Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Nano Lett ; 24(25): 7698-7705, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869496

RESUMO

Highly efficient recognition of cancer cells by immune cells is important for successful therapeutic-cell-based cancer immunotherapy. Herein, we present a facile NIR-II nanoadaptor [hyaluronic acid (HA)/dibenzocyclooctyne (DBCO)-Au:Ag2Te quantum dots (QDs)] for enhancing the tumor recognition and binding ability of natural killer (NK) cells via a bio-orthogonal click reaction in vivo. The Nanoadaptor possesses superior tumor-targeting capacity, facilitating the accumulation of the chemical receptor DBCO at the tumor sites. Subsequently, the enrichment of DBCO on tumor cell surfaces provides multivalent recognition sites for capturing pretreated azide engineered NK92 cells (NK92-N3) through an efficient click reaction, thereby significantly enhancing the therapeutical efficiency. The dynamic process of nanoadaptor-mediated recognition of NK cells to tumor cells could be vividly observed using multiplexed NIR-II fluorescence imaging in a mouse model of lung cancer. Such a nanoadaptor strategy can be extended to other therapeutic cellular systems and holds promise for future clinical applications.


Assuntos
Química Click , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Animais , Camundongos , Humanos , Pontos Quânticos/química , Ácido Hialurônico/química , Linhagem Celular Tumoral , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ouro/química , Imunoterapia
2.
Nano Lett ; 24(15): 4562-4570, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591327

RESUMO

Heteroions doped Ag2S nanocrystals (NCs) exhibiting enhanced near-infrared-II emission (NIR-II) hold great promise for glioma diagnosis. Nevertheless, current doped Ag2S NCs paradoxically improved properties via toxic dopants, and the blood-brain barrier (BBB) constitutes another challenge for orthotopic glioma imaging. Thus, it is urgent to develop biofriendly high-bright Ag2S NCs with active BBB-penetration for glioma-targeted imaging. Herein, bismuth (Bi) was screened to obtain Bi-Ag2S NCs with high absolute PLQY (∼13.3%) for its matched ionic-radius (1.03 Å) with Ag+. The Bi-Ag2S NCs exhibited a higher luminance and deeper penetration (5-6 mm) than clinical indocyanine green. Upon conjugation with lactoferrin, the NCs acquired BBB-crossing and glioma-targeting abilities. Time-dependent NIR-II-imaging demonstrated their effective accumulation in glioma with skull/scalp intact after intravenous injection. Moreover, the toxic-metal-free NCs exhibited negligible toxicity and great biocompatibility. The success of leveraging the ion-radii comparison may unlock the full potential of doped-Ag2S NCs in bioimaging and inspire the development of various doped NIR-II NCs.


Assuntos
Glioma , Nanopartículas Metálicas , Humanos , Bismuto , Rádio (Anatomia) , Nanopartículas Metálicas/química , Crânio , Glioma/diagnóstico por imagem
3.
Nano Lett ; 24(11): 3421-3431, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377170

RESUMO

Natural killer (NK) cell-based adoptive immunotherapy has demonstrated encouraging therapeutic effects in clinical trials for hematological cancers. However, the effectiveness of treatment for solid tumors remains a challenge due to insufficient recruitment and infiltration of NK cells into tumor tissues. Herein, a programmed nanoremodeler (DAS@P/H/pp) is designed to remodel dense physical stromal barriers and for dysregulation of the chemokine of the tumor environment to enhance the recruitment and infiltration of NK cells in tumors. The DAS@P/H/pp is triggered by the acidic tumor environment, resulting in charge reversal and subsequent hyaluronidase (HAase) release. HAase effectively degrades the extracellular matrix, promoting the delivery of immunoregulatory molecules and chemotherapy drugs into deep tumor tissues. In mouse models of pancreatic cancer, this nanomediated strategy for the programmed remodeling of the tumor microenvironment significantly boosts the recruitment of NK92 cells and their tumor cell-killing capabilities under the supervision of multiplexed near-infrared-II fluorescence.


Assuntos
Neoplasias , Neoplasias Pancreáticas , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias/patologia , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/patologia , Células Matadoras Naturais , Microambiente Tumoral
4.
Nano Lett ; 24(12): 3727-3736, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498766

RESUMO

The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.


Assuntos
Glioblastoma , Glioma , Nanopartículas , Nitrofenóis , Humanos , Glioblastoma/patologia , Raios X , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Nanopartículas/química , Quimiorradioterapia , Doxorrubicina
5.
Nano Lett ; 24(4): 1367-1375, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227970

RESUMO

Fluorescence imaging is a vital way to delineate the tumor boundaries. Here, we achieve a NIR-II aggregation-induced emission luminogen (AIEgen) with a fluorescence quantum yield (QY) of 12.6% in water through straightforward alkyl side chain modification. After loading of NIR-II AIEgen into polystyrene (PS) nanospheres, the thermal deactivation pathway is extremely limited, thereby concentrating absorption excitation on fluorescence emission. The fluorescence intensity is further enhanced by 5.4 times, the QY increases to 21.1%, and the NIR-II imaging signal is accordingly enhanced by 8.7 times, surpassing conventional DSPE-PEG carriers. The NIR-II@PS nanoprobe showcases superior resolution and tissue penetration depth compared to indocyanine green (ICG) and short-range near-infrared AIEgens. In vivo investigations underscore its tumor-to-normal tissue ratio (3.9) at 24 h post intravenous injection, enabling complete resection of ≤1 mm metastases under NIR-II bioimaging guidance. Additionally, the PS carrier-nanoparticles exhibit low toxicity in vivo, laying a promising foundation for the future design of medical nanomaterials.


Assuntos
Nanosferas , Nanoestruturas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Imagem Óptica/métodos , Nanoestruturas/química , Corantes Fluorescentes/química
6.
Small ; 20(28): e2308071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342680

RESUMO

Infections induced by Gram-positive bacteria pose a great threat to public health. Antibiotic therapy, as the first chosen strategy against Gram-positive bacteria, is inevitably associated with antibiotic resistance selection. Novel therapeutic strategies for the discrimination and inactivation of Gram-positive bacteria are thus needed. Here, a specific type of aggregation-induced emission luminogen (AIEgen) with near-infrared fluorescence emission as a novel antibiotic-free therapeutic strategy against Gram-positive bacteria is proposed. With the combination of a positively charged group into a highly twisted architecture, self-assembled AIEgens (AIE nanoparticles (NPs)) at a relatively low concentration (5 µm) exhibited specific binding and photothermal effect against living Gram-positive bacteria both in vitro and in vivo. Moreover, toxicity assays demonstrated excellent biocompatibility of AIE NPs at this concentration. All these properties make the AIE NPs as a novel generation of theranostic platform for combating Gram-positive bacteria and highlight their promising potential for in vivo tracing of such bacteria.


Assuntos
Bactérias Gram-Positivas , Nanopartículas , Nanomedicina Teranóstica , Nanopartículas/química , Bactérias Gram-Positivas/efeitos dos fármacos , Nanomedicina Teranóstica/métodos , Animais , Raios Infravermelhos , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Camundongos
7.
Chemistry ; 30(5): e202303502, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37915302

RESUMO

NIR-II fluorescence imaging-guided photothermal therapy (PTT) has been widely investigated due to its great application potential in tumor theranostics. PTT is an effective and non-invasive tumor treatment method that can adapt to tumor hypoxia; nevertheless, simple and effective strategies are still desired to develop new materials with excellent PTT properties to meet clinical requirements. In this work, we developed a bromine-substitution strategy to enhance the PTT of A-D-A'-D-A π-conjugated molecules. The experimental results reveal that bromine substitution can notably enhance the absorptivity (ϵ) and photothermal conversion efficiency (PCE) of the π-conjugated molecules, resulting in the brominated molecules generating two times more heat (ϵ808 nm ×PCE) than their unsubstituted counterpart. We disclose that the enhanced photothermal properties of bromine-substituted π-conjugated molecules are a combined outcome of the heavy-atom effect, enhanced ICT effect, and more intense bromine-mediate intermolecular π-π stacking. Finally, the NIR-II tumor imaging capability and efficient PTT tumor ablation of the brominated π-conjugated materials demonstrate that bromine substitution is a promising strategy for developing future high-performance NIR-II imaging-guided PTT agents.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia , Bromo/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Terapia Fototérmica , Linhagem Celular Tumoral , Nanomedicina Teranóstica/métodos
8.
J Nanobiotechnology ; 22(1): 200, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654299

RESUMO

The glymphatic system plays an important role in the transportation of cerebrospinal fluid (CSF) and the clearance of metabolite waste in brain. However, current imaging modalities for studying the glymphatic system are limited. Herein, we apply NIR-II nanoprobes with non-invasive and high-contrast advantages to comprehensively explore the function of glymphatic system in mice under anesthesia and cerebral ischemia-reperfusion injury conditions. Our results show that the supplement drug dexmedetomidine (Dex) enhances CSF influx in the brain, decreases its outflow to mandibular lymph nodes, and leads to significant differences in CSF accumulation pattern in the spine compared to isoflurane (ISO) alone, while both ISO and Dex do not affect the clearance of tracer-filled CSF into blood circulation. Notably, we confirm the compromised glymphatic function after cerebral ischemia-reperfusion injury, leading to impaired glymphatic influx and reduced glymphatic efflux. This technique has great potential to elucidate the underlying mechanisms between the glymphatic system and central nervous system diseases.


Assuntos
Sistema Glinfático , Traumatismo por Reperfusão , Animais , Sistema Glinfático/metabolismo , Camundongos , Traumatismo por Reperfusão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Dexmedetomidina/farmacologia , Acidente Vascular Cerebral , Anestesia , Isoflurano/farmacologia , Nanopartículas/química , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/química
9.
Luminescence ; 39(1): e4606, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37807953

RESUMO

In the past 5 years, aggregation-induced emission luminogens (AIEgens) with emission in the second near-infrared (NIR-II) optical window have aroused great interest in bioimaging and disease phototheranostics, benefiting from the merits of deep penetration depth, reduced light scatting, high spatial resolution, and minimal photodamage. To construct NIR-II AIEgens, thiophene derivatives are frequently adopted as π-bridge by virtue of their electron-rich feature and good modifiability. Herein, we summarize the recent progress of NIR-II AIEgens by employing thiophene derivatives as π-bridge mainly compassing unsubstituted thiophene, alkyl thiophene, 3,4-ethylenedioxythiophene, and benzo[c]thiophene, with a discussion on their structure-property relationships and biomedical applications. Finally, a brief conclusion and perspective on this fascinating area are offered.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Corantes Fluorescentes/farmacologia
10.
Angew Chem Int Ed Engl ; 63(14): e202318609, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38345594

RESUMO

The fabrication of a multimodal phototheranostic platform on the basis of single-component theranostic agent to afford both imaging and therapy simultaneously, is attractive yet full of challenges. The emergence of aggregation-induced emission luminogens (AIEgens), particularly those emit fluorescence in the second near-infrared window (NIR-II), provides a powerful tool for cancer treatment by virtue of adjustable pathway for radiative/non-radiative energy consumption, deeper penetration depth and aggregation-enhanced theranostic performance. Although bulky thiophene π-bridges such as ortho-alkylated thiophene, 3,4-ethoxylene dioxythiophene and benzo[c]thiophene are commonly adopted to construct NIR-II AIEgens, the subtle differentiation on their theranostic behaviours has yet to be comprehensively investigated. In this work, systematical investigations discovered that AIEgen BT-NS bearing benzo[c]thiophene possesses acceptable NIR-II fluorescence emission intensity, efficient reactive oxygen species generation, and high photothermal conversion efficiency. Eventually, by using of BT-NS nanoparticles, unprecedented performance on NIR-II fluorescence/photoacoustic/photothermal imaging-guided synergistic photodynamic/photothermal elimination of tumors was demonstrated. This study thus offers useful insights into developing versatile phototheranostic systems for clinical trials.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanopartículas/uso terapêutico , Medicina de Precisão , Linhagem Celular Tumoral
11.
Small ; 19(1): e2205640, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366913

RESUMO

An enormous challenge still exists for designing molecules with the second near-infrared (NIR-II, 1000-1700 nm) window absorption, NIR-II fluorescence emission, and batch-to-batch reproducibility, which is the premise for high-performance NIR-II phototheranostics. Although organic small molecules and polymers have been largely explored for phototheranostics, it is difficult to satisfy the above three elements simultaneously. In this work, molecular oligomerization (the general structure is S-D-A-D'-A-D-S) and donor engineering (changing the donor linker D') strategies are applied to design phototheranostic agents. Such strategies are proved to be efficient in adjusting molecular configuration and energy level, affecting the optical and thermal properties. Three oligomers (O-T, O-DT, and O-Q) are further prepared into water-soluble nanoparticles (NPs). Particularly, the O-T NPs exhibit a higher molar extinction coefficient at 1064 nm (≈4.3-fold of O-DT NPs and ≈4.8-fold of O-Q NPs). Furthermore, the O-T NPs show the highest NIR-II fluorescence brightness and heating capacity (PCE = 73%) among the three NPs under 1064 nm laser irradiation and served as agents for NIR-II imaging guided in vivo photothermal therapy. Overall, by using molecular oligomerization and donor engineering strategies, a powerful example of constructing high-performance NIR-II phototheranostics for clinical translation is given.


Assuntos
Hipertermia Induzida , Nanopartículas , Reprodutibilidade dos Testes , Terapia Fototérmica , Nanopartículas/química , Imagem Óptica/métodos , Lasers , Fototerapia , Nanomedicina Teranóstica/métodos
12.
Small ; 19(17): e2206544, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710248

RESUMO

Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides a powerful tool for in vivo structural and functional imaging in deep tissue. However, the lack of biocompatible contrast agents with bright NIR-II emission has hindered its application in fundamental research and clinical trials. Herein, a liposome encapsulation strategy for generating ultrabright liposome-cyanine dyes by restricting dyes in the hydrophobic pockets of lipids and inhibiting the aggregation, as corroborated by computational modeling, is reported. Compared with free indocyanine green (ICG, an US Food and Drug Administration-approved cyanine dye), liposome-encapsulated ICG (S-Lipo-ICG) shows a 38.7-fold increase in NIR-II brightness and enables cerebrovascular imaging at only one-tenth dose over a long period (30 min). By adjusting the excitation wavelength, two liposome-encapsulated cyanine dyes (S-Lipo-ICG and S-Lipo-FD1080) enable NIR-II dual-color imaging. Moreover, small tumor nodules (2-5 mm) can be successfully distinguished and removed with S-Lipo-ICG image-guided tumor surgery in rabbit models. This liposome encapsulation maintains the metabolic pathway of ICG, promising for clinical implementation.


Assuntos
Corantes , Neoplasias , Animais , Coelhos , Corantes/química , Lipossomos , Verde de Indocianina/química , Meios de Contraste , Imagem Óptica/métodos , Corantes Fluorescentes
13.
Nanotechnology ; 34(48)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611549

RESUMO

Second near-infrared window (NIR-II) fluorescence imaging has shown great potential in the field of bioimaging. To achieve a better imaging effect, variety of NIR-II fluorescence probes have been designed and developed. Among them, semiconducting oligomers (SOs) have shown unique advantages including high photostability and quantum yield, making them promise in NIR-II fluorescence imaging. Herein, we design a SO nanoparticle (ASONi) for NIR-II fluorescence imaging of tumor. ASONi is composed of an azido-functionalized semiconducting oligomer as the NIR-II fluorescence emitter, and a benzene sulfonamide-ended DSPE-PEG (DSPE-PEG-CAi) as the stabilizer. Owing to the benzene sulfonamide groups on the surface, ASONi has the capability of targeting the carbonic anhydrase IX (CA IX) of MDA-MB-231 breast cancer cell. Compared with ASON without benzene sulfonamide groups on the surface, ASONi has a 1.4-fold higher uptake for MDA-MB-231 cells and 1.5-fold higher breast tumor accumulation after i.v. injection. The NIR-II fluorescence signal of ASONi can light the tumor up within 4 h, demonstrating its capability of active tumor targeting and NIR-II fluorescence imaging.


Assuntos
Inibidores da Anidrase Carbônica , Nanopartículas , Benzeno , Imagem Óptica , Transporte Biológico , Sulfanilamida
14.
J Nanobiotechnology ; 21(1): 230, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468990

RESUMO

The visualization of bone imaging in vivo is of great significance for the understanding of some bone-related diseases or physiological processes. Herein, a bone-targeted NIR-II small molecule (TTQF-SO3), which was modified with multiple sulfonate groups, was successfully fabricated for the second near-infrared (NIR-II) bone imaging. In vitro studies revealed that TTQF-SO3 showed high affinity for hydroxyapatite and excellent macrophage accumulation ability. In in vivo assays, TTQF-SO3 displayed high bone uptake ability and high NIR-II bone imaging quality, demonstrating the specific bone-targeting ability of the sulfonate-containing probe. In addition, the noninvasive NIR-II imaging detection in bone calcium loss was successfully verified in osteoporosis mice models. Moreover, the negative charge characteristic of TTQF-SO3 showed efficient lymphoid enrichment in living mice by intravenous injection. Overall, these warrant that our TTQF-SO3 is an optimal bone-targeted diagnostic agent for high-quality NIR-II imaging, highlighting its potential promise for clinical translation.


Assuntos
Osso e Ossos , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Camundongos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Osso e Ossos/diagnóstico por imagem , Imagem Óptica/métodos , Corantes Fluorescentes
15.
Nanomedicine ; 49: 102661, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736869

RESUMO

Intravesical instillation has been considered an efficient route for detecting bladder cancer. However, only a small fraction of administered dose permeates into tumor tissues, and insufficient retention time limits their application. In this work, a novel intravesical bidirectional perfusion-like administered mode was developed to improve diagnostic accuracy of bladder tumor imaging. Specifically, the ultrasmall AuPd-P-FA Nanoprobe exhibit excellent NIR-II FL imaging performance due to electronic structure perturbation. Benefiting from the size advantage for kidney metabolism and FA targeting specificity, AuPd-P-FA could effectively administration to bladder tumor. When AuPd-P-FA reached maximum enrichment at 1 h post-injection, the localized and mild thermal energy produced upon laser irradiation activated a phase transition. This thermo-sensitive characteristic could prolong the retention time in bladder and the fluorescence signal could be clearly observed at 6 h post-injection with high accuracy. This novel intravesical bidirectional perfusion-like administered mode is expected to achieve a non-invasive diagnosis of early bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem , Administração Intravesical , Perfusão , Imagem Óptica
16.
Nanomedicine ; 47: 102615, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265558

RESUMO

Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.


Assuntos
Fibroínas , Verde de Indocianina , Feminino , Humanos , Imagem Óptica
17.
Nano Lett ; 22(2): 783-791, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35005958

RESUMO

In situ monitoring of tissue regeneration progression is of primary importance to basic medical research and clinical transformation. Despite significant progress in the field of tissue engineering and regenerative medicine, few technologies have been established to in situ inspect the regenerative process. Here, we present an integrated second near-infrared (NIR-II, 1000-1700 nm) window in vivo imaging strategy based on 3D-printed bioactive glass scaffolds doped with NIR-II ratiometric lanthanide-dye hybrid nanoprobes, allowing for in situ monitoring of the early inflammation, angiogenesis, and implant degradation during mouse skull repair. The functional bioactive glass scaffolds contribute to more effective bone regeneration because of their excellent angiogenic and osteogenic activities. The reliability of ratiometric fluorescence imaging, coupled with low autofluoresence in the NIR-II window, facilitates the accuracy of in vivo inflammation detection and high-resolution visualization of neovascularization and implant degradation in deep tissue.


Assuntos
Elementos da Série dos Lantanídeos , Animais , Regeneração Óssea , Camundongos , Imagem Óptica/métodos , Reprodutibilidade dos Testes , Engenharia Tecidual
18.
Nano Lett ; 22(19): 7965-7975, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165293

RESUMO

The renal-clearable aspect of imaging agent with minimum toxicity issues and side effects is essential for clinical translation, yet clinical near-infrared-I/II (NIR-I/II) fluorophores with timely renal-clearance pathways are very limited. Herein, we rationally develop the cyanine-protein composite strategy through covalent bonding of ß-lactoglobulin (ß-LG) and chloride-cyanine dye to produce a brilliant and stable NIR-I/II fluorophore (e.g., ß-LG@IR-780). The ß-LG acts as a protecting shell with small molecular weight (18.4 kDa) and ultrasmall size (<5 nm), thus endowing the ß-LG@IR-780 with excellent biocompatibility and renal excretion. Our ß-LG@IR-780 probe enables noninvasive and precise NIR-II visualization of the physiological and pathological conditions of the vascular and lymphatic drainage system, facilitating intraoperative imaging-guided surgery and postoperative noninvasive monitoring. The minimum accumulation of our probes in the main organs improves the overall biosafety. This study provides a facile methodology for new-generation NIR-II fluorophores and largely improves the brightness and pharmacokinetics of small molecular dyes.


Assuntos
Linfografia , Imagem Óptica , Angiografia , Cloretos , Corantes Fluorescentes/farmacocinética , Lactoglobulinas , Imagem Óptica/métodos
19.
Angew Chem Int Ed Engl ; 62(29): e202305744, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37221136

RESUMO

Radiotherapy (RT) is an effective and widely applied cancer treatment strategy in clinic. However, it usually suffers from radioresistance of tumor cells and severs side effects of excessive radiation dose. Therefore, it is highly significant to improve radiotherapeutic performance and monitor real-time tumor response, achieving precise and safe RT. Herein, an X-ray responsive radio-pharmaceutical molecule containing chemical radiosensitizers of diselenide and nitroimidazole (BBT-IR/Se-MN) is reported. BBT-IR/Se-MN exhibits enhanced radiotherapeutic effect via a multifaceted mechanisms and self-monitoring ROS levels in tumors during RT. Under X-ray irradiation, the diselenide produces high levels of ROS, leading to enhanced DNA damage of cancer cell. Afterwards, the nitroimidazole in the molecule inhibits the damaged DNA repair, offering a synergetic radiosensitization effect of cancer. Moreover, the probe shows low and high NIR-II fluorescence ratios in the absence and presence of ROS, which is suitable for precise and quantitative monitoring of ROS during sensitized RT. The integrated system is successfully applied for radiosensitization and the early prediction of in vitro and in vivo RT efficacy.


Assuntos
Neoplasias , Radiossensibilizantes , Humanos , Espécies Reativas de Oxigênio , Corantes Fluorescentes , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Preparações Farmacêuticas , Linhagem Celular Tumoral
20.
Small ; 18(29): e2202078, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730913

RESUMO

Fluorescence (FL) bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides improved imaging quality and high resolution for diagnosis of deep-seated tumors. However, integrating FL bioimaging and photothermal therapy (PTT) in a single photoactive molecule exhibits a great challenge because a dramatic increase of PTT in the NIR-II window benefitting from the nonradiative decay will sacrifice the fluorescence brightness that is unfavorable for FL bioimaging. Therefore, balancing the radiative decay and nonradiative decay is an effective and rational design strategy. Herein, four NIR-II xanthene dyes (CL1-CL4) are synthesized with maximal emission beyond 1200 nm under 1064 nm excitation. CL4 exhibits the largest fluorescence quantum yield and a significant fluorescence enhancement after complexation with fetal bovine serum (FBS). As-prepared CL4/FBS has a maximal emission of 1235 nm and a high photothermal conversion efficiency of 36% under 1064 nm excitation. Bright and refined tumor vessels with a fine resolution of 0.23 mm can be clearly distinguished by CL4/FBS. In vivo studies show that a balanced utilization of fluorescence and photothermy in the NIR-II window is successfully achieved with superior biocompatibility. This efficient strategy provides promising avenue for precise theranostics of deep tumors.


Assuntos
Nanopartículas , Neoplasias , Angiografia , Corantes , Corantes Fluorescentes , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fototerapia , Terapia Fototérmica , Nanomedicina Teranóstica/métodos , Xantenos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa