Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 42(3): 1240-1251, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683437

RESUMO

BACKGROUND/AIMS: Alterations of cytosolic Ca2+-activity ([Ca2+]i) are decisive in the regulation of tumor cell proliferation, migration and survival. Transport processes participating in the regulation of [Ca2+]i include Ca2+ extrusion through K+-independent (NCX) and/or K+-dependent (NCKX) Na+/Ca2+-exchangers. The present study thus explored whether medulloblastoma cells express Na+/Ca2+-exchangers, whether expression differs between therapy sensitive D283 and therapy resistant UW228-3 medulloblastoma cells, and whether Na+/Ca2+-exchangers participate in the regulation of cell survival. METHODS: In therapy sensitive D283 and therapy resistant UW228-3 medulloblastoma cells transcript levels were estimated by RT-PCR, protein abundance by Western blotting, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, Na+/ Ca2+-exchanger activity from the increase of [Ca2+]i (Δ[Ca2+]i) and from whole cell current (Ica) following abrupt replacement of Na+ containing (130 mM) and Ca2+ free by Na+ free and Ca2+ containing (2 mM) extracellular perfusate as well as cell death from PI -staining and annexin-V binding in flow cytometry. RESULTS: The transcript levels of NCX3, NCKX2, and NCKX5, protein abundance of NCX3, slope and peak of Δ[Ca2+]i as well as Ica were significantly lower in therapy sensitive D283 than in therapy resistant UW228-3 medulloblastoma cells. The Na+/Ca2+-exchanger inhibitor KB-R7943 (10 µM) significantly blunted Δ[Ca2+]i, and augmented the ionizing radiation-induced apoptosis but did not significantly modify clonogenicity of medulloblastoma cells. Apoptosis was further enhanced by NCX3 silencing. CONCLUSIONS: Na+/Ca2+-exchanger activity significantly counteracts apoptosis but does not significantly affect clonogenicity after radiation of medulloblastoma cells.


Assuntos
Neoplasias Cerebelares/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/tratamento farmacológico , Trocador de Sódio e Cálcio/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Humanos , Meduloblastoma/genética , Técnicas de Patch-Clamp , Isoformas de Proteínas/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/análise
2.
Cell Physiol Biochem ; 42(6): 2169-2181, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813704

RESUMO

BACKGROUND: TGFß1, a decisive regulator of megakaryocyte maturation and platelet formation, has previously been shown to up-regulate both, store operated Ca2+ entry (SOCE) and Ca2+ extrusion by Na+/Ca2+ exchange. The growth factor thus augments the increase of cytosolic Ca2+ activity ([Ca2+]i) following release of Ca2+ from intracellular stores and accelerates the subsequent decline of [Ca2+]i. The effect on SOCE is dependent on a signaling cascade including p38 kinase, serum & glucocorticoid inducible kinase SGK1, and nuclear factor NFκB. The specific Na+/Ca2+ exchanger isoforms involved and the signalling regulating the Na+/Ca2+ exchangers remained, however elusive. The present study explored, whether TGFß1 influences the expression and function of K+ insensitive (NCX) and K+ sensitive (NCKX) Na+/Ca2+ exchangers, and aimed to shed light on the signalling involved. METHODS: In human megakaryocytic cells (MEG01) RT-PCR was performed to quantify NCX/NCKX isoform transcript levels, [Ca2+]i was determined by Fura-2 fluorescence, and Na+/Ca2+ exchanger activity was estimated from the increase of [Ca2+]i following switch from an extracellular solution with 130 or 90 mM Na+ and 0 mM Ca2+ to an extracellular solution with 0 Na+ and 2 mM Ca2+. K+ concentration was 0 mM for analysis of NCX and 40 mM for analysis of NCKX. RESULTS: TGFß1 (60 ng/ml, 24 h) significantly increased the transcript levels of NCX1, NCKX1, NCKX2 and NCKX5. Moreover, TGFß1 (60 ng/ml, 24 h) significantly increased the activity of both, NCX and NCKX. The effect of TGFß1 on NCX and NCKX transcript levels and activity was significantly blunted by p38 kinase inhibitor Skepinone-L (1 µM), the effect on NCX and NCKX activity further by SGK1 inhibitor GSK-650394 (10 µM) and NFκB inhibitor Wogonin (100 µM). CONCLUSIONS: TGFß1 markedly up-regulates transcription of NCX1, NCKX1, NCKX2, and NCKX5 and thus Na+/Ca2+ exchanger activity, an effect requiring p38 kinase, SGK1 and NFκB.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Benzoatos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cálcio/metabolismo , Linhagem Celular , Dibenzocicloeptenos/farmacologia , Flavanonas/farmacologia , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Megacariócitos/citologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Microscopia de Fluorescência , NF-kappa B/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Trocador de Sódio e Cálcio/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
3.
Prog Retin Eye Res ; 67: 87-101, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29883715

RESUMO

Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Transdução de Sinal Luminoso/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Adaptação Ocular/fisiologia , Humanos
4.
Cell Calcium ; 74: 61-72, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29960184

RESUMO

K+-dependent Na+-Ca2+ exchangers (NCKXs) play an important role in Ca2+ homeostasis in many tissues. NCKX proteins are bi-directional plasma membrane Ca2+-transporters which utilize the inward Na+ and outward K+ gradients to move Ca2+ ions into and out of the cytosol (4Na+:1Ca2+ + 1 K+). In this study, we carried out scanning mutagenesis of all the residues of the highly conserved α-1 and α-2 repeats of NCKX2 to identify residues important for K+ transport. These structural elements are thought to be critical for cation transport. Using fluorescent intracellular Ca2+-indicating dyes, we measured the K+ dependence of transport carried out by wildtype or mutant NCKX2 proteins expressed in HEK293 cells and analyzed shifts in the apparent binding affinity (Km) of mutant proteins in comparison with the wildtype exchanger. Of the 93 residue substitutions tested, 34 were found to show a significant shift in the external K+ ion dependence of which 16 showed an increased affinity to K+ ions and 18 showed a decreased affinity and hence are believed to be important for K+ ion binding and transport. We also identified 8 residue substitutions that resulted in a partial loss of K+ dependence. Our biochemical data provide strong support for the cation binding sites identified in a homology model of NCKX2 based on crystal structures reported for distantly related archaeal Na+-Ca2+ exchanger NCX_Mj. In addition, we compare our results here with our previous studies that report on residues important for Ca2+ and Na+ binding. Supported by CIHR MOP-81327.


Assuntos
Potássio/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Células HEK293 , Humanos , Transporte de Íons/fisiologia
5.
Neuroscience ; 310: 372-88, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26410028

RESUMO

The K(+)-dependent Na(+)/Ca(2)-exchanger (NCKX) family is encoded by five related genes, of which NCKX2 (solute carrier family 24, member 2) is the most abundant member present in the brain. Nckx2 knockout mice display profound loss of hippocampal long-term potentiation, and selective deficits in motor learning and spatial working memory. However, the molecular mechanisms underlying these changes have not been established. Thus, the overall goal of this project was to identify the exact subcellular localization of NCKX2 in the hippocampus, as an important step toward understanding the physiological role for NCKX2 in neuronal plasticity. To achieve this goal, we used dual immunofluorescent confocal microscopy and immunoelectron microscopy. Our data demonstrate that the majority of NCKX2 is co-localized with the dendritic marker, microtubule associated protein 2. A smaller fraction is co-localized with the presynaptic marker, synapsin 1, and the smallest amount is co-localized with the glutamatergic spine marker, N-methyl-d-aspartate receptor 1. The data from immunoelectron microscopy are consistent with the observations from dual immunofluorescence, and show that the highest fraction of NCKX2 is located on the plasma membrane of small oblique dendrites, particularly in CA1 neurons of the stratum radiatum. In the molecular layer, a greater fraction of NCKX2 is associated with axon terminals and, in addition, a fraction of NCKX2 is found not associated with the plasma membrane but located in the cytoplasm. These studies describe for the first time the exact location of NCKX2 in the hippocampus of adult mice and suggest that the function of NCKX2 in neuronal plasticity in hippocampal CA1 neurons may be mediated by its kinetic effect on the local Ca(2+) concentration that influences dendritic integration. At other hippocampal locations NCKX2 has a somewhat different spatial distribution, consistent with published reports of NCKX2 expression in other brain regions, suggesting that NCKX2 contributes to Ca(2+) homeostasis in distinct ways in different brain neurons.


Assuntos
Hipocampo/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Dendritos/metabolismo , Dendritos/ultraestrutura , Hipocampo/ultraestrutura , Camundongos , Camundongos Knockout , Neurônios/ultraestrutura , Trocador de Sódio e Cálcio/genética , Sinapses/ultraestrutura
6.
Front Cell Neurosci ; 7: 14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431067

RESUMO

We have previously reported that the surface expression of K(+)-dependent Na(+)/Ca(2+) exchanger 2 (NCKX2) in the somatodendritic compartment is kept low by constitutive endocytosis, which results in the polarization of surface NCKX2 to the axon. Clathrin-mediated endocytosis is initiated by interaction of the µ subunit of adaptor protein complex 2 (AP-2) with the canonical tyrosine motif (YxxΦ) of a target molecule. We examined whether endocytosis of NCKX2 involves two putative tyrosine motifs ((365)YGKL and (371)YDTM) in the cytoplasmic loop of NCKX2. Coimmunoprecipitation assay revealed that the (365)YGKL motif is essential for the interaction with the µ subunit of AP-2 (AP2M1). Consistently, either overexpression of NCKX2-Y365A mutant or knockdown of AP2M1 in cultured hippocampal neurons significantly reduced the internalization of NCKX2 from the somatodendritic surface and thus abolished the axonal polarization of surface NCKX2. Next, we tested whether the interaction between the tyrosine motif and AP2M1 is regulated by phosphorylation of the 365th tyrosine residue (Tyr-365). Tyrosine phosphorylation of heterologously expressed NCKX2-WT, but not NCKX2-Y365A, was increased by carbachol (CCh) in PC-12 cells. The effect of CCh was inhibited by PP2, a Src family kinase (SFK) inhibitor. Moreover, PP2 facilitated the endocytosis of NCKX2 in both the somatodendritic and axonal compartments, suggesting that tyrosine phosphorylation of NCKX2 by SFK negatively regulates its endocytosis. Supporting this idea, activation of SFK enhanced the NCKX activity in the proximal dendrites of dentate granule cells (GCs). These results suggest that endocytosis of somatodendritic NCKX2 is regulated by SFK-dependent phosphorylation of Tyr-365.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa