Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Toxicol Appl Pharmacol ; 485: 116915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537875

RESUMO

N-myc downstream-regulated gene 2 (NDRG2) has been recognised as a negative regulator of the progression of numerous tumours, yet its specific role in small-cell lung carcinoma (SCLC) is not fully understood. The purpose of the current study was to investigate the biological role and mechanism of NDRG2 in SCLC. Initial investigation using the Gene Expression Omnibus (GEO) dataset revealed marked downregulation of NDRG2 transcripts in SCLC. The decreased abundance of NDRG2 in SCLC was verified by examining clinical specimens. Increasing NDRG2 expression in SCLC cell lines caused significant changes in cell proliferation, cell cycle progression, colony formation, and chemosensitivity. NDRG2 overexpression decreased the levels of phosphorylated PTEN, AKT and mTOR. In PTEN-depleted SCLC cells, the upregulation of NDRG2 did not result in any noticeable impact on AKT or mTOR activation. Additionally, the reactivation of AKT reversed the antitumour effects of NDRG2 in SCLC cells. Notably, increasing NDRG2 expression retarded the growth of SCLC cell-derived xenografts in vivo. In conclusion, NDRG2 serves as an inhibitor of SCLC, and its cancer-inhibiting effects are achieved through the suppression of AKT/mTOR via the activation of PTEN. This work suggests that NDRG2 is a potential druggable target for SCLC treatment.


Assuntos
Proliferação de Células , Neoplasias Pulmonares , Camundongos Nus , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor , Humanos , Serina-Treonina Quinases TOR/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Camundongos , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Ann Hematol ; 103(8): 2877-2892, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38842567

RESUMO

Diffuse large B-cell lymphoma (DLBCL) represents the most common tumor in non-Hodgkin's lymphoma. N-Myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor highly expressed in healthy tissues but downregulated in many cancers. Although cell proliferation-related metabolism rewiring has been well characterized, less is known about the mechanism of metabolic changes with DLBCL. Herein, we investigated the expressions of NDRG2, MYC and Myc-interacting zinc finger protein 1 (MIZ-1) in seven human lymphoma (mostly DLBCLs) cell lines. NDRG2 expression was inversely correlated with the expressions of MYC and MIZ-1. Further, we explored the regulatory mechanism and biological functions underlying the lymphomagenesis involving NDRG2, MYC and MIZ-1. MYC and MIZ-1 promoted DLBCL cell proliferation, while NDRG2 induced apoptosis in LY8 cells. Moreover, NDRG2 methylation was reversed by the 5-Aza-2'-deoxycytidine (5-Aza-CDR) treatment, triggering the downregulation of MYC and inhibiting DLBCL cell survival. MYC interacts with NDRG2 to regulate energy metabolism associated with mTOR. Remarkably, supporting the biological significance, the converse correlation between NDRG2 and MYC was observed in human DLBCL tumor tissues (R = -0.557). Bioinformatics analysis further validated the association among NDRG2, MYC, MIZ-1, mTOR, and related metabolism genes. Additionally, NDRG2 (P = 0.001) and MYC (P < 0.001) were identified as promising prognostic biomarkers in DLBCL patients through survival analysis. Together, our data demonstrate that the MYC/MIZ-1 complex interplays with NDRG2 to influence the proliferation and apoptosis of DLBCL cells and show the characterizations of NDRG2, MYC and MIZ-1 for metabolism features and prediction prognosis in DLBCL.


Assuntos
Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-myc , Proteínas Supressoras de Tumor , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Masculino , Prognóstico , Linhagem Celular Tumoral , Feminino , Pessoa de Meia-Idade , Metilação de DNA , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Idoso , Proliferação de Células , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
3.
J Biochem Mol Toxicol ; 38(9): e23827, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39193856

RESUMO

Ischemic stroke is one main type of cerebrovascular disorders with leading cause of death and disability worldwide. Astrocytes are the only nerve cell type storing glycogen in the brain, which regulate the glucose metabolism and handle the energy supply and survive of neurons. Astrocyte ferroptosis contributes to neuron injury in brain disorders. N-myc downstream-regulated gene 2 (NDRG2) has been implicated in the progression of brain diseases, including ischemic stroke. However, whether NDRG2 could affect the glucose metabolism and ferroptosis of astrocytes during ischemic stroke remains largely unknown. Mouse astrocytes were treated with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish the in vitro model. Glial fibrillary acidic protein, NDRG2, Wnt3a and ß-catenin expression levels were detected by immunofluorescence staining and western blot analyses. Glucose metabolism was investigated by glucose uptake, lactate production, nicotinamide adenine dinucleotide phosphate hydrogen/nicotinamide adenine dinucleotide phosphate (NADPH/NADP+), ATP and glycolysis enzymes (HK2, PKM2 and lactate dehydrogenase A [LDHA]) levels. Ferroptosis was assessed via reactive oxygen species (ROS), glutathione (GSH), iron and ferroptosis-related markers (GPX4 and PTGS2) contents. Glycolysis enzymes and ferroptosis-related markers levels were measured via western blot. NDRG2 expression was elevated in OGD/R-induced astrocytes. NDRG2 overexpression aggravated OGD/R-induced loss of glucose metabolism through reducing glucose uptake, lactate production, NADPH/NADP+ and ATP levels. NDRG2 upregulation exacerbated OGD/R-caused reduction of glycolysis enzymes (HK2, PKM2 and LDHA) levels. NDRG2 promoted OGD/R-induced ferroptosis of astrocytes by increasing ROS, iron and PTGS2 levels and decreasing GSH and GPX4 levels. NDRG2 overexpression enhanced OGD/R-induced decrease of Wnt/ß-catenin signaling activation by reducing Wnt3a and ß-catenin expression. NDRG2 silencing played an opposite effect. Inhibition of Wnt/ß-catenin signaling activation by IWR-1 attenuated the influences of NDRG2 knockdown on glucose metabolism, glycolysis enzymes levels and ferroptosis. These findings demonstrated that NDRG2 contributes to OGD/R-induced inhibition of glucose metabolism and promotion of ferroptosis in astrocytes through inhibiting Wnt/ß-catenin signaling activation, which might be associated with ischemic stroke progression.


Assuntos
Astrócitos , Ferroptose , Glucose , Via de Sinalização Wnt , beta Catenina , Astrócitos/metabolismo , Animais , Glucose/metabolismo , Camundongos , beta Catenina/metabolismo , Glicólise , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Oxigênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal
4.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474089

RESUMO

N-myc downstream-regulated gene 2 (NDRG2), which is a tumour suppressor, is frequently lost in many types of tumours, including adult T-cell leukaemia/lymphoma (ATL). The downregulation of NDRG2 expression is involved in tumour progression through the aberrant phosphorylation of several important signalling molecules. We observed that the downregulation of NDRG2 induced the translocation of protein arginine methyltransferase 5 (PRMT5) from the nucleus to the cytoplasm via the increased phosphorylation of PRMT5 at Serine 335. In NDRG2low ATL, cytoplasmic PRMT5 enhanced HSP90A chaperone activity via arginine methylation, leading to tumour progression and the maintenance of oncogenic client proteins. Therefore, we examined whether the inhibition of PRMT5 activity is a drug target in NDRG2low tumours. The knockdown of PRMT5 and binding partner methylsome protein 50 (MEP50) expression significantly demonstrated the suppression of cell proliferation via the degradation of AKT and NEMO in NDRG2low ATL cells, whereas NDRG2-expressing cells did not impair the stability of client proteins. We suggest that the relationship between PRMT5/MEP50 and the downregulation of NDRG2 may exhibit a novel vulnerability and a therapeutic target. Treatment with the PRMT5-specific inhibitors CMP5 and HLCL61 was more sensitive in NDRG2low cancer cells than in NDRG2-expressing cells via the inhibition of HSP90 arginine methylation, along with the degradation of client proteins. Thus, interference with PRMT5 activity has become a feasible and effective strategy for promoting cancer vulnerability in NDRG2low ATL.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Leucemia-Linfoma de Células T do Adulto , Linfoma , Neoplasias , Adulto , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Leucemia-Linfoma de Células T do Adulto/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Metilação , Proteínas Supressoras de Tumor/metabolismo
5.
J Stroke Cerebrovasc Dis ; 32(3): 106984, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652790

RESUMO

BACKGROUND: Astrocytic N-myc downstream-regulated gene 2 (NDRG2), a differentiation- and stress-associated molecule, has been involved in the cause of ischemic stroke (IS). However, its downstream effector in IS remains unclear. This study aimed to characterize expression of NDRG2 in IS patients and rats and to investigate the underlying mechanism. METHODS: The protein expression of NDRG2 and mammalian target of the rapamycin (mTOR) and the extent of mTOR phosphorylation in plasma of IS patients were detected by ELISA. An oxygen-glucose deprivation model was established in mouse neuronal cells CATH.a, followed by cell counting kit-8, flow cytometry, TUNEL, and western blot assays to examine cell viability, apoptosis and autophagy. Finally, the effect of NDRG2-mediated phosphatidylinositol 3-kinase/protein kinase-B/mTOR (PI3K/AKT/mTOR) pathway on neuronal apoptosis and autophagy was verified in rats treated with middle cerebral artery occlusion. RESULTS: NDRG2 was highly expressed in the plasma of IS patients, while the extent of mTOR phosphorylation was reduced in IS patients. NDRG2 blocked the PI3K/Akt/mTOR signaling through dephosphorylation. Depletion of NDRG2 suppressed apoptosis and autophagy in CATH.a cells, which was reversed by a dual inhibitor of PI3K and mTOR, BEZ235. In vivo experiments confirmed that NDRG2 promoted neuronal apoptosis and autophagy by dephosphorylating and blocking the PI3K/Akt/mTOR signaling. CONCLUSION: The present study has shown that NDRG2 impairs the PI3K/Akt/mTOR pathway via dephosphorylation to promote neuronal apoptosis and autophagy in IS. These findings provide potential targets for future clinical therapies for IS.


Assuntos
AVC Isquêmico , Proteínas Proto-Oncogênicas c-akt , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia , Mamíferos/metabolismo , Proteínas do Tecido Nervoso
6.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373150

RESUMO

Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, however, its pathological mechanism is not yet fully understood due to the fact that many potential deafness genes remain unidentified. N-myc downstream-regulated gene 2 (ndrg2) is commonly regarded as a tumor suppressor and a cell stress-responsive gene extensively involved in cell proliferation, differentiation, apoptosis and invasion, while its roles in zebrafish HC morphogenesis and hearing remains unclear. Results of this study suggested that ndrg2 was highly expressed in the HCs of the otic vesicle and neuromasts via in situ hybridization and single-cell RNA sequencing. Ndrg2 loss-of-function larvae showed decreased crista HCs, shortened cilia, and reduced neuromasts and functional HCs, which could be rescued by the microinjection of ndrg2 mRNA. Moreover, ndrg2 deficiency induced attenuated startle response behaviors to sound vibration stimuli. Mechanistically, there were no detectable HC apoptosis and supporting cell changes in the ndrg2 mutants, and HCs were capable of recovering by blocking the Notch signaling pathway, suggesting that ndrg2 was implicated in HC differentiation mediated by Notch. Overall, our study demonstrates that ndrg2 plays crucial roles in HC development and auditory sensory function utilizing the zebrafish model, which provides new insights into the identification of potential deafness genes and regulation mechanism of HC development.


Assuntos
Surdez , Proteínas Supressoras de Tumor , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proliferação de Células , Surdez/metabolismo , Células Ciliadas Auditivas/metabolismo , Audição , Neurogênese/genética , Peixe-Zebra/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Peixe-Zebra/genética
7.
J Neuroinflammation ; 19(1): 314, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572898

RESUMO

BACKGROUND: Brain lactate concentrations are enhanced in response to cerebral ischemia and promote the formation of reactive astrocytes, which are major components of the neuroinflammatory response and functional recovery, following cerebral ischemia. NDRG2 is upregulated during reactive astrocyte formation. However, its regulation and function are unclear. We studied the relationship between lactate and NDRG2 in astrocytes under conditions of ischemia or oxygen-glucose deprivation (OGD). METHODS: We examined astrocytic NDRG2 expression after middle cerebral artery occlusion (MCAO) using western blot and immunofluorescence staining. Under hypoxia conditions, we added exogenous L-lactate sodium (lactate) to cultured primary astrocytes to explore the effects of lactate on the ubiquitination modification of NDRG2. We profiled the transcriptomic features of NDRG2 silencing in astrocytes after 8 h of OGD conditions as well as exogenous lactate treatment by performing RNA-seq. Finally, we evaluated the molecular mechanisms of NDRG2 in regulating TNFα under OGD conditions using western blot and immunohistochemistry. RESULTS: Reactive astrocytes strongly expressed NDRG2 in a rat model of MCAO. We also showed that lactate stabilizes astrocytic NDRG2 by inhibiting its ubiquitination. NDRG2 inhibition in astrocytes increased inflammation and upregulated immune-associated genes and signaling pathways. NDRG2 knockdown induced TNFα expression and secretion via c-Jun phosphorylation. CONCLUSIONS: We revealed that under OGD conditions, lactate plays an important anti-inflammatory role and inhibits TNFα expression by stabilizing NDRG2, which is beneficial for neurological functional recovery. NDRG2 may be a new therapeutic target for cerebral ischemia.


Assuntos
Astrócitos , Isquemia Encefálica , Animais , Ratos , Astrócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Láctico , Glucose/metabolismo , Isquemia Encefálica/metabolismo , Oxigênio/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ubiquitinação , Proteínas do Tecido Nervoso/metabolismo
8.
J Med Virol ; 94(6): 2702-2713, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34997970

RESUMO

Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is a life-threatening cancer. Long noncoding RNAs participate in HBV-related HCC progression. Based on the bioinformatics analysis, LINC00924 downregulation is positively related to unfavorable outcomes in patients with HBV-related HCC. Herein, we detected the biological functions and regulatory system of LINC00924 in HCC. The LINC00924 downregulation in HBV-related HCC tissues and cells was revealed by reverse transcription-quantitative polymerase chain reaction. Functionally, as Transwell assays and western blotting indicated, LINC00924 elevation inhibited HCC cell invasion and epithelial-mesenchymal transition (EMT). The binding site between LINC00924 and miR-6755-5p was determined by luciferase reporter assays. miR-6755-5p was confirmed to target NDRG2. miR-6755-5p upregulation decreased NDRG2 messenger RNA (mRNA) and protein levels. The mRNA and protein levels of NDRG2 were downregulated in tissues and cells. NDRG2 knockdown attenuated the inhibition induced by LINC00924 overexpression on invasion and EMT of HCC cells. In summary, LINC00924 increases NDRG2 expression to inhibit EMT by targeting miR-6755-5p in HBV-related HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Dig Dis Sci ; 67(8): 3763-3772, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34373985

RESUMO

BACKGROUND: Poorly differentiated colorectal cancers are more aggressive. Metabolism reprogramming is a significant hallmark in cancer, and aerobic glycolysis is common. However, how cancer cells reprogramming glucose metabolism contributes to cell differentiation was largely unknown. Previous studies have reported that tumor suppressor NDRG2 could promote colorectal cancers differentiation. AIMS: This study aims to demonstrate that NDRG2 promotes the differentiation of colorectal cancers, potentially through the inhibition of aerobic glycolysis via TXNIP induction. METHODS: Western blotting, qRT-PCR and immunohistochemical staining were used to detect the expression of related molecules. MTT assay was used to reflect cell viability and proliferation. Immunofluorescent assay was performed to identify the expression and distribution of molecules. Luciferase analysis and CHIP assays were used to investigate the mechanism. Bioinformatic analysis was performed to predict the relevance. RESULTS: In colorectal cancers, NDRG2 could inhibit cell proliferation, reduce glucose uptake and decrease expression of key glycolysis enzymes. Upregulated NDRG2 is associated with differentiated cancer. However, deletion of TXNIP, a classic glucose metabolism inhibitor, could obviously alter the function of NDRG2 in differentiation, glucose uptake, expression of key glycolysis enzymes and proliferation. Mechanistically, high glucose flux promotes the activity of TXNIP promoter. And NDRG2 promotes the occupancy of transcription factor Mondo A on TXNIP promoter, predominantly through the suppression of c-myc, which could complete with Mondo A binding to TXNIP promoter. In clinical samples, high expression of TXNIP indicates good prognosis and outcome. CONCLUSIONS: NDRG2-dependent induction of TXNIP is critical for the aerobic glycolysis during colorectal cancers differentiation.


Assuntos
Proteínas de Transporte , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Supressoras de Tumor , Proteínas de Transporte/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Glucose/metabolismo , Glicólise , Humanos , Proteínas Supressoras de Tumor/genética
10.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012631

RESUMO

N-myc downstream-regulated gene 2 (NDRG2) is a tumor-suppressor gene that suppresses tumorigenesis and metastasis of tumors and increases sensitivity to anti-cancer drugs. In this review, we summarize information on the clinicopathological characteristics of tumor patients according to NDRG2 expression in various tumor tissues and provide information on the metastasis inhibition-related cell signaling modulation by NDRG2. Loss of NDRG2 expression is a prognostic factor that correlates with TNM grade and tumor metastasis and has an inverse relationship with patient survival in various tumor patients. NDRG2 inhibits cell signaling, such as AKT-, NF-κB-, STAT3-, and TGF-ß-mediated signaling, to induce tumor metastasis, and induces activation of GSK-3ß which has anti-tumor effects. Although NDRG2 operates as an adaptor protein to mediate the interaction between kinases and phosphatases, which is essential in regulating cell signaling related to tumor metastasis, the molecular mechanism of NDRG2 as an adapter protein does not seem to be fully elucidated. This review aims to assist the research design regarding NDRG2 function as an adaptor protein and suggests NDRG2 as a molecular target to inhibit tumor metastasis and improve the prognosis in tumor patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Proteínas Supressoras de Tumor , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Cancer Sci ; 112(1): 22-30, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33128318

RESUMO

N-myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor in various cancers, including adult T-cell leukemia/lymphoma (ATLL). NDRG2, as a stress-responsive protein, is induced by several stress-related signaling pathways and NDRG2 negatively regulates various signal transduction pathways. Although it has not been found to function alone, NDRG2 binds serine/threonine protein phosphatase 2A (PP2A), generating a complex that is involved in the regulation of various target proteins. The main function of NDRG2 is to maintain cell homeostasis by suppressing stress-induced signal transduction; however, in cancer, genomic deletions and/or promoter methylation may inhibit the expression of NDRG2, resulting in enhanced tumor development through overactivated signal transduction pathways. A wide variety of tumors develop in Ndrg2-deficient mice, including T-cell lymphoma, liver, lung and other tumors, the characteristics of which are similar to those in Pten-deficient mice. In particular, PTEN is a target molecule of the NDRG2/PP2A complex, which enhances PTEN phosphatase activity by dephosphorylating residues in the PTEN C-terminal region. In ATLL cells, loss of NDRG2 expression leads to the failed recruitment of PP2A to PTEN, resulting in the inactivation of PTEN phosphatase with phosphorylation, ultimately leading to the activation of PI3K/AKT. Thus, NDRG2, as a PP2A adaptor, regulates the global phosphorylation of important signaling molecules. Moreover, the downregulation of NDRG2 expression by long-term stress-induced methylation is directly correlated with the development of ATLL and other cancers. Thus, NDRG2 might be important for the development of stress-induced leukemia and other cancers and has become an important target for novel molecular therapies.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Fosforilação/genética , Proteína Fosfatase 2/genética , Proteínas Supressoras de Tumor/genética , Animais , Humanos , Neoplasias/etiologia , Transdução de Sinais/genética
12.
IUBMB Life ; 73(1): 286-298, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33314669

RESUMO

LncRNAs are recently increasingly emerging as molecules that take its part in human carcinogenesis. A large body of literature has identified the functional roles of lncRNAs in the pathophysiology of CRC. The current study was intended to provide new ideas and perspectives for the functional role of lncRNA RAD51-AS1 in regulating CRC progression. Herein, a survey of RAD51-AS1 expression profile in The Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD) dataset revealed that RAD51-AS1 was downregulated in COAD specimens. Consistently, RAD51-AS1 expression was observed to be lower in CRC cell lines compared with normal cell line (NCM460). In the meanwhile, both the levels of miR-29b-3p and miR-29c-3p were prominently elevated in CRC cells. Functionally, administration of RAD51-AS1 refrained growth, invasion and migration of CRC cells. Additionally, accumulation of RAD51-AS1 hampered glucose consumption and lactate production, as well as the restraint of hexokinase 2 (HK2) and glucose transporter 1 (GLUT1) levels. More important, RAD51-AS1 functioned as a competing endogenous RNA (ceRNA) for sponging miR-29b-3p and miR-29c-3p, leading to enhancement of their common target N-myc downstream-regulated gene 2 (NDRG2). Mechanistically, the delivery of miR-29b/c-3p mimics or ablation of NDRG2 effectively blunted the salutary effects of RAD51-AS1 on CRC cell behaviors. Moreover, augmentation of RAD51-AS1 inhibited the tumorigenesis of CRC cells in vivo. Collectively, these findings provide comprehensive evidence that RAD51-AS1 repressed cell proliferation, migration, invasion and glycolysis process, ultimately contributing to the progression of CRC by repressing the miR-29b/c-3p/NDRG2 signaling axis, insinuating the putative potential of RAD51-AS1/miR-29b/c-3p/NDRG2 interaction network in unraveling CRC pathology and hopefully contributed to the treatment of CRC patients.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Glicólise , RNA Longo não Codificante/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Prognóstico , RNA Antissenso/genética , Rad51 Recombinase/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Recept Signal Transduct Res ; 41(6): 546-552, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33050824

RESUMO

OBJECTIVES: Ovarian cancer is the second commonly seen cancer in the US, patients with ovarian cancer are commonly diagnosed in the advanced stage. Pazopanib is an inhibitor of multiple tyrosine kinases and has been approved in treatment for carcinoma by FDA. N-myc downstream-regulated gene 2 (NDRG2) has been regarded as a cancer suppressor gene and presented an inhibition effect in cancer proliferation, invasion, and migration.Design: NDRG2 was overexpressed or inhibited in SKOV-3 cells, then experiments were performed to detect the apoptosis of cells. The expression or secretion of pro-cancer molecules was detected. And the expression of apoptosis-related proteins and the ASK1/JNK1 signaling pathway was detected. METHODS: The NDRG2 overexpression and inhibition model was firstly constructed in SKOV-3 cells, the apoptotic cells were detected using flow cytometry. The expression of cellular metastasis genes was detected using the qPCR method. The angiogenesis factors was detected using the ELISA method. Expression of each target protein was detected using western blotting analysis. RESULTS: NDRG2 overexpression and inhibition model were constructed in the SKOV-3 cell line, overexpression of NDRG2 enhanced the effect of pazopanib on inhibition of the expression of metastasis-related molecules and angiogenesis-related factors. The apoptosis process of cells was also enhanced after overexpression of NDRG2, and these effects were regulated by the activation of the ASK1/JNK1 signaling pathway.Limitations: The effect of NDRG2 in animal models and more cell lines needs to be explored in further study. CONCLUSIONS: NDRG2 might be a therapeutic target in treatment for ovarian cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indazóis/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética
14.
J Cell Physiol ; 235(4): 3790-3797, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31613009

RESUMO

Acute myelocytic leukemia (AML) is an aggressive malignant tumor and typically fatal without treatment. Identification and development of novel biomarkers could be beneficial for the diagnosis and prognosis of AML patients. Here, we aimed to identify the accurate DNA methylation prognostic signatures for AML patients. The DNA methylation data of AML patients and corresponding clinical information were retrieved from The Cancer Genome Atlas database. CPG sites that correlates closely with the survival of the AML patients were identified and further combined into CPG sites pairs to screen the survival-related pairs. The prognostic signatures were identified by the C-index and forward search algorithms and validated by the verification group. Finally, the functional enrichment analysis was performed on these CPG sites. As a result, a total of 498 CPG sites associated with the overall survival of AML patients was obtained. A prognostic signature composed of 10 CPG sites pairs was obtained and validated. The functional enrichment analysis showed prognostic genes were mainly enriched in tumor protein processing, cell differentiation, blood leukocyte immunity, and platelet growth factor pathways. In summary, we identified two accurate prognostic methylation signatures (NDRG2 and TLR7), which would be served as a novel therapy target for AML.


Assuntos
Metilação de DNA/genética , Leucemia Mieloide Aguda/genética , Receptor 7 Toll-Like/genética , Proteínas Supressoras de Tumor/genética , Idoso , Ilhas de CpG/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade
15.
Ann Hum Genet ; 84(3): 291-302, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32020597

RESUMO

Previous studies have implicated common and rare genetic variants as risk factors for late-onset Alzheimer's disease (LOAD). Here, weighted burden analysis was applied to over 10,000 exome-sequenced subjects from the Alzheimer's Disease Sequencing Project. Analyses were carried out to investigate whether rare variants predicted to have a functional effect within a gene were more commonly seen in cases or in controls. Confirmatory results were obtained for TREM2, ABCA7, and SORL1. Additional support was provided for PSEN1 (p = 0.0002), which previously had been only weakly implicated in LOAD. There was suggestive evidence that functional variants in PIK3R1, WNT7A, C1R, and EXOC5 might increase risk and that variants in TIAF1 and/or NDRG2 might have a protective effect. Overall, there was strong evidence (p = 5 × 10-6 ) that variants in tyrosine phosphatase genes reduce the risk of developing LOAD. Because PIK3R1 variants are expected to impair PI3K/Akt/GSK-3ß signalling while variants in tyrosine phosphatase genes would enhance it, these findings are in line with those from animal models, suggesting that this pathway is protective against Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Sequenciamento do Exoma , Presenilina-1/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Via de Sinalização Wnt
16.
Biochem Biophys Res Commun ; 531(2): 180-186, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32788069

RESUMO

Senescence is closely related to the occurrence of retinal degeneration. Recent studies have shown that bone marrow mesenchymal stem cells (BMMSCs) have significant therapeutic effects on retinal degeneration, While BMMSCs suffer from functional decline in bone aging. Whether senescence affects BMMSCs therapy on retinal degeneration remains unknown. Here, we applied the previously established bone progeria animal model, the senescence-accelerated mice-prone 6 (SAMP6) strain, and surprisingly discovered that SAMP6 mice demonstrated retinal degeneration at 6 months old. Furthermore, BMMSCs derived from SAMP6 mice failed to prevent MNU-induced retinal degeneration in vivo. As expected, BMMSCs from SAMP6 mice exhibited impairment in the differentiation capacities, compared to those from the age-matched senescence-accelerated mice-resistant 1 (SAMR1) strain. Moreover, BMMSCs from SAMR1 mice counteracted MNU-induced retinal degeneration, with increased expression of the retina survival hallmark, N-myc downstream regulated gene 2 (NDRG2). Taken together, these findings reveal that bone progeria diminished the therapeutic effects of BMMSC on retinal degeneration.


Assuntos
Osso e Ossos/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Progéria/patologia , Degeneração Retiniana/terapia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Camundongos , Retina/patologia , Degeneração Retiniana/patologia
17.
Invest New Drugs ; 38(4): 956-966, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31463638

RESUMO

Renal cell carcinoma (RCC) is one of the most common malignancies worldwide, and metabolic reprogramming has a profound effect on RCC tumorigenesis. mTORC1 inhibitors are widely used in RCC treatment, yet some types of RCC cells are resistant to these compounds. Thus, clarification of the metabolic mechanism of mTORC1 inhibitors and exploration of new therapeutic approaches are urgently needed. In this study, we found that the mTORC1 pathway was hyperactive in RCC. Immunohistochemistry and western blot analysis showed that phosphorylation of the mTORC1 substrate 4EBP1 at threonine 37/46 increased in RCC tissues compared with that in normal renal tissues. It was also found that mTORC1 inhibitor everolimus suppressed glucose consumption, lactate production, and multiple catalytic enzymes involved in glycolysis in 786-O and ACHN cells, but the accumulation of HIF1α induced by CoCl2 blocked the inhibitory effect of everolimus on aerobic glycolysis. Interestingly, western blot and metabolite analysis showed that the tumor suppressor NDRG2 (N-Myc downstream regulated gene 2) was able to inhibit mTORC1 activity and cooperate with an mTOR inhibitor to decrease aerobic glycolysis in 786-O and ACHN cells. These results demonstrate that NDRG2 may potentially synergize with mTORC1 inhibitors to suppress malignant phenotype of RCC. Taken together, these data provided preclinical evidence that the combination of NDRG2 and mTORC1 inhibitors might be a promising strategy for RCC therapy.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Everolimo/farmacologia , Neoplasias Renais/tratamento farmacológico , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Glicólise/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
18.
Exp Physiol ; 105(8): 1326-1338, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468595

RESUMO

NEW FINDINGS: What is the central question of this study? Do elevated levels of the stress-response protein NDRG2 protect against fasting and chronic disease in mouse skeletal muscle? What is the main finding and its importance? NDRG2 levels increased in the tibialis anterior muscle in response to fasting and the effects of motor neurone disease. No alleviation of the stress-related and proteasomal pathways, mitochondrial dysfunction or muscle mass loss was observed even with the addition of exogenous NDRG2 indicating that the increase in NDRG2 is a normal adaptive response. ABSTRACT: Skeletal muscle mass loss and dysfunction can arise from stress, which leads to enhanced protein degradation and metabolic impairment. The expression of N-myc downstream-regulated gene 2 (NDRG2) is induced in response to different stressors and is protective against the effects of stress in some tissues and cell types. Here, we investigated the endogenous NDRG2 response to the stress of fasting and chronic disease in mice and whether exogenous NDRG2 overexpression through adeno-associated viral (AAV) treatment ameliorated the response of skeletal muscle to these conditions. Endogenous levels of NDRG2 increased in the tibialis anterior muscle in response to 24 h fasting and with the development of the motor neurone disease, amyotrophic lateral sclerosis, in SOD1G93A transgenic mice. Despite AAV-induced overexpression and increased expression with fasting, NDRG2 was unable to protect against the activation of proteasomal and stress pathways in response to fasting. Furthermore, NDRG2 was unable to reduce muscle mass loss, mitochondrial dysfunction and elevated oxidative and endoplasmic reticulum stress levels in SOD1G93A mice. Conversely, elevated NDRG2 levels did not exacerbate these stress responses. Overall, increasing NDRG2 levels might not be a useful therapeutic strategy to alleviate stress-related disease pathologies in skeletal muscle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Músculo Esquelético/metabolismo , Estresse Fisiológico , Animais , Doença Crônica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Jejum , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias , Estresse Oxidativo , Transdução de Sinais , Superóxido Dismutase/metabolismo
19.
Cell Biol Int ; 44(4): 1028-1036, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31903696

RESUMO

The role of long non-coding RNAs (lncRNAs) in tumorigenesis and development of ovarian cancer (OC) has caught the attention of scientists. UNC5B antisense RNA 1 (UNC5B-AS1) is a newly identified carcinogenic lncRNA in thyroid papillary carcinoma, but its role in OC remains unclear. This study is proposed to investigate the function and mechanism of UNC5B-AS1 in OC. UNC5B-AS1 expression in OC samples was obtained from gene expression profiling interactive analysis (GEPIA) based on The Cancer Genome Atlas data. Gene expressions were detected by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. Biological functions of UNC5B-AS1 were assessed by cell counting kit-8, colony formation, and caspase-3 analysis. GEPIA revealed the UNC5B-AS1 upregulation in OC samples. RT-qPCR assay confirmed the upregulation of UNC5B-AS1 in OC cells. Functionally, depletion of UCN5B-AS1 hindered proliferation and prompted apoptosis in OC cells. Mechanistically, we found that UNC5B-AS1 interacted with zeste 2 polycomb repressive complex 2 subunit (EZH2) to trigger trimethylation of histone H3 at lysine 27 (H3K27me3) on N-myc downstream regulated gene-2 (NDRG2) promoter and epigenetically repressed NDRG2. Rescue assay indicated the participation of NDRG2 in the regulation of UNC5B-AS1 on OC progression. Together, we first illustrated that UNC5B-AS1 promoted OC progression by regulating the H3K27me on NDRG2 via EZH2, indicating UNC5B-AS1 as a potential molecular target for OC treatment.


Assuntos
Receptores de Netrina/genética , Neoplasias Ovarianas/patologia , RNA Antissenso/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
20.
Int J Mol Sci ; 21(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947996

RESUMO

Astrocytes play a major role in the pathogenesis of a range of neurodegenerative diseases, including Alzheimer's disease (AD), undergoing dramatic morphological and molecular changes that can cause potentially both beneficial and detrimental effects. They comprise a heterogeneous population, requiring a panel of specific phenotype markers to identify astrocyte subtypes, changes in function and their relation to pathology. This study aimed to characterise expression of the astrocyte marker N-myc downstream regulated gene 2 (NDRG2) in the ageing brain, investigate the relationship between NDRG2 and a panel of astrocyte markers, and relate NDRG2 expression to pathology. NDRG2 specifically immunolabelled the cell body and radiating processes of astrocytes in the temporal cortex of the Cognitive Function and Ageing Study (CFAS) neuropathology cohort. Expression of NDRG2 did not correlate with other astrocyte markers, including glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). NDRG2 showed a relationship to AT8+ neurofibrillary tangles (p = 0.001) and CD68+ microglia (p = 0.047), but not ß-amyloid plaques or astrocyte nuclear γH2AX immunoreactivity, a marker of DNA damage response. These findings provide new insight into the astrocyte response to pathology in the ageing brain, and suggest NDRG2 may be a potential target to modulate this response.


Assuntos
Envelhecimento , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Microglia/metabolismo , Emaranhados Neurofibrilares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/patologia , Dano ao DNA , Transportador 2 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Humanos , Microglia/patologia , Proteínas Supressoras de Tumor/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa