Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1838(12): 3025-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25135661

RESUMO

Nucleobase ascorbate transporters (NATs), also known as Nucleobase:Cation-Symporter 2 (NCS2) proteins, belong to an evolutionary widespread family of transport proteins with members in nearly all domains of life. We present the biochemical characterization of two NAT proteins, NAT3 and NAT12 from Arabidopsis thaliana after their heterologous expression in Escherichia coli UraA knockout mutants. Both proteins were shown to transport adenine, guanine and uracil with high affinities. The apparent KM values were determined with 10.12µM, 4.85µM and 19.95µM, respectively for NAT3 and 1.74µM, 2.44µM and 29.83µM, respectively for NAT12. Competition studies with the three substrates suggest hypoxanthine as a further substrate of both transporters. Furthermore, the transport of nucleobases was markedly inhibited by low concentrations of a proton uncoupler indicating that NAT3 and NAT12 act as proton-nucleobase symporters. Transient expression studies of NAT-GFP fusion constructs revealed a localization of both proteins in the plasma membrane. Based on the structural information of the uracil permease UraA from E. coli, a three-dimensional experimentally validated homology model of NAT12 was created. The NAT12 structural model is composed of 14 TM segments and divided into two inverted repeats of TM1-7 and TM8-14. Docking studies and mutational analyses identified residues involved in NAT12 nucleobase binding including Ser-247, Phe-248, Asp-461, Thr-507 and Thr-508. This is the first study to provide insight into the structure-function of plant NAT proteins, which reveals differences from the other members of the NCS2 protein family.

2.
Genetics ; 222(1)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35894659

RESUMO

An increasing number of solute transporters have been shown to function with the so-called sliding-elevator mechanism. Despite structural and functional differences, all elevator-type transporters use a common mechanism of substrate translocation via reversible movements of a mobile core domain (the elevator) hosting the substrate binding site along a rigid scaffold domain stably anchored in the plasma membrane via homodimerization. One of the best-studied elevator transporters is the UapA uric acid-xanthine/H+ symporter of the filamentous fungus Aspergillus nidulans. Here, we present a genetic analysis for deciphering the role of transmembrane segments (TMS) 5 and 12 in UapA transport function. We show that specific residues in both TMS5 and TMS12 control, negatively or positively, the dynamics of transport, but also substrate binding affinity and specificity. More specifically, mutations in TMS5 can lead not only to increased rate of transport but also to an inactive transporter due to high-affinity substrate-trapping, whereas mutations in TMS12 lead to apparently uncontrolled sliding and broadened specificity, leading in specific cases to UapA-mediated purine toxicity. Our findings shed new light on how elevator transporters function and how this knowledge can be applied to genetically modify their transport characteristics.


Assuntos
Aspergillus nidulans , Proteínas Fúngicas , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Transporte Biológico , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Especificidade por Substrato
3.
Front Plant Sci ; 12: 753603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003154

RESUMO

To date, unmanned aerial vehicles (UAVs), commonly known as drones, have been widely used in precision agriculture (PA) for crop monitoring and crop spraying, allowing farmers to increase the efficiency of the farming process, meanwhile reducing environmental impact. However, to spray pesticides effectively and safely to the trees in small fields or rugged environments, such as mountain areas, is still an open question. To bridge this gap, in this study, an onboard computer vision (CV) component for UAVs is developed. The system is low-cost, flexible, and energy-effective. It consists of two parts, the hardware part is an Intel Neural Compute Stick 2 (NCS2), and the software part is an object detection algorithm named the Ag-YOLO. The NCS2 is 18 grams in weight, 1.5 watts in energy consumption, and costs about $66. The proposed model Ag-YOLO is inspired by You Only Look Once (YOLO), trained and tested with aerial images of areca plantations, and shows high accuracy (F1 score = 0.9205) and high speed [36.5 frames per second (fps)] on the target hardware. Compared to YOLOv3-Tiny, Ag-YOLO is 2× faster while using 12× fewer parameters. Based on this study, crop monitoring and crop spraying can be synchronized into one process, so that smart and precise spraying can be performed.

4.
Elife ; 102021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323215

RESUMO

The translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of the C. elegans RNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron-type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5'UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5'UTR-dependent manner. Our study reveals an in vivo mechanism for eIF3 in governing neuronal protein levels to control neuronal activity states and offers insights into how eIF3 dysregulation contributes to neurological disorders.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Fator de Iniciação 3 em Eucariotos/genética , Neurônios/fisiologia , Biossíntese de Proteínas , RNA de Helmintos/biossíntese , RNA Mensageiro/biossíntese , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo
5.
Comput Struct Biotechnol J ; 19: 1713-1737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897977

RESUMO

Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin-related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.

6.
Bioresour Technol ; 271: 383-390, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30296745

RESUMO

This work intends towards the preparation of different grades of cationic locust bean gum biopolymer (CLBG) through the incorporation of 2,3-epoxypropyltrimethylammonium chloride (GTMAC) on to the pristine locust bean gum (LBG) biopolymer. Among them the best grade was further selected, characterized and their flocculation efficacy was evaluated towards harvesting of three different indigenous isolated green microalgae viz. Chlorella sp. NCQ, Micractinium sp. NCS2 and Scenedesmus sp. CBIIT(ISM). Flocculation efficiency of 96.68%, 96.64%, and 97.42% were obtained for Chlorella sp. NCQ, Micractinium sp. NCS2 and Scenedesmus sp. CBIIT(ISM) at an optimum dosage of 55, 40, and 30 ppm respectively. Thus CLBG was proven to be an efficient flocculant towards harvesting of green microalgae than its natural form.


Assuntos
Biopolímeros/metabolismo , Galactanos/metabolismo , Mananas/metabolismo , Microalgas , Gomas Vegetais/metabolismo , Biopolímeros/química , Cátions , Chlorella , Floculação
7.
Biochim Biophys Acta Biomembr ; 1861(9): 1546-1557, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283918

RESUMO

Recombinant expression systems for mammalian membrane transport proteins are often limited by insufficient yields to support structural studies, inadequate post-translational processing and problems related with improper membrane targeting or cytotoxicity. Use of alternative expression systems and optimization of expression/purification protocols are constantly needed. In this work, we explore the applicability of the laboratory strain LEXSY of the ancient eukaryotic microorganism Leishmania tarentolae as a new expression system for mammalian nucleobase permeases of the NAT/NCS2 (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2) family. We achieved the heterologous expression of the purine-pyrimidine permease rSNBT1 from Rattus norvegicus (tagged at C-terminus with a red fluorescent protein), as confirmed by confocal microscopy and biochemical analysis of the subcellular fractions enriched in membrane proteins. The cDNA of rSNBT1 has been subcloned in a pLEXSY-sat-mrfp1vector and used to generate transgenic L. tarentolae-rsnbt1-mrfp1 strains carrying the pLEXSY-sat-rsnbt1-mrfp1 plasmid either episomally or integrated in the chromosomal DNA. The chimeric transporter rSNBT1-mRFP1 is targeted to the ER and the plasma membrane of the L. tarentolae promastigotes. The transgenic strains are capable of transporting nucleobases that are substrates of rSNBT1 but also of the endogenous L. tarentolae nucleoside/nucleobase transporters. A dipyridamole-resistant Na+-dependent fraction of uptake is attributed to the exogenously expressed rSNBT1.


Assuntos
Leishmania/genética , Proteínas de Transporte de Nucleobases/genética , Engenharia de Proteínas/métodos , Animais , Animais Geneticamente Modificados , Transporte Biológico/genética , Transporte de Íons , Leishmania/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Nucleobases/metabolismo , Purinas , Pirimidinas , Ratos , Sódio/metabolismo , Simportadores/metabolismo
8.
Front Plant Sci ; 9: 856, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002663

RESUMO

Nucleobase:cation symporter 2 (NCS2) proteins are important for the transport of free nucleobases, participating in diverse plant growth and developmental processes, as well as response to abiotic stress. To date, a comprehensive analysis of the NCS2 gene family has not been performed in maize. In this study, we conducted a comparative genomics analysis of NCS2 genes in 28 plant species, ranging from aquatic algae to land plants, concentrating mainly on maize. Gene duplication events contributed to the expansion of NCS2 genes from lower aquatic plants to higher angiosperms, and whole-genome/segmental and single-gene duplication events were responsible for the expansion of the maize NCS2 gene family. Phylogenetic construction showed three NCS2 subfamilies, I, II, and III. According to homology-based relationships, members of subfamily I are NCS2/AzgA-like genes, whereas those in subfamilies II and III are NCS2/NATs. Moreover, subfamily I exhibited ancient origins. A motif compositional analysis showed that one symbolic motif (motif 4) of the NCS2/NAT genes was absent in subfamily I. In maize, three NCS2/AzgA-like and 21 NCS2/NAT genes were identified, and purifying selection influenced the duplication of maize NCS2 genes. Additionally, a population genetic analysis of NCS2 genes revealed that ZmNCS2-21 showed the greatest diversity between the 78 inbred and 22 wild surveyed maize populations. An expression profile analysis using transcriptome data and quantitative real-time PCR revealed that NCS2 genes in maize are involved in diverse developmental processes and responses to abiotic stresses, including abscisic acid, salt (NaCl), polyethylene glycol, and low (4°C) and high (42°C) temperatures. ZmNCS2 genes with relatively close relationships had similar expression patterns, strongly indicating functional redundancy. Finally, ZmNCS2-16 and ZmNCS2-23 localize in the plasma membrane, which confirmed their predicted membrane structures. These results provide a foundation for future studies regarding the functions of ZmNCS2 proteins, particularly those with potentially important roles in plant responses to abiotic stresses.

9.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 12): 1755-1758, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30574369

RESUMO

A new phase combining BEDT-TTF and [Cu(NCS)4]2- as the counter-anion, namely bis-[bis(ethyl-enedi-thio)-tetra-thia-fulvalenium] tetra-thio-cyanato-cuprate(II) bis-[bis(ethyl-ene-di-thio)-tetra-thia-fulvalene], (C10H8S8)2[Cu(NCS)4]·2C10H8S8 or (BEDT-TTF)4[Cu(NCS)4] was obtained during a galvanostatic electrocrystallization process. As previously observed with BEDT-TTF-based compounds with oxalatometallate anions, the BEDT-TTF mol-ecules in (BEDT-TTF)4[Cu(NCS)4] exhibit the so-called pseudo-κ arrangement, with two BEDT-TTF mol-ecules being positively charged and two electronically neutral. The bond lengths and angles in the two unique BEDT-TTF mol-ecules differ slightly. The crystal structure consists of layers of BEDT-TTF mol-ecules extending parallel to (001). The width of this layer corresponds to the length of the a axis [16.9036 (17) Å]. The BEDT-TTF layers are separated by layers of centrosymmetric square-planar [Cu(NCS)4]2- dianions.

10.
J Biomol Struct Dyn ; 36(13): 3398-3410, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29072107

RESUMO

The Escherichia coli uracil/H + symporter UraA, known as the representative nucleobase/cation symporter 2(NCS2) protein, gets involved in several crucial physiological processes for most living organisms on Earth, such as the uptake of nucleobases and transport of vitamin C. Some experiments proposed a working model to explain proton-coupling and uracil transporting process of UraA on the basis of the crystal structure of NCS2 protein, but the details of conformational changes remained unknown. Thus, in order to make clear conformational changes caused by the protonation and deprotonation process of some conserved proton-coupled residues, the molecular dynamics simulation was used to study the conformation of UraA complexes in different protonation states. The results demonstrated that the protonation of residue Glu241 and Glu290 resulted in the whole conformational transition from the inward-open to the outward-open state. It can be concluded that Glu290 was crucial in a network of hydrogen-bonds in the middle of the core domain involving another essential residue, mainly including tyr288 in TM8, Tyr342, Ser338 in TM12, and the network of hydrogen-bonds was the key to maintain the stability of conformation. Protonation of Glu290 affects the stability of network of H-bond and changed the domains TM3 TM10 TM12. Thus, Glu290 may play a vital role as a 'proton trigger' that affects spatial structural of amino and residues near substrate binding side leading to an outward-open conformation transition.


Assuntos
Transporte Biológico/fisiologia , Domínio Catalítico/fisiologia , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Sequência de Aminoácidos , Ácido Ascórbico/metabolismo , Sítios de Ligação/fisiologia , Ligação de Hidrogênio , Conformação Molecular , Simulação de Dinâmica Molecular , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa