Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Mol Cell ; 65(2): 361-370, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28065596

RESUMO

Targeted mass spectrometry assays for protein quantitation monitor peptide surrogates, which are easily multiplexed to target many peptides in a single assay. However, these assays have generally not taken advantage of sample multiplexing, which allows up to ten analyses to occur in parallel. We present a two-dimensional multiplexing workflow that utilizes synthetic peptides for each protein to prompt the simultaneous quantification of >100 peptides from up to ten mixed sample conditions. We demonstrate that targeted analysis of unfractionated lysates (2 hr) accurately reproduces the quantification of fractionated lysates (72 hr analysis) while obviating the need for peptide detection prior to quantification. We targeted 131 peptides corresponding to 69 proteins across all 60 National Cancer Institute cell lines in biological triplicate, analyzing 180 samples in only 48 hr (the equivalent of 16 min/sample). These data further elucidated a correlation between the expression of key proteins and their cellular response to drug treatment.


Assuntos
Ensaios de Triagem em Larga Escala , Espectrometria de Massas , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteoma , Proteômica/métodos , Antibióticos Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Fluxo de Trabalho
2.
Cell Commun Signal ; 21(1): 333, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986165

RESUMO

BACKGROUND: Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential aspects have been investigated. In this meta-analysis, data regarding (i) the EV proteome and (ii) the invasion and proliferation capacity of the NCI-60 tumor cell lines (60 cell lines from nine different tumor types) were analyzed using machine learning methods. METHODS: On the basis of the entire proteome or the proteins shared by all EV samples, 60 cell lines were classified into the nine tumor types using multiple logistic regression. Then, utilizing the Least Absolute Shrinkage and Selection Operator, we constructed a discriminative protein panel, upon which the samples were reclassified and pathway analyses were performed. These panels were validated using clinical data (n = 4,665) from Human Protein Atlas. RESULTS: Classification models based on the entire proteome, shared proteins, and discriminative protein panel were able to distinguish the nine tumor types with 49.15%, 69.10%, and 91.68% accuracy, respectively. Invasion and proliferation capacity of the 60 cell lines were predicted with R2 = 0.68 and R2 = 0.62 (p < 0.0001). The results of the Reactome pathway analysis of the discriminative protein panel suggest that the molecular content of EVs might be indicative of tumor-specific biological processes. CONCLUSION: Integrating in vitro EV proteomic data, cell physiological characteristics, and clinical data of various tumor types illuminates the diagnostic, prognostic, and therapeutic potential of EVs. Video Abstract.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Proteoma/metabolismo , Proteômica/métodos , Neoplasias/patologia , Proliferação de Células , Vesículas Extracelulares/metabolismo
3.
Pharmacol Res ; 188: 106671, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681368

RESUMO

Cancer drug development is hindered by high clinical attrition rates, which are blamed on weak predictive power by preclinical models and limited replicability of preclinical findings. However, the technically feasible level of replicability remains unknown. To fill this gap, we conducted an analysis of data from the NCI60 cancer cell line screen (2.8 million compound/cell line experiments), which is to our knowledge the largest depository of experiments that have been repeatedly performed over decades. The findings revealed profound intra-laboratory data variability, although all experiments were executed following highly standardised protocols that avoid all known confounders of data quality. All compound/ cell line combinations with > 100 independent biological replicates displayed maximum GI50 (50% growth inhibition) fold changes (highest/ lowest GI50) > 5% and 70.5% displayed maximum fold changes > 1000. The highest maximum fold change was 3.16 × 1010 (lowest GI50: 7.93 ×10-10 µM, highest GI50: 25.0 µM). FDA-approved drugs and experimental agents displayed similar variation. Variability remained high after outlier removal, when only considering experiments that tested drugs at the same concentration range, and when only considering NCI60-provided quality-controlled data. In conclusion, high variability is an intrinsic feature of anti-cancer drug testing, even among standardised experiments in a world-leading research environment. Awareness of this inherent variability will support realistic data interpretation and inspire research to improve data robustness. Further research will have to show whether the inclusion of a wider variety of model systems, such as animal and/ or patient-derived models, may improve data robustness.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Técnicas de Cultura de Células
4.
Mol Divers ; 27(3): 1345-1357, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35852708

RESUMO

A novel series of benzofuran bearing thiazole hybrids were synthesized by the multistep reaction approach. All synthesized molecules were selected by the National Cancer Institute, USA for one-dose anticancer activity against 60 various human cancer cell lines indicating nine types of cancer. Among thirteen compounds, two compounds showed higher lethality, so, it was selected for five-dose anticancer screening against all cancer cell lines. Compound 8g and 8h were displayed remarkable antiproliferative activity with GI50 values ranging from 0.295 to 4.15 µM and LC50 values ranging from 4.43 to > 100 µM. All data are compared with standard drugs fluorouracil and doxorubicin. Compound 8g showed higher potency as a cytotoxic molecule then fluorouracil. Furthermore, all new hybrids were studied for molecular docking into the active binding sites of 1HOV protein.


Assuntos
Antineoplásicos , Benzofuranos , Humanos , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/química , Linhagem Celular Tumoral , Antineoplásicos/química , Benzofuranos/farmacologia , Fluoruracila/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Proliferação de Células , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
5.
Medicina (Kaunas) ; 59(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37374282

RESUMO

A new series of 3,4,5-trimethoxyphenyl thiazole pyrimidines has been synthesized and biologically evaluated for its in vitro anticancer activity. Compounds 4a, 4b, and 4h with substituted piperazine showed the best antiproliferative activity. In the NCI-60 cell line screening, compound 4b showed promising cytostatic activity against multiple cell lines. Notably, it elicited a GI value of 86.28% against the NSCL cancer cell line HOP-92 at a 10 µM dose. Compounds 4a and 4h at 10 µM showed promising GI values of 40.87% and 46.14% against HCT-116 colorectal carcinoma and SK-BR-3 breast cancer cell lines, respectively. ADME-Tox prediction of compounds 4a, 4b, and 4h revealed their acceptable drug-likeness properties. In addition, compounds 4a, 4b, and 4h showed a high probability of targeting kinase receptors via Molinspiration and Swiss TargetPrediction.


Assuntos
Antineoplásicos , Tiazóis , Humanos , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Relação Dose-Resposta a Droga
6.
Curr Issues Mol Biol ; 45(1): 175-196, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36661500

RESUMO

Here, we describe the anticancer activity of our novel bis-triazoles MS47 and MS49, developed previously as G-quadruplex stabilizers, focusing specifically upon the human melanoma MDA-MB-435 cell line. At the National Cancer Institute (NCI), USA, bis-triazole MS47 (NCS 778438) was evaluated against a panel of sixty human cancer cell lines, and showed selective, distinct multi-log differential patterns of activity, with GI50 and LC50 values in the sub-micromolar range against human cancer cells. MS47 showed highly selective cytotoxicity towards human melanoma, ovarian, CNS and colon cancer cell lines; in contrast, the leukemia cell lines interestingly showed resistance to MS47 cytotoxic activity. Further studies revealed the potent cell growth inhibiting properties of MS47 and MS49 against the human melanoma MDA-MB-435 cell line, as verified by MTT assays; both ligands were more potent against cancer cells than MRC-5 fetal lung fibroblasts (SI > 9). Melanoma colony formation was significantly suppressed by MS47 and MS49, and time- and dose-dependent apoptosis induction was also observed. Furthermore, MS47 significantly arrested melanoma cells at the G0/G1 cell cycle phase. While the expression levels of Hsp90 protein in melanoma cells were significantly decreased by MS49, corroborating its binding to the G4-DNA promoter of the Hsp90 gene. Both ligands failed to induce senescence in the human melanoma cells after 72 h of treatment, corroborating their weak stabilization of the telomeric G4-DNA.

7.
Cancer Cell Int ; 22(1): 311, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221114

RESUMO

BACKGROUND: Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-specific cell surface receptors only. METHODS: To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface receptor biomarkers for colon and renal cancer. RESULTS: For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treatment of renal cancer. CONCLUSION: Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the context of cancer immunotherapy.

8.
Arch Biochem Biophys ; 722: 109184, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35395253

RESUMO

The roles and molecular interactions of polyamines (PAs) in the nucleus are not fully understood. Here their effect on nucleosome stability, a key regulatory factor in eukaryotic gene control, is reported, as measured in agarose embedded nuclei of H2B-GFP expressor HeLa cells. Nucleosome stability was assessed by quantitative microscopy [1,2] in situ, in close to native state of chromatin, preserving the nucleosome constrained topology of the genomic DNA. A robust destabilizing effect was observed in the millimolar concentration range in the case of spermine, spermidine as well as putrescine, which was strongly pH and salt concentration-dependent, and remained significant also at neutral pH. The integrity of genomic DNA was not affected by PA treatment, excluding DNA break-elicited topological relaxation as a factor in destabilization. The binding of PAs to DNA was demonstrated by the displacement of ethidium bromide, both from deproteinized nuclear halos and from plasmid DNA. The possibility that DNA methylation patterns may be influenced by PA levels is contemplated in the context of gene expression and DNA methylation correlations identified in the NCI-60 panel-based CellMiner database: methylated loci in subsets of high-ODC1 cell lines and the dependence of PER3 DNA methylation on PA metabolism.


Assuntos
Nucleossomos , Poliaminas , DNA/química , Células HeLa , Humanos , Poliaminas/metabolismo , Putrescina/metabolismo , Espermidina/química , Espermidina/metabolismo
9.
BMC Cancer ; 22(1): 512, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525914

RESUMO

BACKGROUND: Indian natural products have been anecdotally used for cancer treatment but with limited efficacy. To better understand their mechanism, we examined the publicly available data for the activity of Indian natural products in the NCI-60 cell line panel. METHODS: We examined associations of molecular genomic features in the well-characterized NCI-60 cancer cell line panel with in vitro response to treatment with 75 compounds derived from Indian plant-based natural products. We analyzed expression measures for annotated transcripts, lncRNAs, and miRNAs, and protein-changing single nucleotide variants in cancer-related genes. We also examined the similarities between cancer cell line response to Indian natural products and response to reference anti-tumor compounds recorded in a U.S. National Cancer Institute (NCI) Developmental Therapeutics Program database. RESULTS: Hierarchical clustering based on cell line response measures identified clustering of Phyllanthus and cucurbitacin products with known anti-tumor agents with anti-mitotic mechanisms of action. Curcumin and curcuminoids mostly clustered together. We found associations of response to Indian natural products with expression of multiple genes, notably including SLC7A11 involved in solute transport and ATAD3A and ATAD3B encoding mitochondrial ATPase proteins, as well as significant associations with functional single nucleotide variants, including BRAF V600E. CONCLUSION: These findings suggest potential mechanisms of action and novel associations of in vitro response with gene expression and some cancer-related mutations that increase our understanding of these Indian natural products.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , ATPases Associadas a Diversas Atividades Celulares , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana , Proteínas Mitocondriais , National Cancer Institute (U.S.) , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nucleotídeos , Farmacogenética , Estados Unidos
10.
Bioorg Chem ; 119: 105535, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906859

RESUMO

The use of natural compounds as starting point for semisynthetic derivatives has already been proven as a valuable source of active anticancer agents. Hollongdione (4,4,8,14-tetramethyl-18-norpregnan-3,20-dion), obtained by few steps from dammarane type triterpenoid dipterocarpol, was chemically modified at C2 and C21 carbon atoms by the Claisen-Schmidt aldol condensation to give a series of arylidene derivatives. The anticancer activity of the obtained compounds was assessed on NCI-60 cancer cell panel, revealing strong antiproliferative effects against a large variety of cancer cells. 2,21-Bis-[3-pyridinyl]-methylidenohollongdione 9 emerged as the most active derivative as indicated by its GI50 values in the micromolar range which, combined with its high selectivity index values, indicated its suitability for deeper biological investigation. The mechanisms involved in compound 9 antiproliferative activity, were investigated through in vitro (DAPI staining) and ex vivo (CAM assay) tests, which exhibited its apoptotic and antiangiogenic activities. In addition, compound 9 showed an overall inhibition of mitochondrial respiration. rtPCR analysis identified the more intimate activity at pro-survival/pro-apoptotic gene level. Collectively, the hollongdione derivative stand as a promising therapeutic option against melanoma and breast cancer provided that future in vivo analysis will certify its clinical efficacy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Melanoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Triterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma/metabolismo , Melanoma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química
11.
World J Surg Oncol ; 20(1): 37, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177071

RESUMO

BACKGROUND: As reported, preclinical animal models differ greatly from the human body. The evaluation model may be the colossal obstacle for scientific research and anticancer drug development. Therefore, it is essential to propose efficient evaluation systems similar to clinical practice for cancer research. MAIN BODY: While it has emerged for decades, the development of patient-derived xenografts, patient-derived organoid and patient-derived cell used to be limited. As the requirements for anticancer drug evaluation increases, patient-derived models developed rapidly recently, which is widely applied in basic research, drug development, and clinical application and achieved remarkable progress. However, there still lack systematic comparison and summarize reports for patient-derived models. In the current review, the development, applications, strengths, and challenges of patient-derived models in cancer research were characterized. CONCLUSION: Patient-derived models are an indispensable approach for cancer research and human health.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Xenoenxertos , Humanos , Neoplasias/tratamento farmacológico , Organoides , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mar Drugs ; 20(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36005535

RESUMO

Two new ircinianin-type sesterterpenoids, ircinianin lactone B and ircinianin lactone C (7 and 8), together with five known entities from the ircinianin compound family (1, 3-6) were isolated from the marine sponge Ircinia wistarii. Ircinianin lactones B and C (7 and 8) represent new ircinianin terpenoids with a modified oxidation pattern. Despite their labile nature, the structures could be established using a combination of spectroscopic data, including HRESIMS and 1D/2D NMR techniques, as well as computational chemistry and quantum-mechanical calculations. In a broad screening approach for biological activity, the class-defining compound ircinianin (1) showed moderate antiprotozoal activity against Plasmodium falciparum (IC50 25.4 µM) and Leishmania donovani (IC50 16.6 µM).


Assuntos
Poríferos , Sesterterpenos , Animais , Lactonas/química , Lactonas/farmacologia , Estrutura Molecular , Poríferos/química , Sesterterpenos/química , Sesterterpenos/farmacologia , Terpenos/farmacologia
13.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430850

RESUMO

In vitro antiproliferative assays still represent one of the most important tools in the anticancer drug discovery field, especially to gain insights into the mechanisms of action of anticancer small molecules. The NCI-DTP (National Cancer Institute Developmental Therapeutics Program) undoubtedly represents the most famous project aimed at rapidly testing thousands of compounds against multiple tumor cell lines (NCI60). The large amount of biological data stored in the National Cancer Institute (NCI) database and many other databases has led researchers in the fields of computational biology and medicinal chemistry to develop tools to predict the anticancer properties of new agents in advance. In this work, based on the available antiproliferative data collected by the NCI and the manipulation of molecular descriptors, we propose the new in silico Antiproliferative Activity Predictor (AAP) tool to calculate the GI50 values of input structures against the NCI60 panel. This ligand-based protocol, validated by both internal and external sets of structures, has proven to be highly reliable and robust. The obtained GI50 values of a test set of 99 structures present an error of less than ±1 unit. The AAP is more powerful for GI50 calculation in the range of 4-6, showing that the results strictly correlate with the experimental data. The encouraging results were further supported by the examination of an in-house database of curcumin analogues that have already been studied as antiproliferative agents. The AAP tool identified several potentially active compounds, and a subsequent evaluation of a set of molecules selected by the NCI for the one-dose/five-dose antiproliferative assays confirmed the great potential of our protocol for the development of new anticancer small molecules. The integration of the AAP tool in the free web service DRUDIT provides an interesting device for the discovery and/or optimization of anticancer drugs to the medicinal chemistry community. The training set will be updated with new NCI-tested compounds to cover more chemical spaces, activities, and cell lines. Currently, the same protocol is being developed for predicting the TGI (total growth inhibition) and LC50 (median lethal concentration) parameters to estimate toxicity profiles of small molecules.


Assuntos
Antineoplásicos , Curcumina , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Bases de Dados Factuais
14.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630776

RESUMO

The current work presents an objective overview of the impact of one important heterocyclic structure, the pyrazole ring, in the development of anti-proliferative drugs. A set of 1551 pyrazole derivatives were extracted from the National Cancer Institute (NCI) database, together with their growth inhibition effects (GI%) on the NCI's panel of 60 cancer cell lines. The structures of these derivatives were analyzed based on the compounds' averages of GI% values across NCI-60 cell lines and the averages of the values for the outlier cells. The distribution and the architecture of the Bemis-Murcko skeletons were analyzed, highlighting the impact of certain scaffold structures on the anti-proliferative effect's potency and selectivity. The drug-likeness, chemical reactivity and promiscuity risks of the compounds were predicted using AMDETlab. The pyrazole ring proved to be a versatile scaffold for the design of anticancer drugs if properly substituted and if connected with other cyclic structures. The 1,3-diphenyl-pyrazole emerged as a useful scaffold for potent and targeted anticancer candidates.


Assuntos
Antineoplásicos , Pirazóis , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Pirazóis/química , Pirazóis/farmacologia
15.
BMC Bioinformatics ; 22(1): 15, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413081

RESUMO

BACKGROUND: One of the current directions of precision medicine is the use of computational methods to aid in the diagnosis, prognosis, and treatment of disease based on data driven approaches. For instance, in oncology, there has been a particular focus on development of algorithms and biomarkers that can be used for pre-clinical and clinical applications. In particular large-scale omics-based models to predict drug sensitivity in in vitro cancer cell line panels have been used to explore the utility and aid in the development of these models as clinical tools. Additionally, a number of web-based interfaces have been constructed for researchers to explore the potential of drug perturbed gene expression as biomarkers including the NCI Transcriptional Pharmacodynamic Workbench. In this paper we explore the influence of drug perturbed gene dynamics of the NCI Transcriptional Pharmacodynamics Workbench in computational models to predict in vitro drug sensitivity for 15 drugs on the NCI60 cell line panel. RESULTS: This work presents three main findings. First, our models show that gene expression profiles that capture changes in gene expression after 24 h of exposure to a high concentration of drug generates the most accurate predictive models compared to the expression profiles under different dosing conditions. Second, signatures of 100 genes are developed for different gene expression profiles; furthermore, when the gene signatures are applied across gene expression profiles model performance is substantially decreased when gene signatures developed using changes in gene expression are applied to non-drugged gene expression. Lastly, we show that the gene interaction networks developed on these signatures show different network topologies and can be used to inform selection of cancer relevant genes. CONCLUSION: Our models suggest that perturbed gene signatures are predictive of drug response, but cannot be applied to predict drug response using unperturbed gene expression. Furthermore, additional drug perturbed gene expression measurements in in vitro cell lines could generate more predictive models; but, more importantly be used in conjunction with computational methods to discover important drug disease relationships.


Assuntos
Antineoplásicos , Biologia Computacional/métodos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos
16.
Bioorg Med Chem Lett ; 49: 128294, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333139

RESUMO

A library of new 3-phenylisoxazolo[5,4-d]pyrimidines (8-10) was designed based on a scaffold hybridization technique incorporating the important pharmacophoric features of 4-aminopyrimidine and phenyl isoxazole scaffold which is renowned for its BET inhibition activity. The designed molecules were synthesized and evaluated with the NCI-60 cell line panel. Examination by NCI-60 cell lines at single-dose and the five-dose study showed that compound 10h exhibited promising growth inhibitory effects with GI50 values on various cancer cell lines such as HCT-15 (Colon Cancer)-0.0221 µM, MDA-MB-435 (Melanoma) - 0.0318 µM, SNB-75(CNS Cancer)-0.0263 µM, and MCF7 (Breast Cancer)-0.0372 µM. Further studies to know the mechanism of action of 10h based on the phase-contrast microscopic evaluation, DAPI, acridine orange/ethidium bromide (AO/EB) staining, and annexin V-FITC assays revealed that elevation in the intracellular ROS leads to alteration in mitochondrial membrane potential which in turn induced the apoptosis in BT-474 cancer cells, which could be the plausible mechanism of action for compound 10h.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Isoxazóis/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cães , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isoxazóis/síntese química , Isoxazóis/farmacocinética , Células Madin Darby de Rim Canino , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
17.
Arch Pharm (Weinheim) ; 354(7): e2000393, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33749032

RESUMO

Cancer remains a leading cause of death worldwide, resulting in continuous efforts to discover and develop highly efficacious anticancer drugs. High-throughput screening of heterocyclic compound libraries is one of the promising approaches that provided several new lead molecules with a novel mechanism of action. On the basis of the promising anticancer potential of imidazoquinoxaline as well as the structurally similar imidazoquinoline-derived scaffold, we prepared a set of C6-substituted benzimidazo[1,2-a]quinoxaline derivatives via two novel synthetic routes using commercially available starting materials, with good to excellent yields and evaluated their anticancer activity against the NCI-60 cancer cell lines. The one-dose (10 µM) anticancer screening of the synthesized compounds in the NCI-60 cell line panel revealed that the substituents have a significant role in the activity. In particular, the indole (7f), imidazole (7g), and benzimidazole (7h) derivatives showed significant activity against the triple-negative breast cancer cell line, MDA-MB-468. The lead compounds also exhibited notable IC50 values against another breast cancer cell line, MCF-7. Furthermore, it was observed that these compounds were relatively nontoxic to normal cell lines: HEK293 (human embryonic kidney cell line) and MCF12A (nontumorigenic human breast epithelial cell line). The IC50 values against healthy cells were at least 5- to 11-fold higher, offering a new class of heterocycles that can be further developed as promising therapeutics for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Neoplasias/tratamento farmacológico , Quinoxalinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Imidazóis/síntese química , Imidazóis/química , Concentração Inibidora 50 , Neoplasias/patologia , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681629

RESUMO

A series of novel hybrid chalcone N-ethyl-piperazinyl amide derivatives of oleanonic and ursonic acids were synthesized, and their cytotoxic potential was evaluated in vitro against the NCI-60 cancer cell line panel. Compounds 4 and 6 exhibited the highest overall anticancer activity, with GI50 values in some cases reaching nanomolar values. Thus, the two compounds were further assessed in detail in order to identify a possible apoptosis- and antiangiogenic-based mechanism of action induced by the assessed compounds. DAPI staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that up-regulation of pro-apoptotic Bak gene combined with the down-regulation of the pro-survival Bcl-XL and Bcl-2 genes caused altered ratios between the pro-apoptotic and anti-apoptotic proteins' levels, leading to overall induced apoptosis. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, suggesting that compounds may induce apoptotic cell death through targeted anti-apoptotic protein inhibition, as well. Ex vivo determinations showed that both compounds did not significantly alter the angiogenesis process on the tested cell lines.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Piperazina/química , Triterpenos/química , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Triterpenos/metabolismo , Triterpenos/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
19.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567783

RESUMO

Semi-synthetic triterpenoids, holding an amino substituted seven-membered A-ring (azepano-ring), which could be synthesized from triterpenic oximes through a Beckmann type rearrangement followed by a reduction of lactame fragment, are considered to be novel promising agents exhibiting anti-microbial, alpha-glucosidase, and butyrylcholinesterase inhibitory activities. In this study, in an attempt to develop new antitumor candidates, a series of A-ring azepano- and 3-amino-3,4-seco-derivatives of betulin, oleanolic, ursolic, and glycyrrhetinic acids were evaluated for their cytotoxic activity against five human cancer cell lines and non-malignant mouse fibroblasts by means of a colorimetric sulforhodamine assay. Azepanoallobetulinic acid amide derivative 11 was the most cytotoxic compound of this series but showed little selectivity between the different human tumor cell lines. Flow cytometry experiments showed compound 11 to act mainly by apoptosis (44.3%) and late apoptosis (21.4%). The compounds were further screened at the National Cancer Institute towards a panel of 60 cancer cell lines. It was found that compounds 3, 4, 7, 8, 9, 11, 15, 16, 19, and 20 showed growth inhibitory (GI50) against the most sensitive cell lines at submicromolar concentrations (0.20-0.94 µM), and their cytotoxic activity (LC50) was also high (1-6 µM). Derivatives 3, 8, 11, 15, and 16 demonstrated a certain selectivity profile at GI50 level from 5.16 to 9.56 towards K-562, CCRF-CEM, HL-60(TB), and RPMI-8226 (Leukemia), HT29 (Colon cancer), and OVCAR-4 (Ovarian cancer) cell lines. Selectivity indexes of azepanoerythrodiol 3 at TGI level ranged from 5.93 (CNS cancer cell lines SF-539, SNB-19 and SNB-75) to 14.89 for HCT-116 (colon cancer) with SI 9.56 at GI50 level for the leukemia cell line K-562. The present study highlighted the importance of A-azepano-ring in the triterpenic core for the development of novel antitumor agents, and a future aim to increase the selectivity profile will thus lie in the area of modifications of azepano-triterpenic acids at their carboxyl group.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Neoplasias/tratamento farmacológico , Triterpenos/química , Triterpenos/farmacologia , Proliferação de Células , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575964

RESUMO

A series of A-ring modified oleanolic and ursolic acid derivatives including C28 amides (3-oxo-C2-nicotinoylidene/furfurylidene, 3ß-hydroxy-C2-nicotinoylidene, 3ß-nicotinoyloxy-, 2-cyano-3,4-seco-4(23)-ene, indolo-, lactame and azepane) were synthesized and screened for their cytotoxic activity against the NCI-60 cancer cell line panel. The results of the first assay of thirty-two tested compounds showed that eleven derivatives exhibited cytotoxicity against cancer cells, and six of them were selected for complete dose-response studies. A systematic study of local SARs has been carried out by comparative analysis of potency distributions and similarity relationships among the synthesized compounds using network-like similarity graphs. Among the oleanane type triterpenoids, C2-[4-pyridinylidene]-oleanonic C28-morpholinyl amide exhibited sub-micromolar potencies against 15 different tumor cell lines and revealed particular selectivity for non-small cell lung cancer (HOP-92) with a GI50 value of 0.0347 µM. On the other hand, superior results were observed for C2-[3-pyridinylidene]-ursonic N-methyl-piperazinyl amide 29, which exhibited a broad-spectrum inhibition activity with GI50 < 1 µM against 33 tumor cell lines and <2 µM against all 60 cell lines. This compound has been further evaluated for cell cycle analysis to decipher the mechanism of action. The data indicate that compound 29 could exhibit both cytostatic and cytotoxic activity, depending on the cell line evaluated. The cytostatic activity appears to be determined by induction of the cell cycle arrest at the S (MCF-7, SH-SY5Y cells) or G0/G1 phases (A549 cells), whereas cytotoxicity of the compound against normal cells is nonspecific and arises from apoptosis without significant alterations in cell cycle distribution (HEK293 cells). Our results suggest that the antiproliferative effect of compound 29 is mediated through ROS-triggered apoptosis that involves mitochondrial membrane potential depolarization and caspase activation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Ácido Oleanólico/farmacologia , Triterpenos/farmacologia , Células A549 , Amidas/síntese química , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Neoplasias/patologia , Ácido Oleanólico/síntese química , Triterpenos/síntese química , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa