Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell Mol Life Sci ; 78(5): 2263-2278, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32936312

RESUMO

Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order-disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


Assuntos
Proteínas de Transporte/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Sensoras de Cálcio Neuronal/química , Neuropeptídeos/química , Domínios Proteicos , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Ligantes , Modelos Moleculares , Mutação , Proteínas Sensoras de Cálcio Neuronal/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Estabilidade Proteica , Termodinâmica
2.
Methods ; 180: 45-55, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387313

RESUMO

Biological nanoparticles include liposomes, extracellular vesicle and lipid-based discoidal systems. When studying such particles, there are several key parameters of interest, including particle size and concentration. Measuring these characteristics can be of particular importance in the research laboratory or when producing such particles as biotherapeutics. This article briefly describes the major types of lipid-containing nanoparticles and the techniques that can be used to study them. Such methodologies include electron microscopy, atomic force microscopy, dynamic light scattering, nanoparticle tracking analysis, flow cytometry, tunable resistive pulse sensing and microfluidic resistive pulse sensing. Whilst no technique is perfect for the analysis of all nanoparticles, this article provides advantages and disadvantages of each, highlighting the latest developments in the field. Finally, we demonstrate the use of microfluidic resistive pulse sensing for the analysis of biological nanoparticles.


Assuntos
Biofísica/métodos , Lipídeos/análise , Lipossomos/análise , Nanopartículas/análise , Difusão Dinâmica da Luz , Vesículas Extracelulares , Citometria de Fluxo/métodos , Lipídeos/química , Lipossomos/química , Microfluídica/métodos , Microscopia de Força Atômica , Microscopia Eletrônica , Nanopartículas/química , Tamanho da Partícula
3.
Proc Natl Acad Sci U S A ; 114(6): E999-E1008, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28119500

RESUMO

The protein complex formed by the Ca2+ sensor neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor protein Ric8a coregulates synapse number and probability of neurotransmitter release, emerging as a potential therapeutic target for diseases affecting synapses, such as fragile X syndrome (FXS), the most common heritable autism disorder. Using crystallographic data and the virtual screening of a chemical library, we identified a set of heterocyclic small molecules as potential inhibitors of the NCS-1/Ric8a interaction. The aminophenothiazine FD44 interferes with NCS-1/Ric8a binding, and it restores normal synapse number and associative learning in a Drosophila FXS model. The synaptic effects elicited by FD44 feeding are consistent with the genetic manipulation of NCS-1. The crystal structure of NCS-1 bound to FD44 and the structure-function studies performed with structurally close analogs explain the FD44 specificity and the mechanism of inhibition, in which the small molecule stabilizes a mobile C-terminal helix inside a hydrophobic crevice of NCS-1 to impede Ric8a interaction. Our study shows the drugability of the NCS-1/Ric8a interface and uncovers a suitable region in NCS-1 for development of additional drugs of potential use on FXS and related synaptic disorders.


Assuntos
Proteínas de Drosophila/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Fenotiazinas/farmacologia , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Antipsicóticos/química , Antipsicóticos/farmacologia , Cristalografia por Raios X , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Síndrome do Cromossomo X Frágil/genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/química , Neuropeptídeos/genética , Fenotiazinas/química , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Sinapses/genética
4.
Cancer Sci ; 110(1): 420-432, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375717

RESUMO

The prognosis of patients with advanced-stage lung squamous cell carcinoma (LUSQ) is poor, and effective treatment protocols are limited. Our continuous analyses of antitumor microRNAs (miRNAs) and their oncogenic targets have revealed novel oncogenic pathways in LUSQ. Analyses of our original miRNA expression signatures indicated that both strands of miR-144 (miR-144-5p, the passenger strand; miR-144-3p, the guide strand) showed decreased expression in cancer tissues. Additionally, low expression of miR-144-5p significantly predicted a poor prognosis in patients with LUSQ by The Cancer Genome Atlas database analyses (overall survival, P = 0.026; disease-free survival, P = 0.023). Functional assays revealed that ectopic expression of miR-144-5p and miR-144-3p significantly blocked the malignant abilities of LUSQ cells, eg, cancer cell proliferation, migration, and invasion. In LUSQ cells, 13 and 15 genes were identified as possible oncogenic targets that might be regulated by miR-144-5p and miR-144-3p, respectively. Among these targets, we identified 3 genes (SLC44A5, MARCKS, and NCS1) that might be regulated by both strands of miR-144. Interestingly, high expression of NCS1 predicted a significantly poorer prognosis in patients with LUSQ (overall survival, P = 0.013; disease-free survival, P = 0.048). By multivariate analysis, NCS1 expression was found to be an independent prognostic factor for patients with LUSQ patients. Overexpression of NCS1 was detected in LUSQ clinical specimens, and its aberrant expression enhanced malignant transformation of LUSQ cells. Our approach, involving identification of antitumor miRNAs and their targets, will contribute to improving our understanding of the molecular pathogenesis of LUSQ.


Assuntos
Carcinoma de Células Escamosas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs , Pessoa de Meia-Idade , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada/genética , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Proteínas Sensoras de Cálcio Neuronal/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Prognóstico
5.
Bipolar Disord ; 21(2): 108-116, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506611

RESUMO

OBJECTIVES: This limited review examines the role of the reticular activating system (RAS), especially the pedunculopontine nucleus (PPN), one site of origin of bottom-up gamma, in the symptoms of bipolar disorder (BD). METHODS: The expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of BD patients is increased. It has recently been found that all PPN neurons manifest intrinsic membrane beta/gamma frequency oscillations mediated by high threshold calcium channels, suggesting that it is one source of bottom-up gamma. This review specifically addresses the involvement of these channels in the manifestation of BD. RESULTS: Excess NCS-1 was found to dampen gamma band oscillations in PPN neurons. Lithium, a first line treatment for BD, was found to decrease the effects of NCS-1 on gamma band oscillations in PPN neurons. Moreover, gamma band oscillations appear to epigenetically modulate gene transcription in PPN neurons, providing a new direction for research in BD. CONCLUSIONS: This is an area needing much additional research, especially since the dysregulation of calcium channels may help explain many of the disorders of arousal in, elicit unwanted neuroepigenetic modulation in, and point to novel therapeutic avenues for, BD.


Assuntos
Transtorno Bipolar/metabolismo , Ritmo Gama/fisiologia , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Núcleo Tegmental Pedunculopontino/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Canais de Cálcio/metabolismo , Epigênese Genética , Humanos , Neurônios/metabolismo , Neurônios/patologia
6.
EMBO J ; 33(16): 1831-44, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24952894

RESUMO

The hydantoin transporter Mhp1 is a sodium-coupled secondary active transport protein of the nucleobase-cation-symport family and a member of the widespread 5-helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5-substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5-substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5-(2-naphthylmethyl)-L-hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Hidantoínas/metabolismo , Ligação de Hidrogênio , Ligantes , Micrococcaceae/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 111(36): 13069-74, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157171

RESUMO

Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.


Assuntos
Cálcio/metabolismo , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Pinças Ópticas , Dobramento de Proteína , Humanos , Cinética , Termodinâmica
8.
Biochim Biophys Acta ; 1853(9): 1921-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25447549

RESUMO

Changes in the intracellular free calcium concentration ([Ca²âº]i) in neurons regulate many and varied aspects of neuronal function over time scales from microseconds to days. The mystery is how a single signalling ion can lead to such diverse and specific changes in cell function. This is partly due to aspects of the Ca²âº signal itself, including its magnitude, duration, localisation and persistent or oscillatory nature. The transduction of the Ca²âº signal requires Ca²âºbinding to various Ca²âº sensor proteins. The different properties of these sensors are important for differential signal processing and determine the physiological specificity of Ca(2+) signalling pathways. A major factor underlying the specific roles of particular Ca²âº sensor proteins is the nature of their interaction with target proteins and how this mediates unique patterns of regulation. We review here recent progress from structural analyses and from functional analyses in model organisms that have begun to reveal the rules that underlie Ca²âº sensor protein specificity for target interaction. We discuss three case studies exemplifying different aspects of Ca²âº sensor/target interaction. This article is part of a special issue titled the 13th European Symposium on Calcium.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neurônios/metabolismo , Animais , Humanos , Neurônios/citologia
9.
J Neurochem ; 139 Suppl 1: 156-178, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865375

RESUMO

Dopamine-releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age-dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement-related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium- and activity-dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2-autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double-edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed-forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD-paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD-triggers, as well as on bidirectional functions of voltage-gated L-type calcium channels and metabolically gated ATP-sensitive potassium (K-ATP) channels, and their probable interplay in health and PD. We propose that SN DA neurons possess several feedback and feed-forward mechanisms to protect and adapt their activity-pattern and calcium-homeostasis within a physiological bandwidth, and that PD-trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium-levels can trigger SN DA degeneration. This article is part of a special issue on Parkinson disease.


Assuntos
Cálcio/fisiologia , Neurônios Dopaminérgicos/metabolismo , Canais Iônicos/fisiologia , Doença de Parkinson/metabolismo , Estresse Fisiológico/fisiologia , Substância Negra/metabolismo , Animais , Neurônios Dopaminérgicos/patologia , Nível de Saúde , Humanos , Doença de Parkinson/patologia , Substância Negra/patologia
10.
J Cell Sci ; 127(Pt 8): 1805-15, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24522191

RESUMO

Phenotypic heterogeneity of cancer cells is caused not only by genetic and epigenetic alterations but also by stochastic variation of intracellular signaling molecules. Using cells that stably express Förster resonance energy transfer (FRET) biosensors, we show here a correlation between a temporal fluctuation in the activity of Rac1 and the invasive properties of C6 glioma cells. By using long-term time-lapse imaging, we found that Rac1 activity in C6 glioma cells fluctuated over a timescale that was substantially longer than that of the replication cycle. Because the relative level of Rac1 activity in each cell was unaffected by a suspension-adhesion procedure, we were able to sort C6 glioma cells according to the levels of Rac1 activity, yielding Rac1(high) and Rac1(low) cells. The Rac1(high) cells invaded more efficiently than did Rac1(low) cells in a Matrigel invasion assay. We assessed the transcriptional profiles of Rac1(high) and Rac1(low) cells and performed gene ontology analysis. Among the 14 genes that were most associated with the term 'membrane' (membrane-related genes) in Rac1(high) cells, we identified four genes that were associated with glioma invasion and Rac1 activity by using siRNA knockdown experiments. Among the transcription factors upregulated in Rac1(high) cells, Egr2 was found to positively regulate expression of the four membrane-related invasion-associated genes. The identified signaling network might cause the fluctuations in Rac1 activity and the heterogeneity in the invasive capacity of glioma cells.


Assuntos
Glioma/patologia , Transcrição Gênica , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Invasividade Neoplásica , Fenótipo , Transporte Proteico , Ratos , Transdução de Sinais , Transcriptoma , Regulação para Cima
12.
Biomolecules ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397420

RESUMO

The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.


Assuntos
Cálcio , Neurônios , Cálcio/metabolismo , Neurônios/metabolismo , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Regeneração Nervosa
13.
J Physiol Biochem ; 80(2): 451-463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564162

RESUMO

The physical and functional interaction between transient receptor potential channel ankyrin 1 (TRPA1) and neuronal calcium sensor 1 (NCS-1) was assessed. NCS-1 is a calcium (Ca2+) sensor found in many tissues, primarily neurons, and TRPA1 is a Ca2+ channel involved not only in thermal and pain sensation but also in conditions such as cancer and chemotherapy-induced peripheral neuropathy, in which NCS-1 is also a regulatory component.We explored the interactions between these two proteins by employing western blot, qRT-PCR, co-immunoprecipitation, Ca2+ transient monitoring with Fura-2 spectrophotometry, and electrophysiology assays in breast cancer cells (MDA-MB-231) with different levels of NCS-1 expression and neuroblastoma cells (SH-SY5Y).Our findings showed that the expression of TRPA1 was directly correlated with NCS-1 levels at both the protein and mRNA levels. Additionally, we found a physical and functional association between these two proteins. Physically, the NCS-1 and TRPA1 co-immunoprecipitate. Functionally, NCS-1 enhanced TRPA1-dependent Ca2+ influx, current density, open probability, and conductance, where the functional effects depended on PI3K. Conclusion: NCS-1 appears to act not only as a Ca2+ sensor but also modulates TRPA1 protein expression and channel function in a direct fashion through the PI3K pathway. These results contribute to understanding how Ca2+ homeostasis is regulated and provides a mechanism underlying conditions where Ca2+ dynamics are compromised, including breast cancer. With a cellular pathway identified, targeted treatments can be developed for breast cancer and neuropathy, among other related diseases.


Assuntos
Neoplasias da Mama , Proteínas Sensoras de Cálcio Neuronal , Neuropeptídeos , Canal de Cátion TRPA1 , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Proteínas Sensoras de Cálcio Neuronal/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética
14.
Microb Cell ; 11: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225947

RESUMO

FurE is a H+ symporter specific for the cellular uptake of uric acid, allantoin, uracil, and toxic nucleobase analogues in the fungus Aspergillus nidulans. Being member of the NCS1 protein family, FurE is structurally related to the APC-superfamily of transporters. APC-type transporters are characterised by a 5+5 inverted repeat fold made of ten transmembrane segments (TMS1-10) and function through the rocking-bundle mechanism. Most APC-type transporters possess two extra C-terminal TMS segments (TMS11-12), the function of which remains elusive. Here we present a systematic mutational analysis of TMS11-12 of FurE and show that two specific aromatic residues in TMS12, Trp473 and Tyr484, are essential for ER-exit and trafficking to the plasma membrane (PM). Molecular modeling shows that Trp473 and Tyr484 might be essential through dynamic interactions with residues in TMS2 (Leu91), TMS3 (Phe111), TMS10 (Val404, Asp406) and other aromatic residues in TMS12. Genetic analysis confirms the essential role of Phe111, Asp406 and TMS12 aromatic residues in FurE ER-exit. We further show that co-expression of FurE-Y484F or FurE-W473A with wild-type FurE leads to a dominant negative phenotype, compatible with the concept that FurE molecules oligomerize or partition in specific microdomains to achieve concentrative ER-exit and traffic to the PM. Importantly, truncated FurE versions lacking TMS11-12 are unable to reproduce a negative effect on the trafficking of co-expressed wild-type FurE. Overall, we show that TMS11-12 acts as an intramolecular chaperone for proper FurE folding, which seems to provide a structural code for FurE partitioning in ER-exit sites.

15.
Cell Calcium ; 113: 102762, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37244172

RESUMO

Alterations in calcium (Ca2+) signaling is a major mechanism in the development of chemotherapy-induced peripheral neuropathy (CIPN), a side effect caused by multiple chemotherapy regimens. CIPN is associated with numbness and incessant tingling in hands and feet which diminishes quality of life during treatment. In up to 50% of survivors, CIPN is essentially irreversible. There are no approved, disease-modifying treatments for CIPN. The only recourse for oncologists is to modify the chemotherapy dose, a situation that can compromise optimal chemotherapy and impact patient outcomes. Here we focus on taxanes and other chemotherapeutic agents that work by altering microtubule assemblies to kill cancer cells, but also have off-target toxicities. There have been many molecular mechanisms proposed to explain the effects of microtubule-disrupting drugs. In neurons, an initiating step in the off-target effects of treatment by taxane is binding to neuronal calcium sensor 1 (NCS1), a sensitive Ca2+ sensor protein that maintains the resting Ca2+ concentration and dynamically enhances responses to cellular stimuli. The taxane/NCS1 interaction causes a Ca2+ surge that starts a pathophysiological cascade of consequences. This same mechanism contributes to other conditions including chemotherapy-induced cognitive impairment. Strategies to prevent the Ca2+ surge are the foundation of current work.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Humanos , Antineoplásicos/efeitos adversos , Qualidade de Vida , Sinalização do Cálcio , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico
16.
J Mol Biol ; 435(19): 168226, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544358

RESUMO

Transporters mediate the uptake of solutes, metabolites and drugs across the cell membrane. The eukaryotic FurE nucleobase/H+ symporter of Aspergillus nidulans has been used as a model protein to address structure-function relationships in the APC transporter superfamily, members of which are characterized by the LeuT-fold and seem to operate by the so-called 'rocking-bundle' mechanism. In this study, we reveal the binding mode, translocation and release pathway of uracil/H+ by FurE using path collective variable, funnel metadynamics and rational mutational analysis. Our study reveals a stepwise, induced-fit, mechanism of ordered sequential transport of proton and uracil, which in turn suggests that FurE, functions as a multi-step gated pore, rather than employing 'rocking' of compact domains, as often proposed for APC transporters. Finally, our work supports that specific residues of the cytoplasmic N-tail are involved in substrate translocation, in line with their essentiality for FurE function.


Assuntos
Proteínas de Membrana Transportadoras , Uracila , Transporte Biológico , Membrana Celular/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Prótons , Uracila/metabolismo
17.
Front Neurosci ; 16: 1007531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466176

RESUMO

Fragile X syndrome (FXS) is caused by the loss of function of Fragile X mental retardation protein (FMRP). FXS is one of the leading monogenic causes of intellectual disability (ID) and autism. Although it is caused by the failure of a single gene, FMRP that functions as an RNA binding protein affects a large number of genes secondarily. All these genes represent hundreds of potential targets and different mechanisms that account for multiple pathological features, thereby hampering the search for effective treatments. In this scenario, it seems desirable to reorient therapies toward more general approaches. Neuronal calcium sensor 1 (NCS-1), through its interaction with the guanine-exchange factor Ric8a, regulates the number of synapses and the probability of the release of a neurotransmitter, the two neuronal features that are altered in FXS and other neurodevelopmental disorders. Inhibitors of the NCS-1/Ric8a complex have been shown to be effective in restoring abnormally high synapse numbers as well as improving associative learning in FMRP mutant flies. Here, we demonstrate that phenothiazine FD44, an NCS-1/Ric8a inhibitor, has strong inhibition ability in situ and sufficient bioavailability in the mouse brain. More importantly, administration of FD44 to two different FXS mouse models restores well-known FXS phenotypes, such as hyperactivity, associative learning, aggressive behavior, stereotype, or impaired social approach. It has been suggested that dopamine (DA) may play a relevant role in the behavior and in neurodevelopmental disorders in general. We have measured DA and its metabolites in different brain regions, finding a higher metabolic rate in the limbic area, which is also restored with FD44 treatment. Therefore, in addition to confirming that the NCS-1/Ric8a complex is an excellent therapeutic target, we demonstrate the rescue effect of its inhibitor on the behavior of cognitive and autistic FXS mice and show DA metabolism as a FXS biochemical disease marker.

18.
Mol Ther Methods Clin Dev ; 27: 295-308, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36320410

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disease resulting in deafness, optic atrophy, diabetes, and neurological disorders. Currently, no treatment is available for patients. The mutated gene, WFS1, encodes an endoplasmic reticulum (ER) protein, Wolframin. We previously reported that Wolframin regulated the ER-mitochondria Ca2+ transfer and mitochondrial activity by protecting NCS1 from degradation in patients' fibroblasts. We relied on a zebrafish model of WS, the wfs1ab KO line, to analyze the functional and behavioral impact of NCS1 overexpression as a novel therapeutic strategy. The wfs1ab KO line showed an increased locomotion in the visual motor and touch-escape responses. The absence of wfs1 did not impair the cellular unfolded protein response, in basal or tunicamycin-induced ER stress conditions. In contrast, metabolic analysis showed an increase in mitochondrial respiration in wfs1ab KO larvae. Interestingly, overexpression of NCS1 using mRNA injection restored the alteration of mitochondrial respiration and hyperlocomotion. Taken together, these data validated the wfs1ab KO zebrafish line as a pertinent experimental model of WS and confirmed the therapeutic potential of NCS1. The wfs1ab KO line therefore appeared as an efficient model to identify novel therapeutic strategies, such as gene or pharmacological therapies targeting NCS1 that will correct or block WS symptoms.

19.
Front Synaptic Neurosci ; 13: 635050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716704

RESUMO

Dopaminergic (DA) midbrain neurons within the substantia nigra (SN) display an autonomous pacemaker activity that is crucial for dopamine release and voluntary movement control. Their progressive degeneration is a hallmark of Parkinson's disease. Their metabolically demanding activity-mode affects Ca2+ homeostasis, elevates metabolic stress, and renders SN DA neurons particularly vulnerable to degenerative stressors. Accordingly, their activity is regulated by complex mechanisms, notably by dopamine itself, via inhibitory D2-autoreceptors and the neuroprotective neuronal Ca2+ sensor NCS-1. Analyzing regulation of SN DA neuron activity-pattern is complicated by their high vulnerability. We studied this activity and its control by dopamine, NCS-1, and glucose with extracellular multi-electrode array (MEA) recordings from midbrain slices of juvenile and adult mice. Our tailored MEA- and spike sorting-protocols allowed high throughput and long recording times. According to individual dopamine-responses, we identified two distinct SN cell-types, in similar frequency: dopamine-inhibited and dopamine-excited neurons. Dopamine-excited neurons were either silent in the absence of dopamine, or they displayed pacemaker-activities, similar to that of dopamine-inhibited neurons. Inhibition of pacemaker-activity by dopamine is typical for SN DA neurons, and it can undergo prominent desensitization. We show for adult mice, that the number of SN DA neurons with desensitized dopamine-inhibition was increased (~60-100%) by a knockout of NCS-1, or by prevention of NCS-1 binding to D2-autoreceptors, while time-course and degrees of desensitization were not altered. The number of neurons with desensitized D2-responses was also higher (~65%) at high glucose-levels (25 mM), compared to lower glucose (2.5 mM), while again desensitization-kinetics were unaltered. However, spontaneous firing-rates were significantly higher at high glucose-levels (~20%). Moreover, transient glucose-deprivation (1 mM) induced a fast and fully-reversible pacemaker frequency reduction. To directly address and quantify glucose-sensing properties of SN DA neurons, we continuously monitored their electrical activity, while altering extracellular glucose concentrations stepwise from 0.5 mM up to 25 mM. SN DA neurons were excited by glucose, with EC50 values ranging from 0.35 to 2.3 mM. In conclusion, we identified a novel, common subtype of dopamine-excited SN neurons, and a complex, joint regulation of dopamine-inhibited neurons by dopamine and glucose, within the range of physiological brain glucose-levels.

20.
Comput Struct Biotechnol J ; 19: 1713-1737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897977

RESUMO

Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin-related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa