Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 187(9): 2224-2235.e16, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38614101

RESUMO

The membrane protein NINJ1 mediates plasma membrane rupture in pyroptosis and other lytic cell death pathways. Here, we report the cryo-EM structure of a NINJ1 oligomer segmented from NINJ1 rings. Each NINJ1 subunit comprises amphipathic (⍺1, ⍺2) and transmembrane (TM) helices (⍺3, ⍺4) and forms a chain of subunits, mainly by the TM helices and ⍺1. ⍺3 and ⍺4 are kinked, and the Gly residues are important for function. The NINJ1 oligomer possesses a concave hydrophobic side that should face the membrane and a convex hydrophilic side formed by ⍺1 and ⍺2, presumably upon activation. This structural observation suggests that NINJ1 can form membrane disks, consistent with membrane fragmentation by recombinant NINJ1. Live-cell and super-resolution imaging uncover ring-like structures on the plasma membrane that are released into the culture supernatant. Released NINJ1 encircles a membrane inside, as shown by lipid staining. Therefore, NINJ1-mediated membrane disk formation is different from gasdermin-mediated pore formation, resulting in membrane loss and plasma membrane rupture.


Assuntos
Moléculas de Adesão Celular Neuronais , Membrana Celular , Microscopia Crioeletrônica , Membrana Celular/metabolismo , Humanos , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/química , Animais , Camundongos , Células HEK293 , Piroptose , Modelos Moleculares , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Ligação a Fosfato/metabolismo
2.
Immunity ; 57(3): 429-445, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479360

RESUMO

Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.


Assuntos
Apoptose , Gasderminas , Humanos , Animais , Camundongos , Necrose/metabolismo , Apoptose/fisiologia , Piroptose/fisiologia , Morte Celular , Inflamassomos/metabolismo , Proteínas Quinases/metabolismo
3.
Trends Biochem Sci ; 49(8): 717-728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906725

RESUMO

Lytic cell death culminates in cell swelling and plasma membrane rupture (PMR). The cellular contents released, including proteins, metabolites, and nucleic acids, can act as danger signals and induce inflammation. During regulated cell death (RCD), lysis is actively initiated and can be preceded by an initial loss of membrane integrity caused by pore-forming proteins, allowing small molecules and cytokines to exit the cell. A recent seminal discovery showed that ninjurin1 (NINJ1) is the common executioner of PMR downstream of RCD, resulting in the release of large proinflammatory molecules and representing a novel target of cell death-associated lysis. We summarize recent developments in understanding membrane integrity and rupture of the plasma membrane with a focus on NINJ1.


Assuntos
Moléculas de Adesão Celular Neuronais , Membrana Celular , Humanos , Membrana Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Animais , Fatores de Crescimento Neural/metabolismo , Apoptose
4.
Int J Cancer ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417611

RESUMO

This study investigated the role of Ninjurin1 (Ninj1), encoding a small transmembrane protein, in colitis-associated colon tumorigenesis in relation to sex hormones. Male and female wild-type (WT) and Ninj1 knockout (KO) mice were treated with azoxymethane (AOM) and dextran sulfate sodium (DSS), with or without testosterone propionate (TP). At week 2 (acute colitis stage), Ninj1 KO exhibited an alleviation in the colitis symptoms in both male and female mice. The M2 macrophage population increased and CD8+ T cell population decreased only in the female Ninj1 KO than in the female WT AOM/DSS group. In the female AOM/DSS group, TP treatment exacerbated colon shortening in the Ninj1 KO than in the WT. At week 13 (tumorigenesis stage), male Ninj1 KO mice had fewer tumors, but females showed similar tumors. In the WT AOM/DSS group, females had more M2 macrophages and fewer M1 macrophages than males, but this difference was absent in Ninj1 KO mice. In the Ninj1 KO versus WT group, the expression of pro-inflammatory mediators and Ho-1 and CD8+ T cell populations decreased in both female and male Ninj1 KO mice. In the WT group, M2 macrophage populations were increased by AOM/DSS treatment and decreased by TP treatment. However, neither treatment changed the cell populations in the Ninj1 KO group. These results suggest that Ninj1 is involved in colorectal cancer development in a testosterone-dependent manner, which was different in male and female. This highlights the importance of considering sex disparities in understanding Ninj1's role in cancer pathogenesis.

5.
J Neuroinflammation ; 21(1): 278, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468551

RESUMO

Retinal neovascularisation is a major cause of blindness in patients with proliferative diabetic retinopathy (PDR). It is mediated by the complex interaction between dysfunctional ganglion cells, microglia, and vascular endothelial cells. Notably, retinal microglia, the intrinsic immune cells of the retina, play a crucial role in the pathogenesis of retinopathy. In this study, we found that lysophosphatidylserines (LysoPS) released from injured ganglion cells induced microglial extracellular trap formation and retinal neovascularisation. Mechanistically, LysoPS activated the GPR34-PI3K-AKT-NINJ1 signalling axis by interacting with the GPR34 receptor on the microglia. This activation upregulated the expression of inflammatory cytokines, such as IL-6, IL-8, VEGFA, and FGF2, and facilitated retinal vascular endothelial cell angiogenesis. As a result, inhibition of the GPR34-PI3K-AKT-NINJ1 axis significantly decreased microglial extracellular trap formation and neovascularisation by suppressing LysoPS-induced microglial inflammatory responses, both in vitro and in vivo. This study reveals the crucial role of apoptotic ganglion cells in activating microglial inflammation in PDR, thereby enhancing our understanding of the pathogenesis of retinal neovascularisation.


Assuntos
Camundongos Endogâmicos C57BL , Microglia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Células Ganglionares da Retina , Neovascularização Retiniana , Transdução de Sinais , Animais , Microglia/metabolismo , Microglia/patologia , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lisofosfolipídeos/metabolismo , Fatores de Crescimento Neural/metabolismo , Humanos , Masculino
6.
Artigo em Inglês | MEDLINE | ID: mdl-39380143

RESUMO

BACKGROUND AND HYPOTHESIS: Oxalate nephropathy is characterized by calcium oxalate crystals deposition, which triggers necrosis of renal tubular epithelial cells, initiates an inflammatory cascade characterized by neutrophil and macrophage activation within the renal microenvironment. Despite the close association of immune cells with acute oxalate nephropathy, the underlying mechanisms still remain unclear. Nerve injury-induced protein 1 (NINJ1) plays an essential role in the induction of plasma membrane rupture (PMR), leading to damage-associated molecular patterns (DAMPs) release and triggering inflammation. We hypothesize that NINJ1-mediated high mobility group box 1 (HMGB1) release from macrophage PMR and neutrophil extracellular traps (NETs) formation synergistically contribute to the progression of acute oxalate nephropathy. METHODS: Using a murine model of acute oxalate nephropathy, myeloid cell-specific deletion of Ninj1 mice (Ninj1fl/flvavcre) and their wild-type littermate control mice (Ninj1wt/wtvavcre) were administered intraperitoneal injection of 100 mg/kg sodium oxalate followed by drinking water with 3% sodium oxalate. Evaluation was conducted on tubular injury and inflammatory cell infiltration. In vitro studies involved isolation and culture of renal proximal tubular epithelial cells (RTECs), bone marrow-derived macrophages, and neutrophils to investigate NETs formation and HMGB1 release. RESULTS: Targeted deletion of Ninj1 in myeloid cells significantly mitigated oxalate-induced acute kidney injury by suppressing both HMGB1 release and NETs formation in vivo. In vitro investigations demonstrated that HMGB1 release from macrophage PMR and NETs formation in neutrophils mediated by NINJ1 oligomerization, which consequently coordinated to enhance renal tubular epithelial cell death. CONCLUSION: Our findings elucidate the pivotal role of NINJ1-dependent macrophage PMR and NETs formation in the progression of acute oxalate nephropathy, providing novel insights for its prevention and therapeutic targets.

7.
BMC Med ; 21(1): 396, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858098

RESUMO

BACKGROUND: Thoracic aortic dissection (TAD) is a life-threatening disease caused by an intimal tear in the aorta. The histological characteristics differ significantly between the tear area (TA) and the distant area. Previous studies have emphasized that certain specific genes tend to cluster at the TA. Obtaining a thorough understanding of the precise molecular signatures near the TA will assist in discovering therapeutic strategies for TAD. METHODS: We performed a paired comparison of the pathological patterns in the TA with that in the remote area (RA). We used Tomo-seq, genome-wide transcriptional profiling with spatial resolution, to obtain gene expression signatures spanning from the TA to the RA. Samples from multiple sporadic TAD patients and animal models were used to validate our findings. RESULTS: Pathological examination revealed that the TA of TAD exhibited more pronounced intimal hyperplasia, media degeneration, and inflammatory infiltration compared to the RA. The TA also had more apoptotic cells and CD31+α-SMA+ cells. Tomo-seq revealed four distinct gene expression patterns from the TA to the RA, which were inflammation, collagen catabolism, extracellular matrix remodeling, and cell stress, respectively. The spatial distribution of genes allowed us to identify genes that were potentially relevant with TAD. NINJ1 encoded the protein-mediated cytoplasmic membrane rupture, regulated tissue remodeling, showed high expression levels in the tear area, and co-expressed within the inflammatory pattern. The use of short hairpin RNA to reduce NINJ1 expression in the beta-aminopropionitrile-induced TAD model led to a significant decrease in TAD formation. Additionally, it resulted in reduced infiltration of inflammatory cells and a decrease in the number of CD31+α-SMA+ cells. The NINJ1-neutralizing antibody also demonstrated comparable therapeutic effects and can effectively impede the formation of TAD. CONCLUSIONS: Our study showed that Tomo-seq had the advantage of obtaining spatial expression information of TAD across the TA and the RA. We pointed out that NINJ1 may be involved in inflammation and tissue remodeling, which played an important role in the formation of TAD. NINJ1 may serve as a potential therapeutic target for TAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção da Aorta Torácica , Animais , Humanos , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Dissecção Aórtica/genética , Anti-Inflamatórios , Inflamação/genética , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
8.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835580

RESUMO

Disseminated intravascular coagulation (DIC), which is closely related to platelet activation, is a key factor leading to high mortality in sepsis. The release of contents from plasma membrane rupture after platelet death further aggravates thrombosis. Nerve injury-induced protein 1 (NINJ1) is a cell membrane protein that mediates membrane disruption, a typical marker of cell death, through oligomerization. Nevertheless, whether NINJ1 is expressed in platelets and regulates the platelet function remains unclear. The aim of this study was to evaluate the expression of NINJ1 in human and murine platelets and elucidate the role of NINJ1 in platelets and septic DIC. In this study, NINJ1 blocking peptide (NINJ126-37) was used to verify the effect of NINJ1 on platelets in vitro and in vivo. Platelet αIIbß3 and P-selectin were detected by flow cytometry. Platelet aggregation was measured by turbidimetry. Platelet adhesion, spreading and NINJ1 oligomerization were examined by immunofluorescence. Cecal perforation-induced sepsis and FeCl3-induced thrombosis models were used to evaluate the role of NINJ1 in platelet, thrombus and DIC in vivo. We found that inhibition of NINJ1 alleviates platelet activation in vitro. The oligomerization of NINJ1 is verified in membrane-broken platelets, which is regulated by the PANoptosis pathway. In vivo studies demonstrate that inhibition of NINJ1 effectively reduces platelet activation and membrane disruption, thus suppressing platelet-cascade reaction and leading to anti-thrombosis and anti-DIC in sepsis. These data demonstrate that NINJ1 is critical in platelet activation and plasma membrane disruption, and inhibition of NINJ1 effectively reduces platelet-dependent thrombosis and DIC in sepsis. This is the first study to reveal the key role of NINJ1 in platelet and its related disorders.


Assuntos
Moléculas de Adesão Celular Neuronais , Coagulação Intravascular Disseminada , Fatores de Crescimento Neural , Sepse , Trombose , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Fatores de Crescimento Neural/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Sepse/metabolismo , Trombose/metabolismo
9.
Circulation ; 142(18): 1736-1751, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883094

RESUMO

BACKGROUND: Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS: Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS: Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS: Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose , Moléculas de Adesão Celular Neuronais , Macrófagos/metabolismo , Fatores de Crescimento Neural , Peptidomiméticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Feminino , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout para ApoE , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
10.
Biochim Biophys Acta ; 1829(12): 1266-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185200

RESUMO

The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes.


Assuntos
Cromatina/genética , Leucemia Monocítica Aguda/genética , Receptores de Calcitriol/genética , Sequências Repetitivas de Ácido Nucleico/genética , Vitamina D/análogos & derivados , Acetilação , Western Blotting , Imunoprecipitação da Cromatina , Proteína do Grupo de Complementação E da Anemia de Fanconi/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Inibidores de Histona Desacetilases/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucemia Monocítica Aguda/tratamento farmacológico , Receptores de Lipopolissacarídeos/genética , Subunidade p50 de NF-kappa B/genética , Proteína 2 Ligante de Morte Celular Programada 1/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Vitamina D/farmacologia
11.
Annu Rev Pathol ; 19: 157-180, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37788577

RESUMO

Apoptosis, necroptosis, and pyroptosis are genetically programmed cell death mechanisms that eliminate obsolete, damaged, infected, and self-reactive cells. Apoptosis fragments cells in a manner that limits immune cell activation, whereas the lytic death programs of necroptosis and pyroptosis release proinflammatory intracellular contents. Apoptosis fine-tunes tissue architecture during mammalian development, promotes tissue homeostasis, and is crucial for averting cancer and autoimmunity. All three cell death mechanisms are deployed to thwart the spread of pathogens. Disabling regulators of cell death signaling in mice has revealed how excessive cell death can fuel acute or chronic inflammation. Here we review strategies for modulating cell death in the context of disease. For example, BCL-2 inhibitor venetoclax, an inducer of apoptosis, is approved for the treatment of certain hematologic malignancies. By contrast, inhibition of RIPK1, NLRP3, GSDMD, or NINJ1 to limit proinflammatory cell death and/or the release of large proinflammatory molecules from dying cells may benefit patients with inflammatory diseases.


Assuntos
Apoptose , Autoimunidade , Humanos , Animais , Camundongos , Morte Celular , Inflamação , Mamíferos , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
12.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464226

RESUMO

Ninjurin-1 (NINJ1), initially identified as a stress-induced protein in neurons, recently emerged as a key mediator of plasma membrane rupture during apoptosis, necrosis, and pyroptosis. However, its involvement in ferroptosis remains unknown. Here, we demonstrate that NINJ1 also plays a crucial role in ferroptosis, but through a distinct mechanism. NINJ1 knockdown significantly protected cancer cells against ferroptosis induced by xCT inhibitors but no other classes of ferroptosis-inducing compounds (FINs). Glycine, known to inhibit canonical NINJ1-mediated membrane rupture in other cell deaths, had no impact on ferroptosis. A compound screen revealed that NINJ1-mediated ferroptosis protection can be abolished by pantothenate kinase inhibitor (PANKi), buthionine sulfoximine (BSO), and diethylmaleate (DEM). These results suggest that this ferroptosis protection is mediated via Coenzyme A (CoA) and glutathione (GSH), both of which were found to be elevated upon NINJ1 knockdown. Furthermore, we discovered that NINJ1 interacts with the xCT antiporter, which is responsible for cystine uptake for the biosynthesis of CoA and GSH. The removal of NINJ1 increased xCT levels and stability, enhanced cystine uptake, and contributed to elevated CoA and GSH levels, collectively contributing to ferroptosis protection. These findings reveal that NINJ1 regulates ferroptosis via a non-canonical mechanism, distinct from other regulated cell deaths.

13.
Discov Oncol ; 15(1): 155, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733554

RESUMO

BACKGROUND: Retroperitoneal liposarcoma (RPLS) is known for its propensity for local recurrence and short survival time. We aimed to identify a credible and specific prognostic biomarker for RPLS. METHODS: Cases from The Cancer Genome Atlas (TCGA) sarcoma dataset were included as the training group. Co-expression modules were constructed using weighted gene co-expression network analysis (WGCNA) to explore associations between modules and survival. Survival analysis of hub genes was performed using the Kaplan-Meier method. In addition, independent external validation was performed on a cohort of 135 Chinese RPLS patients from the REtroperitoneal SArcoma Registry (RESAR) study (NCT03838718). RESULTS: A total of 19 co-expression modules were constructed based on the expression levels of 26,497 RNAs in the TCGA cohort. Among these modules, the green module exhibited a positive correlation with overall survival (OS, p = 0.10) and disease-free survival (DFS, p = 0.06). Gene set enrichment analysis showed that the green module was associated with endocytosis and soft-tissue sarcomas. Survival analysis demonstrated that NINJ1, a hub gene within the green module, was positively associated with OS (p = 0.019) in the TCGA cohort. Moreover, in the validation cohort, patients with higher NINJ1 expression levels displayed a higher probability of survival for both OS (p = 0.023) and DFS (p = 0.012). Multivariable Cox analysis further confirmed the independent prognostic significance of NINJ1. CONCLUSIONS: We here provide a foundation for the establishment of a consensus prognostic biomarker for RPLS, which should not only facilitate medical treatment but also guide the development of novel targeted drugs.

14.
Adv Sci (Weinh) ; 11(31): e2306237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922800

RESUMO

Abdominal aortic aneurysm (AAA) is a common and potentially life-threatening condition. Chronic aortic inflammation is closely associated with the pathogenesis of AAA. Nerve injury-induced protein 1 (NINJ1) is increasingly acknowledged as a significant regulator of the inflammatory process. However, the precise involvement of NINJ1 in AAA formation remains largely unexplored. The present study finds that the expression level of NINJ1 is elevated, along with the specific expression level in macrophages within human and angiotensin II (Ang II)-induced murine AAA lesions. Furthermore, Ninj1flox/flox and Ninj1flox/floxLyz2-Cre mice on an ApoE-/- background are generated, and macrophage NINJ1 deficiency inhibits AAA formation and reduces macrophage infiltration in mice infused with Ang II. Consistently, in vitro suppressing the expression level of NINJ1 in macrophages significantly restricts macrophage adhesion and migration, while attenuating macrophage pro-inflammatory responses. Bulk RNA-sequencing and pathway analysis uncover that NINJ1 can modulate macrophage infiltration through the TLR4/NF-κB/CCR2 signaling pathway. Protein-protein interaction analysis indicates that NINJ1 can activate TLR4 by competitively binding with ANXA2, an inhibitory interacting protein of TLR4. These findings reveal that NINJ1 can modulate AAA formation by promoting macrophage infiltration and pro-inflammatory responses, highlighting the potential of NINJ1 as a therapeutic target for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Macrófagos , Receptor 4 Toll-Like , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Macrófagos/metabolismo , Humanos , Anexina A2/metabolismo , Anexina A2/genética , Masculino , Transdução de Sinais/genética , Camundongos Endogâmicos C57BL , Angiotensina II/metabolismo , Camundongos Knockout , Fatores de Crescimento Neural
15.
Cell Chem Biol ; 31(8): 1518-1528.e6, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39106869

RESUMO

The septin cytoskeleton is primarily known for roles in cell division and host defense against bacterial infection. Despite recent insights, the full breadth of roles for septins in host defense is poorly understood. In macrophages, Shigella induces pyroptosis, a pro-inflammatory form of cell death dependent upon gasdermin D (GSDMD) pores at the plasma membrane and cell surface protein ninjurin-1 (NINJ1) for membrane rupture. Here, we discover that septins promote macrophage pyroptosis induced by lipopolysaccharide (LPS)/nigericin and Shigella infection, but do not affect cytokine expression or release. We observe that septin filaments assemble at the plasma membrane, and cleavage of GSDMD is impaired in septin-depleted cells. We found that septins regulate mitochondrial dynamics and the expression of NINJ1. Using a Shigella-zebrafish infection model, we show that septin-mediated pyroptosis is an in vivo mechanism of infection control. The discovery of septins as a mediator of pyroptosis may inspire innovative anti-bacterial and anti-inflammatory treatments.


Assuntos
Moléculas de Adesão Celular Neuronais , Membrana Celular , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Proteínas de Ligação a Fosfato , Piroptose , Septinas , Piroptose/efeitos dos fármacos , Septinas/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Camundongos , Animais , Macrófagos/metabolismo , Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Humanos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Gasderminas , Fatores de Crescimento Neural
16.
Int Immunopharmacol ; 141: 113021, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197295

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination. Current treatment options for MS focus on immunosuppression, but their efficacy can be limited. Recent studies suggest a potential role for nerve injury-induced protein 1 (NINJ1) in MS pathogenesis. NINJ1, a protein involved in cell death and inflammation, may contribute to the infiltration and activation of inflammatory cells in the CNS, potentially through enhanced blood-brain barrier crossing; enhancing plasma membrane rupture during cell death, leading to the release of inflammatory mediators and further tissue damage. This review explores the emerging evidence for NINJ1's involvement in MS. It discusses how NINJ1 might mediate the migration of immune cells across the blood-brain barrier, exacerbate neuroinflammation, and participate in plasma membrane rupture-related damage. Finally, the review examines potential therapeutic strategies targeting NINJ1 for improved MS management. Abbreviations: MS, Multiple sclerosis; CNS, Central nervous system; BBB, Blood-brain barrier; GSDMD, Gasdermin-D; EAE, Experimental autoimmune encephalitis; HMGB-1, High mobility group box-1 protein; LDH, Lactate dehydrogenase; PMR, Plasma membrane rupture; DMF, Dimethyl fumarate; DUSP1, Dual-specificity phosphatase 1; PAMPs, Pathogen-associated molecular patterns; DAMPs, Danger-associated molecular patterns; PRRs, Pattern recognition receptors; GM-CSF, Granulocyte-macrophage colony stimulating factor; IFN-γ, Interferon gamma; TNF, Tumor necrosis factor; APCs, Antigen-presenting cells; ECs, Endothelial cells; TGF-ß, Transforming growth factor-ß; PBMCs, Peripheral blood mononuclear cells; FACS, Fluorescence-activated cell sorting; MCP-1, Monocyte chemoattractant protein-1; NLRP3, Pyrin domain-containing 3; TCR, T cell receptor; ROS, Reactive oxygen species; AP-1, Activator protein-1; ANG1, Angiopoietin 1; BMDMs, Bone marrow-derived macrophages; Arp2/3, actin-related protein 2/3; EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; LIMK1, LIM domain kinase 1; PAK1, p21-activated kinases 1; Rac1, Ras-related C3 botulinum toxin substrate 1; ß-cat, ß-caten; MyD88, myeloid differentiation primary response gene 88; TIRAP, Toll/interleukin-1 receptor domain-containing adapter protein; TLR4, Toll-like receptor 4; IRAKs, interleukin-1 receptor-associated kinases; TRAF6, TNF receptor associated factor 6; TAB2/3, TAK1 binding protein 2/3; TAK1, transforming growth factor-ß-activated kinase 1; JNK, c-Jun N-terminal kinase; ERK1/2, Extracellular Signal Regulated Kinase 1/2; IKK, inhibitor of kappa B kinase; IκB, inhibitor of NF-κB; NF-κB, nuclear factor kappa-B; AP-1, activator protein-1; ASC, Apoptosis-associated Speck-like protein containing a CARD; NEK7, NIMA-related kinase 7; NLRP3, Pyrin domain-containing 3; CREB, cAMP response element-binding protein.


Assuntos
Moléculas de Adesão Celular Neuronais , Esclerose Múltipla , Humanos , Animais , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Moléculas de Adesão Celular Neuronais/metabolismo , Barreira Hematoencefálica/metabolismo , Fatores de Crescimento Neural/metabolismo
17.
Life Sci ; 350: 122782, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848941

RESUMO

Acetaminophen (APAP), a widely used pain and fever reliever, is a major contributor to drug-induced liver injury, as its toxic metabolites such as NAPQI induce oxidative stress and hepatic necrosis. While N-acetylcysteine serves as the primary treatment for APAP-induced liver injury (AILI), its efficacy is confined to a narrow window of 8-24 h post-APAP overdose. Beyond this window, liver transplantation emerges as the final recourse, prompting ongoing research to pinpoint novel therapeutic targets aimed at enhancing AILI treatment outcomes. Nerve injury-induced protein 1 (Ninjurin1; Ninj1), initially recognized as an adhesion molecule, has been implicated in liver damage stemming from factors like TNFα and ischemia-reperfusion. Nonetheless, its role in oxidative stress-related liver diseases, including AILI, remains unexplored. In this study, we observed up-regulation of Ninj1 expression in the livers of both human DILI patients and the AILI mouse model. Through the utilization of Ninj1 null mice, hepatocyte-specific Ninj1 KO mice, and myeloid-specific Ninj1 KO mice, we unveiled that the loss of Ninj1 in hepatocytes, rather than myeloid cells, exerts alleviative effects on AILI irrespective of sex dependency. Further in vitro experiments demonstrated that Ninj1 deficiency shields hepatocytes from APAP-induced oxidative stress, mitochondrial dysfunctions, and cell death by bolstering NRF2 stability via activation of AMPKα. In summary, our findings imply that Ninj1 likely plays a role in AILI, and its deficiency confers protection against APAP-induced hepatotoxicity through the AMPKα-NRF2 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Acetaminofen , Moléculas de Adesão Celular Neuronais , Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Curr Biol ; 33(7): 1282-1294.e5, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898371

RESUMO

The ongoing metabolic and microbicidal pathways that support and protect cellular life generate potentially damaging reactive oxygen species (ROS). To counteract damage, cells express peroxidases, which are antioxidant enzymes that catalyze the reduction of oxidized biomolecules. Glutathione peroxidase 4 (GPX4) is the major hydroperoxidase specifically responsible for reducing lipid peroxides; this homeostatic mechanism is essential, and its inhibition causes a unique type of lytic cell death, ferroptosis. The mechanism(s) that lead to cell lysis in ferroptosis, however, are unclear. We report that the lipid peroxides formed during ferroptosis accumulate preferentially at the plasma membrane. Oxidation of surface membrane lipids increased tension on the plasma membrane and led to the activation of Piezo1 and TRP channels. Oxidized membranes thus became permeable to cations, ultimately leading to the gain of cellular Na+ and Ca2+ concomitant with loss of K+. These effects were reduced by deletion of Piezo1 and completely inhibited by blocking cation channel conductance with ruthenium red or 2-aminoethoxydiphenyl borate (2-APB). We also found that the oxidation of lipids depressed the activity of the Na+/K+-ATPase, exacerbating the dissipation of monovalent cation gradients. Preventing the changes in cation content attenuated ferroptosis. Altogether, our study establishes that increased membrane permeability to cations is a critical step in the execution of ferroptosis and identifies Piezo1, TRP channels, and the Na+/K+-ATPase as targets/effectors of this type of cell death.


Assuntos
Ferroptose , Peróxidos Lipídicos , Cátions , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Proteínas de Membrana/metabolismo
19.
Immunol Res ; 71(1): 15-28, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184655

RESUMO

Gasdermin proteins (GSDMs) form pores in cell membranes upon various stimuli, leading to the release of certain proinflammatory molecules such as IL-1ß and IL-18, and this ultimately results in pyroptotic cell death. NINJ1 (Ninjurin 1) has recently been identified as a cell membrane protein responsible for the final complete plasma membrane rupture following lytic cell death mechanisms including pyroptosis, causing the release of relatively larger molecules such as HMGB1 and LDH. In this study, we reported the presence of higher GSDMD and lower GSDME protein levels in ovarian tumors compared to surrounding non-malignant stroma in the tumor microenvironment. GSDME protein levels are also lower in the tumors of the omentum compared to adjacent stromal cells. We found that NINJ1 expression decreases from early to late stage in serous ovarian cancer, and the percentage of NINJ1 copy number loss events is the highest in ovarian cancer among other cancers. Moreover, we showed that low expression of NINJ1 is associated with shorter overall survival of patients with ovarian cancer. In support of the findings showing that low NINJ1 expression contributes to worse prognosis in this most lethal gynecological malignancy, NINJ1 expression was found to be lower in cisplatin-resistant ovarian cancer cells compared to cisplatin-sensitive counterparts in vitro. We suggest that the members of gasdermin family might have distinct functions in serous ovarian cancer, and low levels of NINJ1 might contribute, at least in part, to the progression and poorer prognosis of ovarian cancer. A complete picture of how pyroptosis and subsequent plasma membrane rupture are involved in ovarian cancer will be of high importance in order to identify actionable therapeutic vulnerabilities within this newly identified group of proteins.


Assuntos
Cisplatino , Neoplasias Ovarianas , Humanos , Feminino , Gasderminas , Membrana Celular , Prognóstico , Neoplasias Ovarianas/metabolismo , Microambiente Tumoral , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais/metabolismo
20.
Fac Rev ; 11: 41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644292

RESUMO

Plasma membrane rupture (PMR), the final event in lytic cell death that is in part responsible for the release of pro-inflammatory signals, was believed to be a passive event that followed osmotic swelling. Kayagaki et al. 1 have discovered that PMR is, in fact, mediated by ninjurin-1 (NINJ1), adding a novel regulatory step that is conserved across different types of lytic cell death, such as pyroptosis, necroptosis, and apoptosis. PMR is dependent on NINJ1 oligomerization, which is mediated by its highly conserved putative N-terminal α-helix. In vivo data suggest that the NINJ1-dependent secretome that is released upon PMR is likely to modulate antimicrobial host defense, suggesting this additional regulatory step also has physiological relevance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa