Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 300(5): 107144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458397

RESUMO

Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) oncogenic fusion proteins are found in approximately 5% of non-small cell lung cancers. Different EML4-ALK fusion variants exist with variant 3 (V3) being associated with a significantly higher risk than other common variants, such as variant 1 (V1). Patients with V3 respond less well to targeted ALK inhibitors, have accelerated rates of metastasis, and have poorer overall survival. A pathway has been described downstream of EML4-ALK V3 that is independent of ALK catalytic activity but dependent on the NEK9 and NEK7 kinases. It has been proposed that assembly of an EML4-ALK V3-NEK9-NEK7 complex on microtubules leads to cells developing a mesenchymal-like morphology and exhibiting enhanced migration. However, downstream targets of this complex remain unknown. Here, we show that the microtubule-based kinesin, Eg5, is recruited to interphase microtubules in cells expressing EML4-ALK V3, whereas chemical inhibition of Eg5 reverses the mesenchymal morphology of cells. Furthermore, we show that depletion of NEK7 interferes with Eg5 recruitment to microtubules in cells expressing EML4-ALK V3 and cell length is reduced, but this is reversed by coexpression of a phosphomimetic mutant of Eg5, in a site, S1033, phosphorylated by NEK7. Intriguingly, we also found that expression of Eg5-S1033D led to cells expressing EML4-ALK V1 adopting a more mesenchymal-like morphology. Together, we propose that Eg5 acts as a substrate of NEK7 in cells expressing EML4-ALK V3 and Eg5 phosphorylation promotes the mesenchymal morphology typical of these cells.


Assuntos
Cinesinas , Quinases Relacionadas a NIMA , Proteínas de Fusão Oncogênica , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/genética , Humanos , Fosforilação , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Mesoderma/metabolismo , Mesoderma/patologia , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
2.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32184261

RESUMO

EML4-ALK is an oncogenic fusion present in ∼5% of non-small cell lung cancers. However, alternative breakpoints in the EML4 gene lead to distinct variants of EML4-ALK with different patient outcomes. Here, we show that, in cell models, EML4-ALK variant 3 (V3), which is linked to accelerated metastatic spread, causes microtubule stabilization, formation of extended cytoplasmic protrusions and increased cell migration. EML4-ALK V3 also recruits the NEK9 and NEK7 kinases to microtubules via the N-terminal EML4 microtubule-binding region. Overexpression of wild-type EML4, as well as constitutive activation of NEK9, also perturbs cell morphology and accelerates migration in a microtubule-dependent manner that requires the downstream kinase NEK7 but does not require ALK activity. Strikingly, elevated NEK9 expression is associated with reduced progression-free survival in EML4-ALK patients. Hence, we propose that EML4-ALK V3 promotes microtubule stabilization through NEK9 and NEK7, leading to increased cell migration. This represents a novel actionable pathway that could drive metastatic disease progression in EML4-ALK lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/genética , Microtúbulos , Quinases Relacionadas a NIMA/genética , Proteínas de Fusão Oncogênica/genética , Receptores Proteína Tirosina Quinases
3.
J Biol Chem ; 295(5): 1240-1260, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31857374

RESUMO

Human ATG8 family proteins (ATG8s) are active in all steps of the macroautophagy pathway, and their lipidation is essential for autophagosome formation. Lipidated ATG8s anchored to the outer surface of the phagophore serve as scaffolds for binding of other core autophagy proteins and various effector proteins involved in trafficking or fusion events, whereas those at the inner surface are needed for assembly of selective autophagy substrates. Their scaffolding role depends on specific interactions between the LC3-interacting region (LIR) docking site (LDS) in ATG8s and LIR motifs in various interaction partners. LC3B is phosphorylated at Thr-50 within the LDS by serine/threonine kinase (STK) 3 and STK4. Here, we identified LIR motifs in STK3 and atypical protein kinase Cζ (PKCζ) and never in mitosis A (NIMA)-related kinase 9 (NEK9). All three kinases phosphorylated LC3B Thr-50 in vitro A phospho-mimicking substitution of Thr-50 impaired binding of several LIR-containing proteins, such as ATG4B, FYVE, and coiled-coil domain-containing 1 (FYCO1), and autophagy cargo receptors p62/sequestosome 1 (SQSTM1) and neighbor of BRCA1 gene (NBR1). NEK9 knockdown or knockout enhanced degradation of the autophagy receptor and substrate p62. Of note, the suppression of p62 degradation was mediated by NEK9-mediated phosphorylation of LC3B Thr-50. Consistently, reconstitution of LC3B-KO cells with the phospho-mimicking T50E variant inhibited autophagic p62 degradation. PKCζ knockdown did not affect autophagic p62 degradation, whereas STK3/4 knockouts inhibited autophagic p62 degradation independently of LC3B Thr-50 phosphorylation. Our findings suggest that NEK9 suppresses LC3B-mediated autophagy of p62 by phosphorylating Thr-50 within the LDS of LC3B.


Assuntos
Autofagia/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Proteína Sequestossoma-1/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Cromatografia Líquida de Alta Pressão , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Mutação , Quinases Relacionadas a NIMA/genética , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/genética , Serina-Treonina Quinase 3 , Espectrometria de Massas em Tandem , Treonina/metabolismo
4.
Am J Med Genet A ; 182(4): 746-754, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31961058

RESUMO

Nevus comedonicus syndrome (NCS) is a rare epidermal nevus syndrome characterized by ocular, skeletal, and central nervous system anomalies. We present a 23-month-old boy with a history of a congenital pulmonary airway malformation (CPAM) of the lung and a congenital cataract who developed progressive linear and curvilinear plaques of dilated follicular openings with keratin plugs (comedones) on parts of his scalp, face, and body consistent with nevus comedonicus. MRI of the brain demonstrated an aneurysm of the right internal carotid artery. Genetic testing identified NEK9 c.1755_1757del (p.Thr586del) at mean allele frequency of 28% in the nevus comedonicus. This same mutation was present in the CPAM tissue. This is the first case of a CPAM in a patient with an epidermal nevus syndrome. This case expands the phenotype of nevus comedonicus syndrome to include CPAM and vascular anomalies.


Assuntos
Aneurisma/fisiopatologia , Malformação Adenomatoide Cística Congênita do Pulmão/fisiopatologia , Mutação , Quinases Relacionadas a NIMA/genética , Nevo/patologia , Transtornos da Pigmentação/patologia , Neoplasias Cutâneas/patologia , Humanos , Lactente , Masculino , Nevo/genética , Fenótipo , Transtornos da Pigmentação/genética , Neoplasias Cutâneas/genética
6.
Biochem Biophys Res Commun ; 442(3-4): 139-46, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23665325

RESUMO

NEK9 is known to play a role in spindle assembly and in the control of centrosome separation, but the consequences of NEK9 targeting in cancer cells remain to be elucidated. In this study, we used siRNA to investigate the consequences of targeting NEK9 in glioblastoma and kidney cancer cells as a first step in assessing its potential as an anti-cancer therapeutic target. Live cell imaging revealed that NEK9 depletion of U1242 glioblastoma and Caki2 kidney carcinoma cells resulted in failure of cytokinesis. Interestingly, NEK9-depleted Caki2 cells overrode mitosis under incorrect chromosome alignment and were converted to a micronucleated phenotype, leading to cell death. Whereas, the RPE1 normal epithelium cell line was refractory to abnormal mitosis upon NEK9 knockdown. Nocodazole-induced mitotic arrest was compromised after NEK9 depletion, indicating that NEK9 has an important role in mitotic checkpoint system. Taken together, we propose that NEK9 inhibition represents a novel anti-cancer strategy by induction of mitotic catastrophe via impairment of spindle dynamics, cytokinesis and mitotic checkpoint control.


Assuntos
Neoplasias do Sistema Nervoso Central/terapia , Glioblastoma/terapia , Neoplasias Renais/terapia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Terapia de Alvo Molecular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fuso Acromático/fisiologia , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Citocinese/genética , Citocinese/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Micronúcleos com Defeito Cromossômico , Quinases Relacionadas a NIMA , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Interferência de RNA , Fuso Acromático/genética
7.
Front Genet ; 13: 989215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712877

RESUMO

Objective: Pathogenic variants in NEK9 (MIM: 609798) have been identified in patients with lethal congenital contracture syndrome 10 (OMIM: 617022) and arthrogryposis, Perthes disease, and upward gaze palsy (APUG and OMIM: 614262). The shared core phenotype is multiple joint contractures or arthrogryposis. In the present study, three novel variants of NEK9 associated with neonatal arthrogryposis were reported. Methods: The clinical data of two premature infants and their parents were collected. The genomic DNA was extracted from their peripheral blood samples and subjected to trio-whole-exome sequencing (trio-WES) and copy number variation analysis. Results: Using trio-WES, a total of three novel pathogenic variants of NEK9 were detected in the two families. Patient 1 carried compound heterozygous variations of c.717C > A (p. C239*741) and c.2824delA (p.M942Cfs*21), which were inherited from his father and mother, respectively. Patient 2 also carried compound heterozygous variations of c.61G > T (p. E21*959) and c. 2824delA (p. M942Cfs*21), which were inherited from his father and mother, respectively. These variants have not been previously reported in the ClinVar, HGMD, or gnomAD databases. Conclusion: This is the first report about NEK9-related arthrogryposis in neonatal patients. The findings from this study suggest that different types of mutations in NEK9 lead to different phenotypes. Our study expanded the clinical phenotype spectrum and gene spectrum of NEK9-associated arthrogryposis.

8.
J Dermatol ; 48(8): 1250-1252, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34002421

RESUMO

We present the case of a 92-year-old woman, with bullous pemphigoid (BP) and a concomitant nevus comedonicus (NC) presenting as an asymptomatic, linear lesion of the entire lower left limb, formed by multiple comedones. Dermoscopy of the NC and histopathology confirmed the clinical and dermoscopic suspect of giant congenital nevus comedonicus. The two entities presented no overlap. In this article, we speculate that a mutation of the NEK9 gene, associated with NC, probably altering the normal follicular differentiation in NC lesions, may hypothetically also influence the expression of BPAG2 in NC. This might possibly influence a protective role of NC lesions towards BP. Undoubtedly, genetic studies would be needed to confirm or reject the proposed hypothesis.


Assuntos
Nevo , Penfigoide Bolhoso , Transtornos da Pigmentação , Neoplasias Cutâneas , Idoso de 80 Anos ou mais , Feminino , Humanos , Mutação , Quinases Relacionadas a NIMA/genética , Penfigoide Bolhoso/diagnóstico , Penfigoide Bolhoso/genética
9.
Theranostics ; 11(5): 2460-2474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500736

RESUMO

Rationale: Inflammatory stimuli from the tumor microenvironment play important roles in cancer progression. However, the mechanism of promotion of cancer metastasis by inflammation in gastric cancer (GC) is poorly understood. Methods: The roles of NEK9 were validated via loss-of-function and gain-of-function experiments in vitro and in an animal model of metastasis. Cytoskeletal reorganization-associated molecules were detected by GST pull-down. The regulation of ARHGEF2 by NEK9 was investigated by phosphoproteomics analysis, immunoprecipitation (IP) and in vitro kinase assay. The transcriptional regulation of miR-520f-3p was studied using luciferase reporter and chromatin immunoprecipitation (ChIP). The expression of these proteins in GC tissues was examined by immunohistochemistry. Results: NEK9 directly regulates cell motility and RhoA activation in GC. The phosphorylation of ARHGEF2 by NEK9 is the key step of this process. NEK9 is a direct target of miR-520f-3p, which is transcriptionally suppressed by IL-6-mediated activation of STAT3. A decrease in miR-520f-3p leads to the amplification of IL-6/STAT3 by targeting GP130. A simultaneous elevation of the levels of NEK9, GP130 and p-STAT3 was confirmed in the lymph nodes and distant metastases. An increase in NEK9, GP130 and STAT3 is associated with reduced overall survival of GC patients. Conclusion: This study demonstrates that activation of STAT3 by IL-6 transcriptionally suppresses miR-520f-3p and diminishes the inhibitory effects of miR-520f-3p on NEK9 and GP130. An increase in GP130 enhances this signaling, and NEK9 directly influences cell motility and RhoA activation by targeting the phosphorylation of ARHGEF2. Targeting the IL-6-STAT3-NEK9 pathway may be a new strategy for GC treatment.


Assuntos
Interleucina-6/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Quinases Relacionadas a NIMA/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinases Relacionadas a NIMA/genética , Fosforilação , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fator de Transcrição STAT3/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
FEBS Lett ; 595(23): 2909-2921, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34674267

RESUMO

Pellino-2 is an E3 ubiquitin ligase that mediates intracellular signaling in innate immune pathways. Most studies of endogenous Pellino-2 have been performed in macrophages, but none in nonimmune cells. Using yeast two-hybrid screening and co-immunoprecipitation, we identified six novel interaction partners of Pellino-2, with various localizations: insulin receptor substrate 1, NIMA-related kinase 9, tumor necrosis factor receptor-associated factor 7, cyclin-F, roundabout homolog 1, and disheveled homolog 2. Pellino-2 showed cytoplasmic localization in a wide range of nonimmune cells under physiological potassium concentrations. Treatment with the potassium ionophore nigericin resulted in nuclear localization of Pellino-2, which was reversed by the potassium channel blocker tetraethylammonium. Live-cell imaging revealed intracellular migration of GFP-tagged Pellino-2. In summary, Pellino-2 interacts with proteins at different cellular locations, taking part in dynamic processes that change its intracellular localization influenced by potassium efflux.


Assuntos
Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
11.
Pathology ; 52(3): 329-335, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32098687

RESUMO

As a new member of Neks family, Nek9 regulates spindle assembly and controls chromosome alignment and centrosome separation. In the current study we aimed to investigate the expression of Nek9 in breast cancer and its clinical significance. We evaluated the expression of Nek9 in invasive ductal carcinoma (IDC, n=316), ductal carcinoma in situ (DCIS), usual ductal hyperplasia, atypical ductal hyperplasia, fibroadenoma and normal breast tissues using immunohistochemistry. The results revealed significantly reduced Nek9 in IDCs (41.8%) compared to benign breast lesions. Moreover, gradually reduced Nek9 was found from DCIS to invasive carcinoma and metastatic tumour within the same tumours. The decrease in Nek9 expression was associated with larger tumour size (p=0.0087), high grade (p<0.0001) and high Ki-67 index (p<0.0020). TCGA and GEO datasets analysis revealed low level of Nek9 mRNA was more frequent in triple negative breast cancers, and associated with poor overall survival and distant metastasis-free survival. These findings suggest an important role of Nek9 in the progression of breast cancer, and aberrantly expressed Nek9 correlates with more aggressive clinicopathological variables and predicts poor clinical prognosis. Nek9 may serve as a potential predictive factor for patients with breast cancer.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Quinases Relacionadas a NIMA/biossíntese , Adulto , Idoso , Feminino , Fibroadenoma/patologia , Humanos , Hiperplasia/patologia , Pessoa de Meia-Idade , Quinases Relacionadas a NIMA/análise , Prognóstico , Adulto Jovem
12.
Curr Biol ; 28(1): 121-129.e4, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29276125

RESUMO

Centrosomes [1, 2] play a central role during spindle assembly in most animal cells [3]. In early mitosis, they organize two symmetrical microtubule arrays that upon separation define the two poles of the forming spindle. Centrosome separation is tightly regulated [4, 5], occurring through partially redundant mechanisms that rely on the action of microtubule-based dynein and kinesin motors and the actomyosin system [6]. While centrosomes can separate in prophase or in prometaphase after nuclear envelope breakdown (NEBD), prophase centrosome separation optimizes spindle assembly and minimizes the occurrence of abnormal chromosome attachments that could end in aneuploidy [7, 8]. Prophase centrosome separation relies on the activity of Eg5/KIF11, a mitotic kinesin [9] that accumulates around centrosomes in early mitosis under the control of CDK1 and the Nek9/Nek6/7 kinase module [10-17]. Here, we show that Eg5 localization and centrosome separation in prophase depend on the nuclear microtubule-associated protein TPX2 [18], a pool of which localizes to the centrosomes before NEBD. This localization involves RHAMM/HMMR [19] and the kinase Nek9 [20], which phosphorylates TPX2 nuclear localization signal (NLS) preventing its interaction with importin and nuclear import. The pool of centrosomal TPX2 in prophase has a critical role for both microtubule aster organization and Eg5 localization, and thereby for centrosome separation. Our results uncover an unsuspected role for TPX2 before NEBD and define a novel regulatory mechanism for centrosome separation in prophase. They furthermore suggest NLS phosphorylation as a novel regulatory mechanism for spindle assembly factors controlled by the importin/Ran system.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Quinases Relacionadas a NIMA/genética , Membrana Nuclear/fisiologia , Proteínas Nucleares/genética , Fosforilação/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Centrossomo/fisiologia , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Proteínas Nucleares/metabolismo
13.
Mol Oncol ; 12(1): 74-88, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29112787

RESUMO

Although the BRAF inhibitors dabrafenib and vemurafenib have both proven successful against BRAF-mutant melanoma, there seem to be differences in their mechanisms of action. Here, we show that dabrafenib is more effective at inhibiting the growth of NRAS-mutant and KRAS-mutant cancer cell lines than vemurafenib. Using mass spectrometry-based chemical proteomics, we identified NEK9 and CDK16 as unique targets of dabrafenib. Both NEK9 and CDK16 were highly expressed in specimens of advanced melanoma, with high expression of both proteins correlating with a worse overall survival. A role for NEK9 in the growth of NRAS- and KRAS-mutant cell lines was suggested by siRNA studies in which silencing was associated with decreased proliferation, cell cycle arrest associated with increased p21 expression, inhibition of phospho-CHK1, decreased CDK4 expression, and the initiation of a senescence response. Inhibition of CDK4 but not CHK1 recapitulated the effects of NEK9 silencing, indicating this to be the likely mechanism of growth inhibition. We next turned our attention to CDK16 and found that its knockdown inhibited the phosphorylation of the Rb protein at S780 and increased expression of p27. Both of these effects were phenocopied in NRAS- and KRAS-mutant cancer cells by dabrafenib, but not vemurafenib. Combined silencing of NEK9 and CDK16 was associated with enhanced inhibition of melanoma cell proliferation. In summary, we have identified dabrafenib as a potent inhibitor of NEK9 and CDK16, and our studies suggest that inhibition of these kinases may have activity against cancers that do not harbor BRAF mutations.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Imidazóis/farmacologia , Melanoma/tratamento farmacológico , Quinases Relacionadas a NIMA/antagonistas & inibidores , Oximas/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Quinases Relacionadas a NIMA/genética , Oximas/administração & dosagem , Oximas/uso terapêutico , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa