Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
1.
Mol Cell ; 81(7): 1469-1483.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33609448

RESUMO

We demonstrate that DNA hypomethylating agent (HMA) treatment can directly modulate the anti-tumor response and effector function of CD8+ T cells. In vivo HMA treatment promotes CD8+ T cell tumor infiltration and suppresses tumor growth via CD8+ T cell-dependent activity. Ex vivo, HMAs enhance primary human CD8+ T cell activation markers, effector cytokine production, and anti-tumor cytolytic activity. Epigenomic and transcriptomic profiling shows that HMAs vastly regulate T cell activation-related transcriptional networks, culminating with over-activation of NFATc1 short isoforms. Mechanistically, demethylation of an intragenic CpG island immediately downstream to the 3' UTR of the short isoform was associated with antisense transcription and alternative polyadenylation of NFATc1 short isoforms. High-dimensional single-cell mass cytometry analyses reveal a selective effect of HMAs on a subset of human CD8+ T cell subpopulations, increasing both the number and abundance of a granzyme Bhigh, perforinhigh effector subpopulation. Overall, our findings support the use of HMAs as a therapeutic strategy to boost anti-tumor immune response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ilhas de CpG/imunologia , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Granzimas/imunologia , Ativação Linfocitária/efeitos dos fármacos , Metilação de DNA/imunologia , Humanos , Fatores de Transcrição NFATC/imunologia , Perforina/imunologia
2.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37913894

RESUMO

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Smad3/metabolismo
3.
J Biol Chem ; 299(3): 102982, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739947

RESUMO

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases and affects almost 1% of the population. Differentiated embryo-chondrocyte expressed gene-1 (DEC1) has been associated with both osteogenesis and osteoclastogenesis. RA condition is marked by inflammatory hyperplasia, and DEC1 is known to support inflammatory reactions and implicated in antiapoptosis and cell invasion. Here, our goal was to test the hypothesis that DEC1 enhances RA development induced by collagen-induced arthritis (CIA), a well-recognized protocol for developing RA animal models. DEC1+/+ and DEC1-/- mice were subjected to CIA protocol, and the development of RA condition was monitored. We found that CIA robustly induced RA phenotypes (e.g., synovial hyperplasia) and greatly increased the expression of proinflammatory cytokines such as TNF-α. However, these changes were detected in DEC1+/+ but not DEC1-/- mice. Interestingly, these very cytokines strongly induced DEC1, and such a dual role of DEC1, as an inducer for and being induced by proinflammatory cytokines, constitutes a DEC1-amplifying circuit for inflammation. Knockdown of DEC1 in human MH7A cells strongly decreased cell migration and invasion as well as the expression of genes related to RA phenotypes. The combination of DEC1-directed migration and invasion in vitro with synovial hyperplasia in vivo mechanistically establishes cellular bases on how DEC1 is involved in the development of RA phenotypes. In addition to inflammatory signaling, DEC1 functionally interacted with PI3KCA(p110α)/Akt/GSK3ß, Wnt/ß-catenin, and NFATc1. Such engagement in multiple signaling pathways suggests that DEC1 plays coordinated and integral roles in developing RA, one of the most common autoimmune diseases.


Assuntos
Artrite Experimental , Artrite Reumatoide , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Homeodomínio , Animais , Humanos , Camundongos , Artrite Experimental/induzido quimicamente , Artrite Experimental/genética , Artrite Reumatoide/genética , Colágeno , Citocinas/metabolismo , Fibroblastos/metabolismo , Hiperplasia/patologia , Inflamação/patologia , Membrana Sinovial/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo
4.
EMBO J ; 39(18): e104365, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32696520

RESUMO

Hair follicle stem cells (HFSCs) are maintained in a quiescent state until activated to grow, but the mechanisms that reactivate the quiescent HFSC reservoir are unclear. Here, we find that loss of Sirt7 in mice impedes hair follicle life-cycle transition from telogen to anagen phase, resulting in delay of hair growth. Conversely, Sirt7 overexpression during telogen phase facilitated HSFC anagen entry and accelerated hair growth. Mechanistically, Sirt7 is upregulated in HFSCs during the telogen-to-anagen transition, and HFSC-specific Sirt7 knockout mice (Sirt7f/f ;K15-Cre) exhibit a similar hair growth delay. At the molecular level, Sirt7 interacts with and deacetylates the transcriptional regulator Nfatc1 at K612, causing PA28γ-dependent proteasomal degradation to terminate Nfatc1-mediated telogen quiescence and boost anagen entry. Cyclosporin A, a potent calcineurin inhibitor, suppresses nuclear retention of Nfatc1, abrogates hair follicle cycle delay, and promotes hair growth in Sirt7-/- mice. Furthermore, Sirt7 is downregulated in aged HFSCs, and exogenous Sirt7 overexpression promotes hair growth in aged animals. These data reveal that Sirt7 activates HFSCs by destabilizing Nfatc1 to ensure hair follicle cycle initiation.


Assuntos
Folículo Piloso/enzimologia , Sirtuínas/metabolismo , Células-Tronco/enzimologia , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Sirtuínas/genética
5.
Mol Med ; 30(1): 20, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310228

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.


Assuntos
Artrite Reumatoide , Fatores de Transcrição NFATC , Humanos , Artrite Reumatoide/genética , Diferenciação Celular/fisiologia , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Linfócitos T/metabolismo
6.
FASEB J ; 37(12): e23240, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902497

RESUMO

One-way valves within lymphatic vessels are required for the efficient drainage of lymphatic fluids. Fluid flow is proposed to be a key cue in regulating both the formation and maintenance of lymphatic valves. However, to our knowledge, no previous study has systematically examined the response of LECs to the complex combination of spatially and temporally varying fluid flows that occur at lymphatic valves in vivo. We built an in vitro microfluidic device that reproduces key aspects of the flow environment found at lymphatic valves. Using this device, we found that a combination of spatially and temporally varying wall shear stresses (WSSs) led to upregulated transcription of PROX1 and FOXC2. In addition, we observed that combined spatial and temporal variations in WSS-modulated Ca2+ signaling and led to increased cellular levels of NFATc1. These observations suggest that the physical cues generated by the flow environment present within lymphatic valves may act to activate key regulatory pathways that contribute to valve maintenance.


Assuntos
Células Endoteliais , Vasos Linfáticos , Sinais (Psicologia) , Conhecimento , Dispositivos Lab-On-A-Chip , Fatores de Transcrição
7.
Bioorg Chem ; 143: 107066, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185009

RESUMO

Repeated chromatography of the CH2Cl2 and EtOAc soluble fractions from the methanol extract of Belamcanda chinensis root yielded six new sucrosephenylpropanoid esters (1-6) and twenty-one known compounds (7-27). The structures of 1-6 were elucidated using diverse nuclear magnetic resonance (NMR) techniques and high-resolution mass spectrometry (HRMS) data analysis, together with chemical methods. All the twenty-seven isolated compounds were evaluated for their anti-osteoclastogenic activities. Preliminary screening results revealed that compounds 1 and 19 exhibited strong effects against RANKL-induced osteoclast formation in RAW264.7 cells. In addition, the treatment of mouse bone marrow macrophages (BMMs) with compounds 1 and 19 significantly decreased RANKL-induced TRAP-positive multinucleated osteoclast formation in a concentration-dependent manner without affecting cell viability. Further bioassay investigation showed that compounds 1 and 19 inhibited the expression of some osteoclast-specific marker genes and the transcription factor nuclear factor of activated T cells cytoplasmic 1 (NFATc1) in response to RANKL. To the best of our knowledge, this is the first investigation of anti-osteoclastogenic activity for compounds isolated from B. chinensis.


Assuntos
Reabsorção Óssea , Isoflavonas , Animais , Camundongos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Fatores de Transcrição NFATC/efeitos dos fármacos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos , Osteogênese/efeitos dos fármacos , Isoflavonas/química , Isoflavonas/farmacologia , Raízes de Plantas/química
8.
Heart Vessels ; 39(1): 18-24, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37758852

RESUMO

To analyze the clinical value of echocardiography combined with serum lacuna protein-1 (Cav-1), activated T cell nuclear factor C1 (NFATc1), and plasminogen activator inhibitor-1 (PAI-1) in the diagnosis of Kawasaki disease (KD) complicated with coronary artery lesions (CAL). A total of 200 children with KD treated in our hospital from January 2019 to October 2021 were grouped as the KD alone group (n = 56) and the KD complicated with CAL group (n = 144) according to the results of coronary angiography. The levels of Cav-1, NFATc1, and PAI-1 were detected by enzyme-linked immunosorbent assay. Echocardiography was performed and the internal diameters of left and right coronary arteries were compared between the two groups. The area under the curve (AUC), sensitivity, and specificity of echocardiography combined with serum Cav-1, NFATc1, and PAI-1 in the diagnosis of KD complicated with CAL were analyzed with receiver operating characteristic (ROC) curve. Coronary angiography, as the gold standard, showed that the sensitivity of echocardiography in diagnosing KD with CAL was 88.19% (127/144), the specificity was 66.07% (37/56), and the accuracy was 82.00% (164/200). ROC curve analysis revealed that the AUC of KD complicated with CAL diagnosed by echocardiography, Cav-1, NFATc1, and PAI-1 was 0.819, 0.715, 0.688, and 0.663, respectively, and the AUC of combined diagnosis of the four was 0.896. The combination of echocardiography, Cav-1, NFATc1, and PAI-1 has high value in diagnosing KD complicated with CAL, which can be widely used in clinical practice.


Assuntos
Doença da Artéria Coronariana , Síndrome de Linfonodos Mucocutâneos , Criança , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/diagnóstico por imagem , Ecocardiografia , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Inibidor 1 de Ativador de Plasminogênio
9.
Adv Exp Med Biol ; 1441: 875-884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884756

RESUMO

Tricuspid atresia (TA) is a rare congenital heart condition that presents with a complete absence of the right atrioventricular valve. Because of the rarity of familial and/or isolated cases of TA, little is known about the potential genetic abnormalities contributing to this condition. Potential responsible chromosomal abnormalities were identified in exploratory studies and include deletions in 22q11, 4q31, 8p23, and 3p as well as trisomies 13 and 18. In parallel, potential culprit genes include the ZFPM2, HEY2, NFATC1, NKX2-5, MYH6, and KLF13 genes. The aim of this chapter is to expose the genetic components that are potentially involved in the pathogenesis of TA in humans. The large variability in phenotypes and genotypes among cases of TA suggests a genetic network that involves many components yet to be unraveled.


Assuntos
Atresia Tricúspide , Humanos , Aberrações Cromossômicas , Fenótipo , Atresia Tricúspide/genética , Coração Univentricular/genética
10.
Adv Exp Med Biol ; 1441: 885-900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884757

RESUMO

The process of valve formation is a complex process that involves intricate interplay between various pathways at precise times. Although we have not completely elucidated the molecular pathways that lead to normal valve formation, we have identified a few major players in this process. We are now able to implicate TGF-ß, BMP, and NOTCH as suspects in tricuspid atresia (TA), as well as their downstream targets: NKX2-5, TBX5, NFATC1, GATA4, and SOX9. We know that the TGF-ß and the BMP pathways converge on the SMAD4 molecule, and we believe that this molecule plays a very important role to tie both pathways to TA. Similarly, we look at the NOTCH pathway and identify the HEY2 as a potential link between this pathway and TA. Another transcription factor that has been implicated in TA is NFATC1. While several mouse models exist that include part of the TA abnormality as their phenotype, no true mouse model can be said to represent TA. Bridging this gap will surely shed light on this complex molecular pathway and allow for better understanding of the disease process.


Assuntos
Modelos Animais de Doenças , Transdução de Sinais , Atresia Tricúspide , Animais , Atresia Tricúspide/genética , Atresia Tricúspide/metabolismo , Atresia Tricúspide/patologia , Humanos , Camundongos , Coração Univentricular/genética , Coração Univentricular/metabolismo , Coração Univentricular/fisiopatologia , Coração Univentricular/patologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Receptores Notch/metabolismo , Receptores Notch/genética
11.
Inflammopharmacology ; 32(1): 667-682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902927

RESUMO

The inflammatory response in ulcerative colitis (UC) could be relieved by the conventional immunomodulatory agents; 5-aminosalicylic acid, corticosteroids, or azathioprine. However, the low remission rates and the intolerance to these agents necessitate investigation of gene expression signature in UC that could influence the therapeutic efficacy of drugs, as well as the interference with persistence genes by novel therapeutic option. Three microarray datasets (GSE66407, GSE38713 and GSE14580) from the NCBI-GEO database were utilized. Differentially expressed genes between samples of patients with UC and healthy ones were analyzed using R software. In addition, in vivo study using oxazolone-induced UC in BALB/c mice was carried out to investigate the proposed therapeutic efficacy of dichloroacetate (DCA). The bioinformatics analysis revealed the persistence of NLRP3, NFATC1, and IL1B in UC despite treatment with common therapeutic agents. DCA administration to oxazolone-treated mice showed remarkable interference with those persistence genes. Western blotting analysis for NLRP3, NFATC1, nuclear/total NF-κB, and cleaved caspase-1 revealed the ability of DCA to reduce the expression levels of these proteins in oxazolone-treated mice. Additionally, the inflammatory cytokines IL-1ß and IL-13 were reduced in colonic tissue by DCA treatment. The therapeutic efficacy of DCA was further confirmed by the apparent reduction in histopathological scoring, disease activity index, and the normalization of colon length. Therefore, DCA could be suggested as a novel and promising therapeutic option in UC based on its ability to interfere with the persistence of NFATC1/NLRP3/IL1B signaling. That merits further safety/toxicological pre-clinical assessment and update of bioavailability/metabolism data prior to clinical investigation.


Assuntos
Colite Ulcerativa , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oxazolona/farmacologia , NF-kappa B , Acetatos , Biologia Computacional , Fatores de Transcrição NFATC , Interleucina-1beta
12.
J Cell Physiol ; 238(12): 2879-2887, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842836

RESUMO

This study investigated the effect of taurine (TAU) on the muscle fiber type transformation in porcine myoblasts and its molecular mechanisms. The findings revealed that TAU augmented the protein expression of slow MyHC and the enzyme activities of oxidative metabolism markers like malate dehydrogenase and succinic dehydrogenase. Conversely, it curtailed the expression of fast MyHC and glycolytic metabolism enzyme activity of lactate dehydrogenase. Moreover, TAU elevated the expression of genes associated with oxidative fiber while diminishing the expression of those linked to glycolytic fibers, suggesting that TAU promoted the muscle fiber type transformation from glycolytic fiber to oxidative fiber. Additionally, TAU notably enhanced the expression of key molecules of calcineurin (CaN)/nuclear factor of activated T cells c1 (NFATc1) signaling and the CaN activity in porcine myoblasts. However, CaN inhibitor cyclosporine A abolished these effects induced by TAU. Our results indicated that TAU regulated the muscle fiber type transformation from glycolytic to oxidative fiber by activation of CaN/NFATc1 signaling.


Assuntos
Fibras Musculares Esqueléticas , Taurina , Animais , Calcineurina/metabolismo , L-Lactato Desidrogenase/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição NFATC/metabolismo , Suínos , Taurina/farmacologia , Células Cultivadas
13.
Glia ; 71(9): 2266-2284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300531

RESUMO

Synucleinopathies refer to a range of neurodegenerative diseases caused by abnormal α-synuclein (α-Syn) deposition, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Their pathogenesis is strongly linked to microglial dysfunction and neuroinflammation, which involves the leucine-rich-repeat kinase 2 (LRRK2)-regulated nuclear factor of activated T-cells (NFAT). Of the NFAT family, NFATc1 has been found to be increasingly translocated into the nucleus in α-syn stimulation. However, the specific role of NFATc1-mediated intracellular signaling in PD remains elusive in regulating microglial functions. In the current study, we crossbred LRRK2 or NFATc1 conditional knockout mice with Lyz2Cre mice to generate mice with microglia-specific deletion of LRRK2 or NFATc1, and by stereotactic injection of fibrillary α-Syn, we generated PD models in these mice. We found that LRRK2 deficiency enhanced microglial phagocytosis in the mice after α-Syn exposure and that genetic inhibition of NFATc1 markedly diminished phagocytosis and α-Syn elimination. We further demonstrated that LRRK2 negatively regulated NFATc1 in α-Syn-treated microglia, in which microglial LRRK2-deficiency facilitated NFATc1 nuclear translocation, CX3CR1 upregulation, and microglia migration. Additionally, NFATc1 translocation upregulated the expression of Rab7 and promoted the formation of late lysosomes, resulting in α-Syn degradation. In contrast, the microglial NFATc1 deficiency impaired CX3CR1 upregulation and the formation of Rab7-mediated late lysosomes. These findings highlight the critical role of NFATc1 in modulating microglial migration and phagocytosis, in which the LRRK2-NFATc1 signaling pathway regulates the expression of microglial CX3CR1 and endocytic degradative Rab7 to attenuate α-synuclein immunotoxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doença de Parkinson/genética , Fagocitose/genética
14.
Kidney Int ; 103(3): 501-513, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36328098

RESUMO

Final urine volume and concentration are defined by water reabsorption through the water channel proteins aquaporin (AQP)-2, -3 and -4 in the collecting duct. However, the transcriptional regulation of these AQPs is not well understood. The Hippo/Yes-associated protein 1 (YAP) pathway plays an important role in organ size control and tissue homeostasis. When the Hippo pathway including the Mst1/Mst2 kinases is inhibited, YAP is activated and functions as a transcription co-activator. Our previous work revealed a pathological role of tubular YAP activation in chronic kidney disease, but the physiological role of YAP in the kidney remains to be established. Here, we found that tubule-specific Yap knockout mice showed increased urine output and decreased urinary osmolality. Decreases in Aqp2, -3 and -4 mRNA and protein abundance in the kidney were evident in Yap knockout mice. Analysis of Mst1/Mst2 double knockout and Mst1/Mst2/Yap triple knockout mice showed that expression of Aqp2 and Aqp4 but not Aqp3 was dependent on YAP. Furthermore, YAP was recruited to the promoters of the Aqp2 and Aqp4 genes and stimulated their transcription. Interestingly, YAP was found to interact with transcription factors GATA2, GATA3 and NFATc1. These three factors promoted Aqp2 transcription in a YAP dependent manner in collecting duct cells. These three factors also promoted Aqp4 transcription whereas only GATA2 and GATA3 enhanced Aqp3 transcription. Thus, our results suggest that YAP promotes Aqp2 and Aqp4 transcription, interacts with GATA2, GATA3 and NFATc1 to control Aqp2 expression, while Aqp-2, -3 and -4 exploit overlapping mechanisms for their baseline transcriptional regulation.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Proteínas de Sinalização YAP , Rim/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Knockout , Água/metabolismo , Homeostase , Túbulos Renais Coletores/metabolismo
15.
Mol Med ; 29(1): 49, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020186

RESUMO

BACKGROUND: The cytoskeletal architecture of osteoclasts (OCs) and bone resorption activity must be appropriately controlled for proper bone remodeling, which is associated with osteoporosis. The RhoA protein of GTPase plays a regulatory role in cytoskeletal components and contributes to osteoclast adhesion, podosome positioning, and differentiation. Although osteoclast investigations have traditionally been performed by in vitro analysis, however, the results have been inconsistent, and the significance of RhoA in bone physiology and pathology is still unknown. METHODS: We generated RhoA knockout mice by specifically deleting RhoA in the osteoclast lineage to understand more about RhoA's involvement in bone remodeling. The function of RhoA in osteoclast differentiation and bone resorption and the mechanisms were assessed using bone marrow macrophages (BMMs) in vitro. The ovariectomized (OVX) mouse model was adopted to examine the pathological effect of RhoA in bone loss. RESULTS: Conditional deletion of RhoA in the osteoclast lineage causes a severe osteopetrosis phenotype, which is attributable to a bone resorption suppression. Further mechanistic studies suggest that RhoA deficiency suppresses Akt-mTOR-NFATc1 signaling during osteoclast differentiation. Additionally, RhoA activation is consistently related to the significant enhancement the osteoclast activity, which culminates in the development of an osteoporotic bone phenotype. Furthermore, in mice, the absence of RhoA in osteoclast precursors prevented occurring OVX-induced bone loss. CONCLUSION: RhoA promoted osteoclast development via the Akt-mTOR-NFATc1 signaling pathway, resulting a osteoporosis phenotype, and that manipulating RhoA activity might be a therapeutic strategy for osteoporotic bone loss.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Camundongos , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Diferenciação Celular , Fatores de Transcrição NFATC/metabolismo , Osteogênese , Osteoporose/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
16.
Biochem Biophys Res Commun ; 659: 20-28, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37031590

RESUMO

Skeletal muscle fiber type specification is changeable during muscle regeneration following cardiotoxin (CTX) injection; however, the mechanism of muscle fiber shift in regenerating muscle fibers remains unclear. Furthermore, it is unclear as to which factors determine skeletal muscle fiber types in regenerating muscle fibers. Previous studies showed that CTX-induced muscle damage resulted in a temporary hypoxic condition, indicating that hypoxia-inducible factor (HIF)-1α may be involved in muscle fiber type transition. Stabilization of HIF-1α has been shown to result in muscle fiber type transition toward slow-twitch phenotype through the calcineurin/nuclear factor activated T cell 1 (NFATc1) signaling pathway. Therefore, the aim of the present study was to determine whether the calcineurin/NFATc1 pathway is a key mediator of skeletal muscle fiber type transition during muscle regeneration. We found that CTX-induced muscle damage resulted in transient ischemia and HIF-1α expression in skeletal muscle. Additionally, it shifted the muscle fiber type proportion toward a slow-twitch phenotype in the soleus muscle (37.5% in the control muscle vs. 61.3% in the damaged muscle; p < 0.01) three weeks after muscle damage. Moreover, the NFATc1 protein levels increased in damaged muscle, and blockage of the calcineurin/NFATc1 signaling pathway by tacrolimus (FK-506) treatment substantially decreased the number of slow-twitch muscle fibers in the soleus muscle. This study demonstrated that CTX-induced muscle injury results in transient ischemia in hind limb muscle and stabilizes HIF-1α. Moreover, muscle damage increased oxidative phenotype muscle fibers through the calcineurin/NFATc1 signaling pathway during muscle regeneration.


Assuntos
Calcineurina , Fatores de Transcrição NFI , Calcineurina/metabolismo , Fatores de Transcrição NFI/metabolismo , Linfócitos T/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Transdução de Sinais , Tacrolimo/farmacologia , Fibras Musculares de Contração Rápida/metabolismo
17.
FASEB J ; 36(4): e22243, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224782

RESUMO

Osteoarthritis (OA) is a prevalent degenerative disease of the joint, featured by articular cartilage destruction and subchondral bone marrow lesions. Articular cartilage and subchondral bone constitute an osteochondral unit that guarantees joint homeostasis. During OA initiation, activated osteoclasts in subchondral bone ultimately result in impaired capacities of the subchondral bone in response to mechanical stress, followed by the degradation of overlying articular cartilage. Thus, targeting osteoclasts could be a potential therapeutic option for treating OA. Here, we observed that farnesoid X receptor (FXR) expression and osteoclast fusion and activity in subchondral bone were concomitantly changed during early-stage OA in the OA mouse model established by anterior cruciate ligament transection (ACLT). Then, we explored the therapeutic effects of FXR agonist GW4064 on the osteochondral pathologies in ACLT mice. We showed that GW4064 obviously ameliorated subchondral bone deterioration, associated with reduction in tartrate-resistant acid phosphatase (TRAP) positive multinuclear osteoclast number, as well as articular cartilage degradation, which were blocked by the treatment with FXR antagonist Guggulsterone. Mechanistically, GW4064 impeded osteoclastogenesis through inhibiting subchondral bone osteoclast fusion via suppressing c-Jun N-terminal kinase (JNK) 1/2/nuclear factor of activated T-cells 1 (NFATc1) pathway. Taken together, our results present evidence for the protective effects of GW4064 against OA by blunting osteoclast-mediated aberrant subchondral bone loss and subsequent cartilage deterioration. Therefore, GW4064 demonstrates the potential as an alternative therapeutic option against OA for further drug development.


Assuntos
Reabsorção Óssea/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Isoxazóis/farmacologia , Osteoartrite/prevenção & controle , Osteoclastos/efeitos dos fármacos , Osteogênese , Proteínas de Ligação a RNA/agonistas , Animais , Remodelação Óssea , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia
18.
Inflamm Res ; 72(6): 1237-1255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37212865

RESUMO

BACKGROUND: Evidence indicated that the early stage transition of macrophages' polarization stages yielded a superior prognosis for acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Rhein (cassic acid) is one major component of many traditional Chinese medicines, and has been reported to perform with strong anti-inflammation capabilities. However, the role rhein played and the mechanism via which it did so in LPS-induced ALI/ARDS remain unclear. METHODS: ALI/ARDS was induced by LPS (3 mg/kg, i.n, st), accompanied by the applications of rhein (50 and 100 mg/kg, i.p, qd), and a vehicle or NFATc1 inhibitor (10 mg/kg, i.p, qd) in vivo. Mice were sacrificed 48 h after modeling. Lung injury parameters, epithelial cell apoptosis, macrophage polarization, and oxidative stress were examined. In vitro, conditioned medium from alveolar epithelial cells stimulated by LPS was used for culturing a RAW264.7 cell line, along with rhein administrations (5 and 25 µM). RNA sequencing, molecule docking, biotin pull-down, ChIP-qPCR, and dual luciferase assay were performed to clarify the mechanisms of rhein in this pathological process. RESULTS: Rhein significantly attenuated tissue inflammation and promoted macrophage M2 polarization transition in LPS-induced ALI/ARDS. In vitro, rhein alleviated the intracellular ROS level, the activation of P65, and thus the M1 polarization of macrophages. In terms of mechanism, rhein played its protective roles via targeting the NFATc1/Trem2 axis, whose function was significantly mitigated in both Trem2 and NFATc1 blocking experiments. CONCLUSION: Rhein promoted macrophage M2 polarization transition by targeting the NFATc1/Trem2 axis to regulate inflammation response and prognosis after ALI/ARDS, which shed more light on possibilities for the clinical treatments of this pathological process.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Macrófagos/metabolismo , Síndrome do Desconforto Respiratório/patologia , Fatores de Transcrição/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
19.
Cell Biol Toxicol ; 39(6): 3121-3140, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37535148

RESUMO

Cancer stem cells (CSCs) encompass a subset of highly aggressive tumor cells that are involved in tumor initiation and progression. This study investigates the function of regulator of calcineurin 2 (RCAN2) in the stem cell property in colorectal cancer (CRC). By analyzing four GEO datasets, we obtained RCAN2 as a stemness-related gene in CRC. RCAN2 was poorly expressed in CRC tissues and cells, especially in CSCs. RCAN2 restoration reduced calcineurin activity and promoted phosphorylation and degradation of nuclear factor of activated T cells 1 (NFATC1) protein, leading to reduced stemness of CSCs. JunD proto-oncogene (JUND), whose protein level was increased in CRC samples and CRC stem cells, bound to RCAN2 and suppressed its transcription. The abundant ubiquitin specific peptidase 7 (USP7) in CSCs enhanced JUND protein stability through deubiquitination modification. Lentivirus-mediated knockdown of USP7 or JUND also blocked the calcineurin-NFATC1 signaling and reduced the protein levels of stemness-related proteins. Moreover, the USP7 knockdown weakened the colony/sphere formation ability as well as the tumorigenicity of CSCs, and it reduced the CSC content in xenograft tumors. However, further restoration of JUND rescued the stemness of the CSCs. Overall, this study demonstrates that USP7-mediated JUND suppresses RCAN2 transcription and activates NFATC1 to enhance stem cell property in CRC. 1. RCAN2 is poorly expressed in CRC tissues and cells and especially in CSCs. 2. RCAN2 reduces stemness of CSCs by blocking calcineurin-NFATC1 signal transduction. 3. JUND binds to RCAN2 promoter to suppresses RCAN2 transcription. 4. USP7 enhances JUND protein stability via deubiquitination modification. 5. Downregulation of USP7 or JUND restores RCAN2 level and suppresses stemness of CSCs.


Assuntos
Neoplasias Colorretais , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Calcineurina/genética , Calcineurina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo
20.
Exp Cell Res ; 413(2): 113052, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122827

RESUMO

Nuclear factor of activated T cells 1 (NFATc1) is mainly expressed in tumor microenvironment, especially in macrophages. However, whether NFATc1 is involved in the polarization of tumor associated macrophages (TAMs) and tumor progression in cervical cancer (CC) remains unclear. Immunofluorescence staining was used to detect the expression of CD68 and NFATc1 in CC tissues or adjacent normal tissues of patients. RT-qPCR, flow cytometry, ELISA, and inhibitors treatment were used to observe the effect of NFATc1 on TAMs polarization. Clonal formation, scratch, and transwell assays were used to examine the effects of NFATc1-transfected macrophages or NFATc1-transfected TAM on tumor proliferation, migration, and invasion. Further, a xenograft model was established to confirm the roles of NFATc1+ TAM in CC tumorigenesis. NFATc1+CD68+/CD68+ TAMs ratio was significantly increased in CC tissues compared with the normal tissue, and NFATc1+ TAM showed an M2-like TAM subtype. NFATc1 induced macrophages to secrete IL-10, which further induced M2 polarization of macrophages. Mechanically, the c-myc-PKM2 pathway mediated the expression of IL-10 in NFATc1-induced macrophages. Functionally, NFATc1 induced M2 macrophages promoted the proliferation, migration, and invasion of CC cells, and the knockout of NFATc1 in TAMs significantly inhibited the tumor-promoting function of TAMs. Further, the tumorigenesis test in nude mice confirmed that NFATc1+ TAM promoted the tumorigenicity of CC cells in vivo. In conclusion, NFATc1 mediated IL-10 secretion by regulating the c-myc/PKM2 pathway, thereby inducing M2 polarization of TAMs and promoting the progression of CC.


Assuntos
Macrófagos Associados a Tumor , Neoplasias do Colo do Útero , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Nus , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Linfócitos T , Microambiente Tumoral , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa