RESUMO
BACKGROUND AND AIMS: After peripheral nerve stretch injury, most degenerating axons are thought to become disconnected at the time of injury, referred to as primary axotomy. The possibility of secondary axotomy-a delayed and potentially reversible form of disconnection-has not been evaluated. Here, we investigated secondary axotomy in a rat model of sciatic nerve stretch injury. We also evaluated whether axon sparing and functional improvement results from pharmacological blockade of the sodium-calcium exchanger 1 (NCX1), which is widely believed to contribute to traumatic axon degeneration but was previously only investigated in vitro. METHODS: We studied peripheral nerve secondary axotomy in a clinically relevant rat model of sciatic nerve rapid stretch injury with immunolabeling and fluorescence microscopy. The role of NCX1 in secondary axotomy was studied with pharmacological inhibition with SEA0400 and immunolabeling, immunoblot, and behavioral assays. RESULTS: We found that early after injury, many axons remained in-continuity and that degeneration of axons was delayed, consistent with the occurrence of secondary axotomy. ßAPP, a marker of secondary axotomy, accumulated at regions of axon swelling and disconnection, and NCX1 was upregulated and co-localized to ßAPP axonal swellings. Pharmacological blockade of NCX1 after injury reduced calpain activation, proteolytic degradation of neurofilaments, ßAPP accumulation, distal axon degeneration, and improved hindlimb function. INTERPRETATION: Our data demonstrate a major role for secondary axotomy in peripheral nerve stretch injury and identify NCX1 as a promising therapeutic target to reduce secondary axotomy and improve functional outcome after nerve injury.
RESUMO
BACKGROUND: Hypertension is the most common cardiovascular disease, and its main harmful effect is chronic damage to target organs. In some patients with well-controlled blood pressure, target organ damage still occurs. GLP-1 agonists have significant cardiovascular benefits, but their antihypertensive effect is limited. The cardiovascular protective effect of GLP-1 is worth studying. METHODS: The ambulatory blood pressure of spontaneously hypertensive rats (SHRs) was detected by ambulatory blood pressure monitoring, and the characteristics of blood pressure and the effect of subcutaneous intervention with a GLP-1R agonist on blood pressure were observed. To explore the mechanism of the cardiovascular benefit of GLP-1R agonists in SHRs, we evaluated the effects of GLP-1R agonists on vasomotor function and calcium homeostasis in vascular smooth muscle cells (VSMCs) in vitro. RESULTS: Although the blood pressure of SHRs was significantly higher than that of WKY rats, the blood pressure variability of SHRs was also significantly higher than that of the control group. The GLP-1R agonist significantly reduced blood pressure variability in SHRs, but the antihypertensive effect was not obvious. GLP-1R agonists can significantly improve the cytoplasmic calcium overload of VSMCs in SHRs by upregulating the expression of NCX1, improving the systolic and diastolic functions of arterioles, and reducing blood pressure variability. CONCLUSIONS: Taken together, these results provide evidence that GLP-1R agonists improved VSMC cytoplasmic Ca2+ homeostasis through upregulated NCX1 expression in SHRs, which plays a key role in blood pressure stability and broad cardiovascular benefits.
Assuntos
Hipertensão , Hipotensão , Ratos , Animais , Pressão Sanguínea , Músculo Liso Vascular/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Ratos Endogâmicos WKY , Monitorização Ambulatorial da Pressão Arterial , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , HomeostaseRESUMO
Previous studies demonstrated that hamster sperm hyperactivation is suppressed by extracellular Na+ by lowering intracellular Ca2+ levels, and Na+/Ca2+-exchanger (NCX) specific inhibitors canceled the suppressive effects of extracellular Na+. These results suggest the involvement of NCX in the regulation of hyperactivation. However, direct evidence of the presence and functionality of NCX in hamster spermatozoa is still lacking. This study aimed to reveal that NCX is present and is functional in hamster spermatozoa. First, NCX1 and NCX2 transcripts were detected via RNA-seq analyses of hamster testis mRNAs, but only the NCX1 protein was detected. Next, NCX activity was determined by measuring the Na+-dependent Ca2+ influx using the Ca2+ indicator Fura-2. The Na+-dependent Ca2+ influx was detected in hamster spermatozoa, notably in the tail region. The Na+-dependent Ca2+ influx was inhibited by the NCX inhibitor SEA0400 at NCX1-specific concentrations. NCX1 activity was reduced after 3 h of incubation in capacitating conditions. These results, together with authors' previous study, showed that hamster spermatozoa possesses functional NCX1 and that its activity was downregulated upon capacitation to trigger hyperactivation. This is the first study to successfully reveal the presence of NCX1 and its physiological function as a hyperactivation brake.
Assuntos
Sêmen , Espermatozoides , Animais , Cricetinae , Masculino , Sêmen/metabolismo , RNA Mensageiro , Espermatozoides/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Cálcio/metabolismoRESUMO
BACKGROUND: The cycad neurotoxin beta-methylamino-L-alanine (L-BMAA), one of the environmental trigger factor for amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC), may cause neurodegeneration by disrupting organellar Ca2+ homeostasis. Through the activation of Akt/ERK1/2 pathway, the Cu,Zn-superoxide dismutase (SOD1) and its non-metallated form, ApoSOD1, prevent endoplasmic reticulum (ER) stress-induced cell death in motor neurons exposed to L-BMAA. This occurs through the rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in part flowing from the extracellular compartment and in part released from ER. However, the molecular components of this mechanism remain uncharacterized. METHODS: By an integrated approach consisting on the use of siRNA strategy, Western blotting, confocal double- labeling immunofluorescence, patch-clamp electrophysiology, and Fura 2-/SBFI-single-cell imaging, we explored in rat motor neuron-enriched cultures the involvement of the plasma membrane proteins Na+/Ca2+ exchanger (NCX) and purinergic P2X7 receptor as well as that of the intracellular cADP-ribose (cADPR) pathway, in the neuroprotective mechanism of SOD1. RESULTS: We showed that SOD1-induced [Ca2+]i rise was prevented neither by A430879, a P2X7 receptor specific antagonist or 8-bromo-cADPR, a cell permeant antagonist of cADP-ribose, but only by the pan inhibitor of NCX, CB-DMB. The same occurred for the ApoSOD1. Confocal double labeling immunofluorescence showed a huge expression of plasmalemmal NCX1 and intracellular NCX3 isoforms. Furthermore, we identified NCX1 reverse mode as the main mechanism responsible for the neuroprotective ER Ca2+ refilling elicited by SOD1 and ApoSOD1 through which they promoted translocation of active Akt in the nuclei of a subset of primary motor neurons. Finally, the activation of NCX1 by the specific agonist CN-PYB2 protected motor neurons from L-BMAA-induced cell death, mimicking the effect of SOD1. CONCLUSION: Collectively, our data indicate that SOD1 and ApoSOD1 exert their neuroprotective effect by modulating ER Ca2+ content through the activation of NCX1 reverse mode and Akt nuclear translocation in a subset of primary motor neurons. Video Abstract.
Assuntos
Cálcio , Trocador de Sódio e Cálcio , Diamino Aminoácidos , Animais , Cálcio/metabolismo , Toxinas de Cianobactérias , Neurônios Motores/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Trocador de Sódio e Cálcio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismoRESUMO
1. This study investigated the effect of dietary calcium (Ca) levels on growth performance, bone development and Ca transporter gene expression levels in the small intestine of broiler chickens.2. On the day of hatch, 350, Ross 308 male broilers were randomly allotted to one of five treatments with five replicate pens each and 14 birds per pen. Dietary Ca levels in feed were 5.0, 7.0, 9.0, 11.0 and 13.0 g/kg, in which 9.0 g/kg was in the control diet. All diets contained 4.5 g/kg non-phytate phosphorus (NPP).3. The increase in dietary Ca levels from 5.0 to 13.0 g/kg did not affect the growth performance of 1- to 18-day-old broilers (P > 0.05).4. Increasing the Ca levels linearly increased the ash weight and the contents of ash, Ca and phosphorus (P) in the tibia of broilers at 18 days of age (P < 0.05). The contents of ash, Ca and P in broilers fed with 9.0 g/kg Ca were higher than those in birds fed with 5.0 g/kg Ca (P < 0.05).5. Increasing the Ca levels linearly decreased mRNA expression levels of the Ca-binding protein 28-kDa (CaBP-D28k), plasma membrane Ca-transporting ATPase 1b (PMCAlb), sodium (Na)/Ca exchanger 1 (NCX1), nuclear vitamin D receptor (nVDR) and membrane vitamin D receptor (mVDR) in the duodenum of broilers at 18 d of age (P < 0.05). Similar results were seen in the jejunum and ileum. Broilers fed 9.0-13.0 g/kg Ca in feed had lower mRNA expression levels of CaBP-D28k and PMCAlb in the small intestine than birds fed 5.0 g/kg Ca in feed (P < 0.05).6. The data indicated that low levels of dietary Ca stimulated its transporter gene transcription and promoted absorption, but high levels of Ca inhibited transporter gene expression and prevented excessive absorption in the small intestine of broiler chickens.
Assuntos
Galinhas , Fósforo na Dieta , Ração Animal/análise , Animais , Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Expressão Gênica , Intestino Delgado , Masculino , Fósforo na Dieta/metabolismoRESUMO
MicroRNAs (miRNAs) participate in atrial remodeling and atrial fibrillation (AF) promotion. We determined the circulating miRNA profile in patients with AF and heart failure with reduced ejection fraction (HFrEF), and its potential role in promoting the arrhythmia. In plasma of 98 patients with HFrEF (49 with AF and 49 in sinus rhythm, SR), differential miRNA expression was determined by high-throughput microarray analysis followed by replication of selected candidates. Validated miRNAs were determined in human atrial samples, and potential arrhythmogenic mechanisms studied in HL-1 cells. Circulating miR-199a-5p and miR-22-5p were significantly increased in HFrEF patients with AF versus those with HFrEF in SR. Both miRNAs, but particularly miR-199a-5p, were increased in atrial samples of patients with AF. Overexpression of both miRNAs in HL-1 cells resulted in decreased protein levels of L-type Ca2+ channel, NCX and connexin-40, leading to lower basal intracellular Ca2+ levels, fewer inward currents, a moderate reduction in Ca2+ buffering post-caffeine exposure, and a deficient cell-to-cell communication. In conclusion, circulating miR-199a-5p and miR-22-5p are higher in HFrEF patients with AF, with similar findings in human atrial samples of AF patients. Cells exposed to both miRNAs exhibited altered Ca2+ handling and defective cell-to-cell communication, both findings being potential arrhythmogenic mechanisms.
Assuntos
Fibrilação Atrial/sangue , Sinalização do Cálcio , Comunicação Celular , MicroRNA Circulante/sangue , Insuficiência Cardíaca/sangue , MicroRNAs/sangue , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/etiologia , Linhagem Celular , Feminino , Insuficiência Cardíaca/complicações , Humanos , MasculinoRESUMO
The Na+/Ca2+ exchanger type-1 (NCX1) is a bidirectional transporter that is controlled by membrane potential and transmembrane gradients of Na+ and Ca2+. Vascular smooth muscle NCX1 plays an important role in intracellular Ca2+ homeostasis and Ca2+ signaling. We found that NCX1 was upregulated in the pulmonary arteries of mice exposed to chronic hypoxia (10% O2 for 4 weeks). Hence, we investigated the pathophysiological role of NCX1 in hypoxia-induced pulmonary arterial hypertension (PAH), using NCX1-heterozygous (NCX1+/-) mice, in which NCX1 expression is reduced by half, and SEA0400, a specific NCX1 inhibitor. NCX1+/- mice exhibited attenuation of hypoxia-induced PAH and right ventricular (RV) hypertrophy compared with wild-type mice. Furthermore, continuous administration of SEA0400 (0.5 mg/kg/day for 4 weeks) to wild-type mice by osmotic pumps significantly suppressed hypoxia-induced PAH and pulmonary vessel muscularization, with a slight reduction in RV hypertrophy. These findings indicate that the upregulation of NCX1 contributes to the development of hypoxia-induced PAH, suggesting that NCX1 inhibition might be a novel approach for the treatment of PAH.
Assuntos
Hipóxia/complicações , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/genética , Trocador de Sódio e Cálcio/genética , Compostos de Anilina/uso terapêutico , Animais , Técnicas de Inativação de Genes , Hipóxia/genética , Hipóxia/terapia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Éteres Fenílicos/uso terapêutico , Hipertensão Arterial Pulmonar/tratamento farmacológico , Trocador de Sódio e Cálcio/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacosRESUMO
Diet-induced metabolic acidosis is associated with the impairment of bone metabolism and an increased risk of a number of chronic noncommunicable diseases, such as type 2 diabetes mellitus and hypertension. Low serum bicarbonate is associated with high mortality in healthy older individuals. Recently, we demonstrated that both coupling factor 6 (CF6)-overexpressing transgenic (TG) and high salt-fed mice which had sustained intracellular acidosis, due to enhanced proton import through ecto-F1Fo complex and/or reduced proton export through Na+-K+ ATPase inhibition, displayed shortened lifespan and early senescence-associated phenotypes such as signs of hair greying and alopecia, weight loss, and/or reduced organ mass. In this study, we searched causative genes of proton-induced aging in CF6-overexpressing TG and high salt-fed mice. We discovered NM_026333 as a novel anti-aging gene which was downregulated in the heart and kidney in both types of mice. NM_026333 protein consists of 269 amino acids with transmembrane region (90-193aa). Induction of NM_026333 or recombinant protein rescued TG cells and CF6-treated human cells from aging hallmarks of impaired autophagy, genomic instability, and epigenetic alteration. NM_026333 protein directly bound plasma membrane Na+-Ca2+ exchanger 1 (NCX1) to suppress its reverse mode, and cancelled proton-induced epigenetic regression of Atg7 that was caused by H3K4 and H4K20 tri-methylation via suppression of demethylase and H4K5 acetylation via suppression of nuclear HDAC3-HDAC4-emerin system. NM_026333 also attenuated proton-induced impaired formation of autolysosome, an increase in nuclear acetylated LC3 II, and acetylation of Atg7. These effects reappeared by NCX1 inhibitor. Furthermore, NCX1 inhibitor extended lifespan compared with vehicle-treatment in TG mice. This study will shed light on novel aging mechanism and provide implications in a target for anti-aging therapy.
Assuntos
ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fatores Acopladores da Fosforilação Oxidativa/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Autofagia/genética , Autofagia/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Epigenômica , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Células HEK293 , Humanos , Camundongos , ATPases Mitocondriais Próton-Translocadoras/genética , Fatores Acopladores da Fosforilação Oxidativa/genética , Prótons , Transdução de Sinais/efeitos dos fármacosRESUMO
The sodium (Na+ )-calcium (Ca2+ ) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end-stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti-NCX1 against endogenous NCX1 and (2) anti-His (where His is histidine) with His-trigger factor-NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein-protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where "cell communication" and "signal transduction" formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in "cardiovascular disease" which can be explored as novel drug targets in future research.
Assuntos
Ventrículos do Coração/metabolismo , Coração/fisiologia , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar , Transdução de Sinais , Sódio/metabolismoRESUMO
The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca2+. Protein-protein interactions were assessed by immunoprecipitation. Ca2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca2+ and the release of intracellular Ca2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca2+]cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new inhibitor for suppressing [Ca2+]cyt overload.
Assuntos
Inflamação/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Trocador de Sódio e Cálcio/genética , Canais de Cátion TRPC/genética , Fator de Necrose Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Apoptose/genética , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Homeostase/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Receptores de Inositol 1,4,5-Trifosfato/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , RNA Interferente Pequeno/genética , Trocador de Sódio e Cálcio/química , Canais de Cátion TRPC/químicaRESUMO
Calcium is a key component of the bone mineral hydroxyapatite. During osteoclast-mediated bone resorption, hydroxyapatite is dissolved and significant quantities of calcium are released. Several calcium transport systems have previously been identified in osteoclasts, including members of the sodium/calcium exchanger (NCX) family. Expression pattern and physiological role of NCX isoforms in osteoclasts, however, remain largely unknown at the moment. Our data indicate that all three NCX isoforms (NCX1, NCX2, and NCX3) are present in murine osteoclasts. RANKL-induced differentiation of murine osteoclast precursors into mature osteoclasts significantly attenuated the expression of NCX1, while NCX2 and NCX3 expressions were largely unaffected. To study the role of NCX1 during osteoclast differentiation and bone resorption, we crossed mice with exon 11 of the NCX1 gene flanked by loxP sites with cathepsin K-Cre transgenic mice. Mature osteoclasts derived from transgenic mice exhibited an 80-90% reduction of NCX1 protein. In vitro studies indicate that NCX1 is dispensable for osteoclast differentiation, but NCX1-deficient osteoclasts exhibited increased resorptive activity. In line with these in vitro findings, mice with an osteoclast-targeted deletion of the NCX1 gene locus displayed an age-dependent loss of bone mass. Thus, in summary, our data reveal NCX1 as a regulator of osteoclast-mediated bone resorption.
Assuntos
Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Animais , Reabsorção Óssea/genética , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Transporte de Íons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ligante RANK/metabolismo , Deleção de Sequência/genética , Sódio/metabolismoRESUMO
BACKGROUND: TGFß1, a decisive regulator of megakaryocyte maturation and platelet formation, has previously been shown to up-regulate both, store operated Ca2+ entry (SOCE) and Ca2+ extrusion by Na+/Ca2+ exchange. The growth factor thus augments the increase of cytosolic Ca2+ activity ([Ca2+]i) following release of Ca2+ from intracellular stores and accelerates the subsequent decline of [Ca2+]i. The effect on SOCE is dependent on a signaling cascade including p38 kinase, serum & glucocorticoid inducible kinase SGK1, and nuclear factor NFκB. The specific Na+/Ca2+ exchanger isoforms involved and the signalling regulating the Na+/Ca2+ exchangers remained, however elusive. The present study explored, whether TGFß1 influences the expression and function of K+ insensitive (NCX) and K+ sensitive (NCKX) Na+/Ca2+ exchangers, and aimed to shed light on the signalling involved. METHODS: In human megakaryocytic cells (MEG01) RT-PCR was performed to quantify NCX/NCKX isoform transcript levels, [Ca2+]i was determined by Fura-2 fluorescence, and Na+/Ca2+ exchanger activity was estimated from the increase of [Ca2+]i following switch from an extracellular solution with 130 or 90 mM Na+ and 0 mM Ca2+ to an extracellular solution with 0 Na+ and 2 mM Ca2+. K+ concentration was 0 mM for analysis of NCX and 40 mM for analysis of NCKX. RESULTS: TGFß1 (60 ng/ml, 24 h) significantly increased the transcript levels of NCX1, NCKX1, NCKX2 and NCKX5. Moreover, TGFß1 (60 ng/ml, 24 h) significantly increased the activity of both, NCX and NCKX. The effect of TGFß1 on NCX and NCKX transcript levels and activity was significantly blunted by p38 kinase inhibitor Skepinone-L (1 µM), the effect on NCX and NCKX activity further by SGK1 inhibitor GSK-650394 (10 µM) and NFκB inhibitor Wogonin (100 µM). CONCLUSIONS: TGFß1 markedly up-regulates transcription of NCX1, NCKX1, NCKX2, and NCKX5 and thus Na+/Ca2+ exchanger activity, an effect requiring p38 kinase, SGK1 and NFκB.
Assuntos
Proteínas Imediatamente Precoces/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Benzoatos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cálcio/metabolismo , Linhagem Celular , Dibenzocicloeptenos/farmacologia , Flavanonas/farmacologia , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/genética , Megacariócitos/citologia , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Microscopia de Fluorescência , NF-kappa B/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Trocador de Sódio e Cálcio/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidoresRESUMO
BACKGROUND: Neonatal monosodium glutamate (MSG) treatment triggers excitotoxicity and induces a degenerative process that affects several brain regions in a way that could lead to epileptogenesis. Na+/Ca2+ exchangers (NCX1-3) are implicated in Ca2+ brain homeostasis; normally, they extrude Ca2+ to control cell inflammation, but after damage and in epilepsy, they introduce Ca2+ by acting in the reverse mode, amplifying the damage. Changes in NCX3 expression in the hippocampus have been reported immediately after neonatal MSG treatment. In this study, the expression level of NCX1-3 in the entorhinal cortex (EC) and hippocampus (Hp); and the effects of blockade of NCXs on the seizures induced by 4-Aminopyridine (4-AP) were analysed in adult rats after neonatal MSG treatment. KB-R7943 was applied as NCXs blocker, but is more selective to NCX3 in reverse mode. METHODS: Neonatal MSG treatment was applied to newborn male rats at postnatal days (PD) 1, 3, 5, and 7 (4 g/kg of body weight, s.c.). Western blot analysis was performed on total protein extracts from the EC and Hp to estimate the expression level of NCX1-3 proteins in relative way to the expression of ß-actin, as constitutive protein. Electrographic activity of the EC and Hp were acquired before and after intracerebroventricular (i.c.v.) infusion of 4-AP (3 nmol) and KB-R7943 (62.5 pmol), alone or in combination. All experiments were performed at PD60. Behavioural alterations were also recorder. RESULTS: Neonatal MSG treatment significantly increased the expression of NCX3 protein in both studied regions, and NCX1 protein only in the EC. The 4-AP-induced epileptiform activity was significantly higher in MSG-treated rats than in controls, and KB-R7943 co-administered with 4-AP reduced the epileptiform activity in more prominent way in MSG-treated rats than in controls. CONCLUSIONS: The long-term effects of neonatal MSG treatment include increases on functional expression of NCXs (mainly of NCX3) in the EC and Hp, which seems to contribute to improve the control that KB-R7943 exerted on the seizures induced by 4-AP in adulthood. The results obtained here suggest that the blockade of NCXs could improve seizure control after an excitotoxic process; however, this must be better studied.
Assuntos
4-Aminopiridina/toxicidade , Anticonvulsivantes/farmacologia , Glutamato de Sódio/toxicidade , Tioureia/análogos & derivados , Animais , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/metabolismo , Córtex Entorrinal/fisiopatologia , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Infusões Intraventriculares , Masculino , Ratos , Ratos Wistar , Tioureia/farmacologiaRESUMO
Na(+)/Ca(2+) exchanger-1 (NCX1) is a major calcium extrusion mechanism in renal epithelial cells enabling the efflux of one Ca(2+) ion and the influx of three Na(+) ions. The gradient for this exchange activity is provided by Na,K-ATPase, a hetero-oligomer consisting of a catalytic α-subunit and a regulatory ß-subunit (Na,K-ß) that also functions as a motility and tumor suppressor. We showed earlier that mice with heart-specific ablation (KO) of Na,K-ß had a specific reduction in NCX1 protein and were ouabain-insensitive. Here, we demonstrate that Na,K-ß associates with NCX1 and regulates its localization to the cell surface. Madin-Darby canine kidney cells with Na,K-ß knockdown have reduced NCX1 protein and function accompanied by 2.1-fold increase in free intracellular calcium and a corresponding increase in the rate of cell migration. Increased intracellular calcium up-regulated ERK1/2 via calmodulin-dependent activation of PI3K. Both myosin light chain kinase and Rho-associated kinase acted as mediators of ERK1/2-dependent migration. Restoring NCX1 expression in ß-KD cells reduced migration rate and ERK1/2 activation, suggesting that NCX1 functions downstream of Na,K-ß in regulating cell migration. In parallel, inhibition of NCX1 by KB-R7943 in Madin-Darby canine kidney cells, LLC-PK1, and human primary renal epithelial cells (HREpiC) increased ERK1/2 activation and cell migration. This increased migration was associated with high myosin light chain phosphorylation by PI3K/ERK-dependent mechanism in HREpiC cells. These data confirm the role of NCX1 activity in regulating renal epithelial cell migration.
Assuntos
Cálcio/metabolismo , Movimento Celular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Antiarrítmicos/farmacologia , Movimento Celular/efeitos dos fármacos , Cães , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Madin Darby de Rim Canino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Tioureia/análogos & derivados , Tioureia/farmacologia , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismoRESUMO
The intestine is the only gate for the entry of Ca to the body in humans and mammals. The entrance of Ca occurs via paracellular and intracellular pathways. All steps of the latter pathway are regulated by calcitriol and by other hormones. Dietary and pharmacological compounds also modulate the intestinal Ca absorption process. Among them, dietary Ca and P are known to alter the lipid and protein composition of the brush-border and basolateral membranes and, consequently, Ca transport. Ca intakes are below the requirements recommended by health professionals in most countries, triggering important health problems. Chronic low Ca intake has been related to illness conditions such as osteoporosis, hypertension, renal lithiasis and incidences of human cancer. Carbohydrates, mainly lactose, and prebiotics have been described as positive modulators of intestinal Ca absorption. Apparently, high meat proteins increase intestinal Ca absorption while the effect of dietary lipids remains unclear. Pharmacological compounds such as menadione, dl-butionine-S,R-sulfoximine and ursodeoxycholic acid also modify intestinal Ca absorption as a consequence of altering the redox state of the epithelial cells. The paracellular pathway of intestinal Ca absorption is poorly known and is under present study in some laboratories. Another field that needs to be explored more intensively is the influence of the gene × diet interaction on intestinal Ca absorption. Health professionals should be aware of this knowledge in order to develop nutritional or medical strategies to stimulate the efficiency of intestinal Ca absorption and to prevent diseases.
RESUMO
BACKGROUND: The purpose of this study was to determine if normobaric hyperoxia (HO) pre-conditioning offers durable neuroprotection against cerebral ischaemia and its effects on NCX1 expression. METHODS: Rats were divided into two experimental groups. The first group was exposed to 95% inspired HO for 4 hours/day for 6 consecutive days (HO). The second group acted as control and was exposed to 21% oxygen in the same chamber. Each main group was sub-divided to middle cerebral artery occlusion (MCAO-operated) and intact (without any surgery) sub-groups. After 2, 5, 10 and 15 days from pre-treatment, MCAO-operated sub-groups were subjected to 60 minutes of right MCAO. After 24 hours reperfusion, neurologic deficit score and infarct volume were measured in MCAO-operated sub-groups. The NCX1 expression levels of core, penumbra and sub-cortex regions were assessed in sham-operated and intact sub-groups. RESULTS: Pre-conditioning with HO decreased neurologic deficit score and infarct volume, and increased expression of NCX1 in penumbra and sub-cortex. These effects of hyperoxia disappeared gradually during 15 days after pre-treatment. CONCLUSIONS: Although further studies are needed to clarify the mechanisms of time course of neuroprotection, HO partly is associated with expression of NCX1 consistent with an active role in the genesis of ischaemic neuroprotection.
Assuntos
Isquemia Encefálica/patologia , Encéfalo/metabolismo , Hiperóxia , Precondicionamento Isquêmico/métodos , Fármacos Neuroprotetores/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Western Blotting , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
The cardiac Na+/Ca2+ Exchanger (NCX1) controls transmembrane calcium flux in numerous tissues. The only reversible post-translational modification established to regulate NCX1 is palmitoylation, which alters the ability of the exchanger to inactivate. Palmitoylation creates a binding site for the endogenous XIP domain, a region of the NCX1 intracellular loop established to inactivate NCX1. The binding site created by NCX1 palmitoylation sensitizes the transporter to XIP. Herein we summarize our recent knowledge on NCX1 palmitoylation and its association with cardiac pathologies, and discuss these findings in the light of the recent cryo-EM structures of human NCX1.
Assuntos
Lipoilação , Processamento de Proteína Pós-Traducional , Trocador de Sódio e Cálcio , Trocador de Sódio e Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/química , Humanos , Animais , Sítios de Ligação , Cálcio/metabolismo , Miocárdio/metabolismoRESUMO
BACKGROUND: REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS: Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS: If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.
Assuntos
Neuroblastoma , Acidente Vascular Cerebral , Humanos , Camundongos , Masculino , Animais , Metilação de DNA , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Encéfalo/metabolismo , Epigênese Genética , DNARESUMO
Protein phosphorylation is a major control mechanism of a wide range of physiological processes and plays an important role in cardiac pathophysiology. Serine/threonine protein phosphatases control the dephosphorylation of a variety of cardiac proteins, thereby fine-tuning cardiac electrophysiology and function. Specificity of protein phosphatases type-1 and type-2A is achieved by multiprotein complexes that target the catalytic subunits to specific subcellular domains. Here, we describe the composition, regulation and target substrates of serine/threonine phosphatases in the heart. In addition, we provide an overview of pharmacological tools and genetic models to study the role of cardiac phosphatases. Finally, we review the role of protein phosphatases in the diseased heart, particularly in ventricular arrhythmias and atrial fibrillation and discuss their role as potential therapeutic targets.
Assuntos
Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Coração/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Ativação Enzimática , Regulação da Expressão Gênica , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Humanos , Contração Miocárdica/fisiologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , FosforilaçãoRESUMO
Although several types of calcium channels abnormalities have been shown to promote myeloma bone disease (MBD), the relationship between Na+/Ca2+ exchanger 1 (NCX1) and MBD remains unexplored. Here, we examined the role of NCX1 in the development of multiple myeloma (MM), with a special focus on the underlying effects involved osteoclast differentiation. Firstly, we detected NCX1 protein highly expressed in BM tissues of MM patients, and its expression was positively correlated with serum calcium and the percentage of BM CD138+ cells. In vitro, NCX1 suppression with the inhibitor KB-R7943 reduced cell viability of MM cells and caused apoptosis. Extracellular high Ca2+ environment increased the level of intracellular Ca2+ in MM cells through gating the calcium influx, with subsequently promoting the expression of NCX1 and osteoclastogenesis-related genes (receptor activator of nuclear factor-κB (RANKL), nuclear factor of activated T cell cytoplasmic 1 (NFATc1), and proto-oncogene Fos (c-Fos). This phenomenon could be reversed by KB-R7943 or calcium chelation. Furthermore, NCX1 overexpression in MM cells accelerated osteoclastogenesis, while NCX1 knockdown or suppression resulted in the opposite effect. Mechanistically, we further investigated the related mechanisms of NCX1 regulating osteoclast differentiation using RNA sequencing, western blotting and Enzyme linked immunosorbent assay, and found that NCX1 modulated osteoclast differentiation in MM though JNK/c-Fos/NFATc1 signaling pathway. In conclusion, the Ca2+/NCX1-mediated signaling participates in the osteoclasts-myeloma cell interactions, which represents a promising target for future therapeutic intervention in MBD.