silencing efficiency when compared to globular or planar counterparts. Finally, we confirmed the multimodal ability of MSNPs to co-deliver a chemotherapy drug, doxorubicin, and NANPs targeting apoptosis regulator gene BCL2 in triple-negative breast cancer and melanoma cell lines. Overall, the combination of NANPs and MSNPs may become a new promising approach to efficiently treat cancer and other diseases via the simultaneous targeting of various pathways.
Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Ácidos Nucleicos/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Porosidade , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismoRESUMO
Nucleic acids are programmable and biocompatible polymers that have beneficial uses in nanotechnology with broad applications in biosensing and therapeutics. In some cases, however, the development of the latter has been impeded by the unknown immunostimulatory properties of nucleic acid-based materials, as well as a lack of functional dynamicity due to stagnant structural design. Recent research advancements have explored these obstacles in tandem via the assembly of three-dimensional, planar, and fibrous cognate nucleic acid-based nanoparticles, called NANPs, for the conditional activation of embedded and otherwise quiescent functions. Furthermore, a library of the most representative NANPs was extensively analyzed in human peripheral blood mononuclear cells (PBMCs), and the links between the programmable architectural and physicochemical parameters of NANPs and their immunomodulatory properties have been established. This overview will cover the recent development of design principles that allow for fine-tuning of both the physicochemical and immunostimulatory properties of dynamic NANPs and discuss the potential impacts of these novel strategies.