Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Annu Rev Biochem ; 85: 161-92, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145841

RESUMO

In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Regulação da Expressão Gênica , Homeostase , Humanos , Transporte de Íons , Cinética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais , Modelos Moleculares , Trocador de Sódio e Cálcio/genética , Termodinâmica
2.
Physiol Rev ; 102(2): 893-992, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698550

RESUMO

The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Homeostase/fisiologia , Mitocôndrias/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Humanos
3.
FASEB J ; 38(3): e23454, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315457

RESUMO

Mitochondria shape intracellular Ca2+ signaling through the concerted activity of Ca2+ uptake via mitochondrial calcium uniporters and efflux by Na+ /Ca2+ exchangers (NCLX). Here, we describe a novel relationship among NCLX, intracellular Ca2+ , and autophagic activity. Conditions that stimulate autophagy in vivo and in vitro, such as caloric restriction and nutrient deprivation, upregulate NCLX expression in hepatic tissue and cells. Conversely, knockdown of NCLX impairs basal and starvation-induced autophagy. Similarly, acute inhibition of NCLX activity by CGP 37157 affects bulk and endoplasmic reticulum autophagy (ER-phagy) without significant impacts on mitophagy. Mechanistically, CGP 37157 inhibited the formation of FIP200 puncta and downstream autophagosome biogenesis. Inhibition of NCLX caused decreased cytosolic Ca2+ levels, and intracellular Ca2+ chelation similarly suppressed autophagy. Furthermore, chelation did not exhibit an additive effect on NCLX inhibition of autophagy, demonstrating that mitochondrial Ca2+ efflux regulates autophagy through the modulation of Ca2+ signaling. Collectively, our results show that the mitochondrial Ca2+ extrusion pathway through NCLX is an important regulatory node linking nutrient restriction and autophagy regulation.


Assuntos
Sinalização do Cálcio , Cálcio , Clonazepam/análogos & derivados , Tiazepinas , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Trocador de Sódio e Cálcio , Mitocôndrias/metabolismo , Autofagia , Sódio/metabolismo
4.
J Biol Chem ; 298(2): 101508, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942149

RESUMO

The mitochondrial solute carrier family 8 sodium/calcium/lithium exchanger, member B1 (NCLX) is an important mediator of calcium extrusion from mitochondria. In this study, we tested the hypothesis that physiological expression levels of NCLX are essential for maintaining neuronal resilience in the face of excitotoxic challenge. Using an shRNA-mediated approach, we showed that reduced NCLX expression exacerbates neuronal mitochondrial calcium dysregulation, mitochondrial membrane potential (ΔΨm) breakdown, and reactive oxygen species generation during excitotoxic stimulation of primary hippocampal cultures. Moreover, NCLX knockdown-which affected both neurons and glia-resulted not only in enhanced neurodegeneration following an excitotoxic insult but also in neuronal and astrocytic cell death under basal conditions. Our data also revealed that synaptic activity, which promotes neuroprotective signaling, can become lethal upon NCLX depletion; expression of NCLX-targeted shRNA impaired the clearance of mitochondrial calcium following action potential bursts, and was associated both with ΔΨm breakdown and substantial neurodegeneration in hippocampal cultures undergoing synaptic activity. Finally, we showed that NCLX knockdown within the hippocampal cornu ammonis 1 region in vivo causes substantial neurodegeneration and astrodegeneration. In summary, we demonstrated that dysregulated NCLX expression not only sensitizes neuroglial networks to excitotoxic stimuli but also notably renders otherwise neuroprotective synaptic activity toxic. These findings may explain the emergence of neurodegeneration and astrodegeneration in patients with disorders characterized by disrupted NCLX expression or function, and suggest that treatments aimed at enhancing or restoring NCLX function may prevent central nervous system damage in these disease states.


Assuntos
Cálcio , Proteínas Mitocondriais , Rede Nervosa , Neuroglia , Trocador de Sódio e Cálcio , Cálcio/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Rede Nervosa/metabolismo , Neuroglia/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Trocador de Sódio e Cálcio/biossíntese , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
5.
J Biol Chem ; 298(8): 102259, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841929

RESUMO

The structural changes of airway smooth muscle (ASM) that characterize airway remodeling (AR) are crucial to the pathogenesis of asthma. During AR, ASM cells dedifferentiate from a quiescent to a proliferative, migratory, and secretory phenotype. Calcium (Ca2+) is a ubiquitous second messenger that regulates many cellular processes, including proliferation, migration, contraction, and metabolism. Furthermore, mitochondria have emerged as major Ca2+ signaling organelles that buffer Ca2+ through uptake by the mitochondrial Ca2+ uniporter and extrude it through the Na+/Ca2+ exchanger (NCLX/Slc8b1). Here, we show using mitochondrial Ca2+-sensitive dyes that NCLX only partially contributes to mitochondrial Ca2+ extrusion in ASM cells. Yet, NCLX is necessary for ASM cell proliferation and migration. Through cellular imaging, RNA-Seq, and biochemical assays, we demonstrate that NCLX regulates these processes by preventing mitochondrial Ca2+ overload and supporting store-operated Ca2+ entry, activation of Ca2+/calmodulin-dependent kinase II, and transcriptional and metabolic reprogramming. Using small animal respiratory mechanic measurements and immunohistochemistry, we show that smooth muscle-specific NCLX KO mice are protected against AR, fibrosis, and hyperresponsiveness in an experimental model of asthma. Our findings support NCLX as a potential therapeutic target in the treatment of asthma.


Assuntos
Asma , Trocador de Sódio e Cálcio , Remodelação das Vias Aéreas , Animais , Asma/genética , Cálcio/metabolismo , Camundongos , Músculo Liso/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
6.
J Neurochem ; 165(4): 521-535, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36563047

RESUMO

Intracellular Ca2+ concentrations are strictly controlled by plasma membrane transporters, the endoplasmic reticulum, and mitochondria, in which Ca2+ uptake is mediated by the mitochondrial calcium uniporter complex (MCUc), while efflux occurs mainly through the mitochondrial Na+ /Ca2+ exchanger (NCLX). RNAseq database repository searches led us to identify the Nclx transcript as highly enriched in astrocytes when compared with neurons. To assess the role of NCLX in mouse primary culture astrocytes, we inhibited its function both pharmacologically or genetically. This resulted in re-shaping of cytosolic Ca2+ signaling and a metabolic shift that increased glycolytic flux and lactate secretion in a Ca2+ -dependent manner. Interestingly, in vivo genetic deletion of NCLX in hippocampal astrocytes improved cognitive performance in behavioral tasks, whereas hippocampal neuron-specific deletion of NCLX impaired cognitive performance. These results unveil a role for NCLX as a novel modulator of astrocytic glucose metabolism, impacting on cognition.


Assuntos
Astrócitos , Cálcio , Camundongos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Mitocôndrias/metabolismo , Glicólise , Cognição , Sódio/metabolismo , Sinalização do Cálcio/fisiologia
7.
Biochem Soc Trans ; 51(4): 1661-1673, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37641565

RESUMO

While mitochondria oxidative phosphorylation is broadly regulated, the impact of mitochondrial Ca2+ on substrate flux under both physiological and pathological conditions is increasingly being recognized. Under physiologic conditions, mitochondrial Ca2+ enters through the mitochondrial Ca2+ uniporter and boosts ATP production. However, maintaining Ca2+ homeostasis is crucial as too little Ca2+ inhibits adaptation to stress and Ca2+ overload can trigger cell death. In this review, we discuss new insights obtained over the past several years expanding the relationship between mitochondrial Ca2+ and oxidative phosphorylation, with most data obtained from heart, liver, or skeletal muscle. Two new themes are emerging. First, beyond boosting ATP synthesis, Ca2+ appears to be a critical determinant of fuel substrate choice between glucose and fatty acids. Second, Ca2+ exerts local effects on the electron transport chain indirectly, not via traditional allosteric mechanisms. These depend critically on the transporters involved, such as the uniporter or the Na+-Ca2+ exchanger. Alteration of these new relationships during disease can be either compensatory or harmful and suggest that targeting mitochondrial Ca2+ may be of therapeutic benefit during diseases featuring impairments in oxidative phosphorylation.


Assuntos
Cálcio , Fosforilação Oxidativa , Morte Celular , Mitocôndrias , Trifosfato de Adenosina
8.
Cell Mol Life Sci ; 79(6): 284, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35526196

RESUMO

BACKGROUND AND AIMS: Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS: We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS: In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS: Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.


Assuntos
Neoplasias Colorretais , Curcumina , Instabilidade de Microssatélites , Trocador de Sódio e Cálcio , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Curcumina/farmacologia , Humanos , Camundongos , Repetições de Microssatélites , Proteínas Mitocondriais/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores
9.
J Mol Cell Cardiol ; 167: 52-66, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358843

RESUMO

Mitochondrial calcium (mCa2+) uptake couples changes in cardiomyocyte energetic demand to mitochondrial ATP production. However, excessive mCa2+ uptake triggers permeability transition and necrosis. Despite these established roles during acute stress, the involvement of mCa2+ signaling in cardiac adaptations to chronic stress remains poorly defined. Changes in NCLX expression are reported in heart failure (HF) patients and models of cardiac hypertrophy. Therefore, we hypothesized that altered mCa2+ homeostasis contributes to the hypertrophic remodeling of the myocardium that occurs upon a sustained increase in cardiac workload. The impact of mCa2+ flux on cardiac function and remodeling was examined by subjecting mice with cardiomyocyte-specific overexpression (OE) of the mitochondrial Na+/Ca2+ exchanger (NCLX), the primary mediator of mCa2+ efflux, to several well-established models of hypertrophic and non-ischemic HF. Cardiomyocyte NCLX-OE preserved contractile function, prevented hypertrophy and fibrosis, and attenuated maladaptive gene programs in mice subjected to chronic pressure overload. Hypertrophy was attenuated in NCLX-OE mice, prior to any decline in cardiac contractility. NCLX-OE similarly attenuated deleterious cardiac remodeling in mice subjected to chronic neurohormonal stimulation. However, cardiomyocyte NCLX-OE unexpectedly reduced overall survival in mice subjected to severe neurohormonal stress with angiotensin II + phenylephrine. Adenoviral NCLX expression limited mCa2+ accumulation, oxidative metabolism, and de novo protein synthesis during hypertrophic stimulation of cardiomyocytes in vitro. Our findings provide genetic evidence for the contribution of mCa2+ to early pathological remodeling in non-ischemic heart disease, but also highlight a deleterious consequence of increasing mCa2+ efflux when the heart is subjected to extreme, sustained neurohormonal stress.


Assuntos
Insuficiência Cardíaca , Trocador de Sódio e Cálcio , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Remodelação Ventricular
10.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887296

RESUMO

The mitochondrial Na+-Ca2+ exchanger, NCLX, was reported to supply Ca2+ to sarcoplasmic reticulum (SR)/endoplasmic reticulum, thereby modulating various cellular functions such as the rhythmicity of cardiomyocytes, and cellular Ca2+ signaling upon antigen receptor stimulation and chemotaxis in B lymphocytes; however, there is little information on the spatial relationships of NCLX with SR Ca2+ handling proteins, and their physiological impact. Here we examined the issue, focusing on the interaction of NCLX with an SR Ca2+ pump SERCA in cardiomyocytes. A bimolecular fluorescence complementation assay using HEK293 cells revealed that the exogenously expressed NCLX was localized in close proximity to four exogenously expressed SERCA isoforms. Immunofluorescence analyses of isolated ventricular myocytes showed that the NCLX was localized to the edges of the mitochondria, forming a striped pattern. The co-localization coefficients in the super-resolution images were higher for NCLX-SERCA2, than for NCLX-ryanodine receptor and NCLX-Na+/K+ ATPase α-1 subunit, confirming the close localization of endogenous NCLX and SERCA2 in cardiomyocytes. The mathematical model implemented with the spatial and functional coupling of NCLX and SERCA well reproduced the NCLX inhibition-mediated modulations of SR Ca2+ reuptake in HL-1 cardiomyocytes. Taken together, these results indicated that NCLX and SERCA are spatially and functionally coupled in cardiomyocytes.


Assuntos
Retículo Sarcoplasmático , Trocador de Sódio e Cálcio , Cálcio/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo
11.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613523

RESUMO

The plasma-membrane homeostasis Na+/Ca2+ exchangers (NCXs) mediate Ca2+ extrusion/entry to dynamically shape Ca2+ signaling/in biological systems ranging from bacteria to humans. The NCX gene orthologs, isoforms, and their splice variants are expressed in a tissue-specific manner and exhibit nearly 104-fold differences in the transport rates and regulatory specificities to match the cell-specific requirements. Selective pharmacological targeting of NCX variants could benefit many clinical applications, although this intervention remains challenging, mainly because a full-size structure of eukaryotic NCX is unavailable. The crystal structure of the archaeal NCX_Mj, in conjunction with biophysical, computational, and functional analyses, provided a breakthrough in resolving the ion transport mechanisms. However, NCX_Mj (whose size is nearly three times smaller than that of mammalian NCXs) cannot serve as a structure-dynamic model for imitating high transport rates and regulatory modules possessed by eukaryotic NCXs. The crystal structures of isolated regulatory domains (obtained from eukaryotic NCXs) and their biophysical analyses by SAXS, NMR, FRET, and HDX-MS approaches revealed structure-based variances of regulatory modules. Despite these achievements, it remains unclear how multi-domain interactions can decode and integrate diverse allosteric signals, thereby yielding distinct regulatory outcomes in a given ortholog/isoform/splice variant. This article summarizes the relevant issues from the perspective of future developments.


Assuntos
Células Eucarióticas , Trocador de Sódio e Cálcio , Animais , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X , Isoformas de Proteínas/metabolismo , Transporte de Íons/fisiologia , Células Eucarióticas/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
12.
J Mol Cell Cardiol ; 151: 126-134, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33290770

RESUMO

Ca2+ serves as a ubiquitous second messenger mediating a variety of cellular processes including electrical excitation, contraction, gene expression, secretion, cell death and others. The identification of the molecular components of the mitochondrial Ca2+ influx and efflux pathways has created a resurgent interest in the regulation of mitochondrial Ca2+ balance and its physiological and pathophysiological roles. While the pace of discovery has quickened with the availability of new cellular and animal models, many fundamental questions remain to be answered regarding the regulation and functional impact of mitochondrial Ca2+ in health and disease. This review highlights several experimental observations pertaining to key aspects of mitochondrial Ca2+ homeostasis that remain enigmatic, particularly whether mitochondrial Ca2+ signaling is depressed or excessive in heart failure, which will determine the optimal approach to therapeutic intervention.


Assuntos
Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Insuficiência Cardíaca/fisiopatologia , Humanos , Transporte de Íons , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
13.
J Mol Cell Cardiol ; 151: 145-154, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147447

RESUMO

Ca2+ flux into the mitochondrial matrix through the MCU holocomplex (MCUcx) has recently been measured quantitatively and with milliseconds resolution for the first time under physiological conditions in both heart and skeletal muscle. Additionally, the dynamic levels of Ca2+ in the mitochondrial matrix ([Ca2+]m) of cardiomyocytes were measured as it was controlled by the balance between influx of Ca2+ into the mitochondrial matrix through MCUcx and efflux through the mitochondrial Na+ / Ca2+ exchanger (NCLX). Under these conditions [Ca2+]m was shown to regulate ATP production by the mitochondria at only a few critical sites. Additional functions attributed to [Ca2+]m continue to be reported in the literature. Here we review the new findings attributed to MCUcx function and provide a framework for understanding and investigating mitochondrial Ca2+ influx features, many of which remain controversial. The properties and functions of the MCUcx subunits that constitute the holocomplex are challenging to tease apart. Such distinct subunits include EMRE, MCUR1, MICUx (i.e. MICU1, MICU2, MICU3), and the pore-forming subunits (MCUpore). Currently, the specific set of functions of each subunit remains non-quantitative and controversial. The more contentious issues are discussed in the context of the newly measured native MCUcx Ca2+ flux from heart and skeletal muscle. These MCUcx Ca2+ flux measurements have been shown to be a highly-regulated, tissue-specific with femto-Siemens Ca2+ conductances and with distinct extramitochondrial Ca2+ ([Ca2+]i) dependencies. These data from cardiac and skeletal muscle mitochondria have been examined quantitatively for their threshold [Ca2+]i levels and for hypothesized gatekeeping function and are discussed in the context of model cell (e.g. HeLa, MEF, HEK293, COS7 cells) measurements. Our new findings on MCUcx dependent matrix [Ca2+]m signaling provide a quantitative basis for on-going and new investigations of the roles of MCUcx in cardiac function ranging from metabolic fuel selection, capillary blood-flow control and the pathological activation of the mitochondrial permeability transition pore (mPTP). Additionally, this review presents the use of advanced new methods that can be readily adapted by any investigator to enable them to carry out quantitative Ca2+ measurements in mitochondria while controlling the inner mitochondrial membrane potential, ΔΨm.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Animais , Transporte Biológico , Fenômenos Biofísicos , Humanos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
14.
Semin Cell Dev Biol ; 94: 59-65, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30658153

RESUMO

Mitochondrial Ca2+ transient is the earliest discovered organellar Ca2+ signaling pathway. It consist of a Ca2+ influx, mediated by mitochondrial Ca2+ uniporter (MCU), and mitochondrial Ca2+ efflux mediated by a Na+/Ca2+ exchanger (NCLX). Mitochondrial Ca2+ signaling machinery plays a fundamental role in linking metabolic activity to cellular Ca2+ signaling, and in controlling local Ca2+ concertation in distinct cellular compartments. Impaired balance between mitochondrial Ca2+ influx and efflux leads to mitochondrial Ca2+ overload, an early and key event in ischemic or neurodegenerative syndromes. Molecular identification of NCLX and MCU happened only recently. Surprisingly, MCU knockout yielded a relatively mild phenotype while conditional knockout of NCLX led to a rapid fatal heart failure. Here we will focus on recent functional and molecular studies on NCLX structure and its mode of regulation. We will describe the unique crosstalk of this exchanger with Na+ and Ca2+ signaling pathways in the cell membrane and the endoplasmic reticulum, and with protein kinases that posttranslationally modulate NCLX activity. We will critically compare selectivity of pharmacological blockers versus molecular control of NCLX expression and activity. Finally we will discuss why this exchanger is essential for survival and can serve as an attractive therapeutic target.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sinalização do Cálcio , Humanos
15.
EMBO J ; 36(6): 797-815, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28219928

RESUMO

Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteína ORAI1/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Linhagem Celular , Humanos , Proteínas Mitocondriais , Oxirredução
16.
Neurochem Res ; 46(1): 108-119, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32249386

RESUMO

Calpains are calcium-dependent proteases activated in apoptotic cell death and neurodegeneration. Friedreich Ataxia is a neurodegenerative rare disease caused by frataxin deficiency, a mitochondrial protein. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in this disease. We have previously demonstrated that frataxin-deficient DRGs show calpain activation, alteration in calcium levels and decreased content of the Na+/Ca2+ exchanger (NCLX). This transporter is involved in mitochondrial calcium efflux. In this study, we have performed a time-course analysis of several parameters altered in a frataxin-deficient DRGs. These include decline of NCLX levels, calcium accumulation, mitochondrial depolarization, α-fodrin fragmentation and apoptotic cell death. Furthermore, we have analysed the effect of the calpain inhibitors MDL28170 and Calpeptin on these parameters. We have observed that these inhibitors increase NCLX levels, protect sensory neurons from neurite degeneration and calcium accumulation, and restore mitochondrial membrane potential. In addition, calpain 1 reduction alleviated neurodegeneration in frataxin-deficient DRG neurons. These results strengthen the hypothesis of a central role for calcium homeostasis and calpains in frataxin-deficient dorsal root ganglia neurons.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Neurônios/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Gânglios Espinais/citologia , Proteínas de Ligação ao Ferro/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Frataxina
17.
J Mol Cell Cardiol ; 143: 163-174, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32353353

RESUMO

Since the identification of the mitochondrial calcium uniporter (MCU) in 2011, several studies utilizing genetic models have attempted to decipher the role of mitochondrial calcium uptake in cardiac physiology. Confounding results in various mutant mouse models have led to an ongoing debate regarding the function of MCU in the heart. In this review, we evaluate and discuss the totality of evidence for mitochondrial calcium uptake in the cardiac stress response and highlight recent reports that implicate MCU in the control of homeostatic cardiac metabolism and function. This review concludes with a discussion of current gaps in knowledge and remaining experiments to define how MCU contributes to contractile function, cell death, metabolic regulation, and heart failure progression.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Coração/fisiologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Suscetibilidade a Doenças , Humanos , Estresse Fisiológico
18.
J Neurochem ; 153(2): 203-215, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31976561

RESUMO

Acid-sensing ion channel 1a (ASIC1a) is well-known to play a major pathophysiological role during brain ischemia linked to acute acidosis of ~pH 6, whereas its function during physiological brain activity, linked to much milder pH changes, is still poorly understood. Here, by performing live cell imaging utilizing Na+ and Ca2+ sensitive and spatially specific fluorescent dyes, we investigated the role of ASIC1a in cytosolic Na+ and Ca2+ signals elicited by a mild extracellular drop from pH 7.4 to 7.0 and how these affect mitochondrial Na+ and Ca2+ signaling or metabolic activity. We show that in mouse primary cortical neurons, this small extracellular pH change triggers cytosolic Na+ and Ca2+ waves that propagate to mitochondria. Inhibiting ASIC1a with Psalmotoxin 1 or ASIC1a gene knockout blocked not only the cytosolic but also the mitochondrial Na+ and Ca2+ signals. Moreover, physiological activation of ASIC1a by this pH shift enhances mitochondrial respiration and evokes mitochondrial Na+ signaling even in digitonin-permeabilized neurons. Altogether our results indicate that ASIC1a is critical in linking physiological extracellular pH stimuli to mitochondrial ion signaling and metabolic activity and thus is an important metabolic sensor.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Córtex Cerebral/fisiologia , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
19.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 997-1008, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28130126

RESUMO

BACKGROUND: The Na+/Ca2+/Li+ exchanger (NCLX) is a member of the Na+/Ca2+ exchanger family. NCLX is unique in its capacity to transport both Na+ and Li+, unlike other members, which are Na+ selective. The major aim of this study was twofold, i.e., to identify NCLX residues that confer Li+ or Na+ selective Ca2+ transport and map their putative location on NCLX cation transport site. METHOD: We combined molecular modeling to map transport site of NCLX with euryarchaeal H+/Ca2+ exchanger, CAX_Af, and fluorescence analysis to monitor Li+ versus Na+ dependent mitochondrial Ca2+ efflux of transport site mutants of NCLX in permeabilized cells. RESULT: Mutation of Asn149, Pro152, Asp153, Gly176, Asn467, Ser468, Gly494 and Asn498 partially or strongly abolished mitochondrial Ca2+ exchange activity in intact cells. In permeabilized cells, N149A, P152A, D153A, N467Q, S468T and G494S demonstrated normal Li+/Ca2+ exchange activity but a reduced Na+/Ca2+ exchange activity. On the other hand, D471A showed dramatically reduced Li+/Ca2+ exchange, but Na+/Ca2+ exchange activity was unaffected. Finally, simultaneous mutation of four putative Ca2+ binding residues was required to completely abolish both Na+/Ca2+ and Li+/Ca2+ exchange activities. CONCLUSIONS: We identified distinct Na+ and Li+ selective residues in the NCLX transport site. We propose that functional segregation in Li+ and Na+ sites reflects the functional properties of NCLX required for Ca2+ exchange under the unique membrane potential and ion gradient across the inner mitochondrial membrane. GENERAL SIGNIFICANCE: The results of this study provide functional insights into the unique Li+ and Na+ selectivity of the mitochondrial exchanger. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Assuntos
Cálcio/metabolismo , Lítio/metabolismo , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Células HEK293 , Humanos , Proteínas Mitocondriais , Mutação , Homologia de Sequência de Aminoácidos , Trocador de Sódio e Cálcio/química
20.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 618-631, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29223733

RESUMO

Frataxin-deficient neonatal rat cardiomyocytes and dorsal root ganglia neurons have been used as cell models of Friedreich ataxia. In previous work we show that frataxin depletion resulted in mitochondrial swelling and lipid droplet accumulation in cardiomyocytes, and compromised DRG neurons survival. Now, we show that these cells display reduced levels of the mitochondrial calcium transporter NCLX that can be restored by calcium-chelating agents and by external addition of frataxin fused to TAT peptide. Also, the transcription factor NFAT3, involved in cardiac hypertrophy and apoptosis, becomes activated by dephosphorylation in both cardiomyocytes and DRG neurons. In cardiomyocytes, frataxin depletion also results in mitochondrial permeability transition pore opening. Since the pore opening can be inhibited by cyclosporin A, we show that this treatment reduces lipid droplets and mitochondrial swelling in cardiomyocytes, restores DRG neuron survival and inhibits NFAT dephosphorylation. These results highlight the importance of calcium homeostasis and that targeting mitochondrial pore by repurposing cyclosporin A, could be envisaged as a new strategy to treat the disease.


Assuntos
Cálcio/metabolismo , Proteínas de Ligação ao Ferro/química , Mitocôndrias Cardíacas/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Fatores de Transcrição NFATC/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Calcineurina/química , Sobrevivência Celular , Ciclosporina/química , Modelos Animais de Doenças , Ataxia de Friedreich/metabolismo , Gânglios Espinais/metabolismo , Lipídeos/química , Linfócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Permeabilidade , Fosforilação , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/química , Frataxina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa