Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cytotherapy ; 25(7): 763-772, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37055320

RESUMO

BACKGROUND AIMS: Adoptive cell therapy with chimeric antigen receptor (CAR)-expressing natural killer (NK) cells is an emerging approach that holds promise in multiple myeloma (MM). However, the generation of CAR-NK cells targeting CD38 is met with obstacles due to the expression of CD38 on NK cells. Knock-out of CD38 is currently explored as a strategy, although the consequences of the lack of CD38 expression with regards to engraftment and activity in the bone marrow microenvironment are not fully elucidated. Here, we present an alternative approach by harnessing the CD38dim phenotype occurring during long-term cytokine stimulation of primary NK cells. METHODS: Primary NK cells were expanded from peripheral blood mononuclear cells by long-term IL-2 stimulation. During expansion, the CD38 expression was monitored in order to identify a time point when introduction of a novel affinity-optimized αCD38-CAR confered optimal viability, i.e. prevented fratricide. CD38dim NK cells were trasduced with retroviral vectors encoding for the CAR trasngene and their functionality was assessed in in vitro activation and cytotoxicity assays. RESULTS: We verified the functionality of the αCD38-CAR-NK cells against CD38+ cell lines and primary MM cells. Importantly, we demonstrated that αCD38-CAR-NK cells derived from patients with MM have increased activity against autologous MM samples ex vivo. CONCLUSIONS: Overall, our results highlight that incorporation of a functional αCD38-CAR construct into a suitable NK-cell expansion and activation protocol results in a potent and feasible immunotherapeutic strategy for the treatment of patients with MM.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Citocinas/metabolismo , Mieloma Múltiplo/terapia , Leucócitos Mononucleares/metabolismo , Células Matadoras Naturais , Fenótipo , Imunoterapia , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Microambiente Tumoral
2.
BJU Int ; 125(1): 89-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31392791

RESUMO

OBJECTIVES: To identify cytokines that can activate and expand NK cells in the presence of prostate cancer cells in order to determine whether these agents may be useful in future intra-tumoural administration in pre-clinical and clinical prostate cancer trials. MATERIALS AND METHODS: Lymphocytes isolated from normal donor blood were set up in co-cultures with either cancer or non-cancerous prostate cell lines, together with each of the cytokines interleukin (IL)-2, IL-12, IL-15, interferon (IFN)-γ or IL-21 for a period of 7 days. Then, expansion of NK cells, NKT cells and CD8 T cells was measured by flow cytometry and compared with the expansion of the same cells in the absence of prostate cells. The cytotoxic activity of NK cells, as measured by perforin and tumour cell killing, was also assessed. NK cell receptors and their corresponding ligands on prostate tumour cells were analysed to determine whether any of these were modulated by co-culture. The role of the tumour-secreted heat shock proteins HSP90 and HSP70 in the expansion of NK cells in the co-cultures was also investigated because of their effects on NK and CD8 T-cell activation. RESULTS: We showed that, among a panel of cytokines known to cause NK cell activation and expansion, only IL-15 could actively induce expansion of NK, NKT and CD8 T cells in the presence of prostate cancer cell lines. Furthermore, the expansion of NK cells was far greater (up to 50% greater) in the presence of the cancer cells (LNCaP, PC3) than when lymphocytes were incubated alone. In contrast, non-cancerous cell lines (PNT2 and WPMY-1) did not exert any expansion of NK cells. The cytolytic activity of the NK cells, as measured by perforin, CD107a and killing of tumour cells, was also greatest in co-cultures with IL-15. Examination of NK cell receptors shows that NKG2D is upregulated to a greater degree in the presence of prostate cancer cells, compared with the upregulation with IL-15 in lymphocytes alone. However, blocking of NKG2D does not inhibit the enhanced expansion of NK cells in the presence of tumour cells. CONCLUSIONS: Among a panel of NK cell-activating cytokines, IL-15 was the only cytokine that could stimulate expansion of NK cells in the presence of prostate cancer cells; therefore IL-15 may be a good candidate for novel future intra-tumoural therapy of the disease.


Assuntos
Interleucina-15/fisiologia , Células Matadoras Naturais/fisiologia , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Masculino
3.
Cancer Immunol Immunother ; 67(4): 575-587, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29299659

RESUMO

Ovarian cancer (OC) is the leading cause of gynecological cancer-related death in North America. Most ovarian cancer patients (OCPs) experience disease recurrence after first-line surgery and chemotherapy; thus, there is a need for novel second-line treatments to improve the prognosis of OC. Although peripheral blood-derived NK cells are known for their ability to spontaneously lyse tumour cells without prior sensitization, ascites-derived NK cells (ascites-NK cells) isolated from OCPs exhibit inhibitory phenotypes, impaired cytotoxicity and may play a pro-tumourigenic role in cancer progression. Therefore, it is of interest to improve the cytotoxic effector function of impaired OCP ascites-NK cells at the tumour environment. We investigated the efficacy of using an artificial APC-based ex vivo expansion technique to generate cytotoxic, expanded NK cells from previously impaired OCP ascites-NK cells, for use in an autologous model of NK cell immunotherapy. We are the first to obtain a log-scale expansion of OCP ascites-NK cells that upregulate the surface expression of activating receptors NKG2D, NKp30, NKp44, produce robust amounts of anti-tumour cytokines in the presence of OC cells and mediate direct tumour cytotoxicity against ascites-derived, primary OC cells obtained from autologous patients. Our findings demonstrate that it is possible to generate cytotoxic OCP ascites-NK cells from previously impaired OCP ascites-NK cells, which presents a promising immunotherapeutic target for the second-line treatment of OC. Future work should focus on evaluating the in vivo efficacy of autologous NK cell immunotherapy through the intraperitoneal delivery of NK cell expansion factors to a preclinical xenograft mouse model of human OC.


Assuntos
Ascite/imunologia , Citotoxicidade Imunológica/imunologia , Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Ascite/metabolismo , Proliferação de Células , Citocinas/metabolismo , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Células Tumorais Cultivadas
4.
Breast Cancer Res ; 19(1): 76, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28668076

RESUMO

BACKGROUND: Natural killer (NK) cells play a critical role in cancer immunosurveillance. Recent developments in NK cell ex-vivo expansion makes it possible to generate millions of activated NK cells from a small volume of peripheral blood. We tested the functionality of ex vivo expanded NK cells in vitro against breast cancer cell lines and in vivo using a xenograft mouse model. The study aim was to assess functionality and phenotype of expanded NK cells from breast cancer patients against breast cancer cell lines and autologous primary tumours. METHODS: We used a well-established NK cell co-culture system to expand NK cells ex vivo from healthy donors and breast cancer patients and examined their surface marker expression. Moreover, we tested the ability of expanded NK cells to lyse the triple negative breast cancer and HER2-positive breast cancer cell lines MDA-MB-231 and MDA-MB-453, respectively. We also tested their ability to prevent tumour growth in vivo using a xenograft mouse model. Finally, we tested the cytotoxicity of expanded NK cells against autologous and allogeneic primary breast cancer tumours in vitro. RESULTS: After 3 weeks of culture we observed over 1000-fold expansion of NK cells isolated from either breast cancer patients or healthy donors. We also showed that the phenotype of expanded NK cells is comparable between those from healthy donors and cancer patients. Moreover, our results confirm the ability of ex vivo expanded NK cells to lyse tumour cell lines in vitro. While the cell lines examined had differential sensitivity to NK cell killing we found this was correlated with level of major histocompatibility complex (MHC) class I expression. In our in vivo model, NK cells prevented tumour establishment and growth in immunocompromised mice. Finally, we showed that NK cells expanded from the peripheral blood of breast cancer patients show high cytotoxicity against allogeneic and autologous patient-derived tumour cells in vitro. CONCLUSION: NK cells from breast cancer patients can be expanded similarly to those from healthy donors, have a high cytotoxic ability against breast cancer cell lines and patient-derived tumour cells, and can be compatible with current cancer treatments to restore NK cell function in cancer patients.


Assuntos
Neoplasias da Mama/imunologia , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Animais , Biomarcadores , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Imunofenotipagem , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Knockout , Receptor ErbB-2/metabolismo
5.
Cytotherapy ; 18(1): 80-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26549384

RESUMO

BACKGROUND AIMS: This study developed a new method to expand CD3(-)CD56(+) natural killer (NK) cells from human peripheral blood mononuclear cells (PBMCs) without feeder cells for clinical trials. METHODS: PBMCs from healthy subjects were co-stimulated with anti-CD3 and anti-CD52 monoclonal antibodies and cultured for 14 days in newly developed NKGM-1 medium containing autologous plasma and interleukin-2. Expanded NK cells were examined for cell number, phenotype, in vitro and in vivo cytotoxicity and interferon (IFN)-γ secretion. We also evaluated the proliferative ability of NK cells after cryopreservation. A patient with advanced pancreatic cancer was treated with autologous-expanded NK cells through the use of this method in combination with chemotherapy. RESULTS: Expanded NK cells expressed higher levels of activating molecules compared with resting NK cells and exhibited potent cytotoxicity against K562 cells and IFN-γ secretion by cytokine stimulation. Significant anti-tumor activity was observed in immunodeficient mice injected with the human pancreatic cancer cell line BxPC-3. Large-scale cultures generated a median 5.7 × 10(9) NK cells from 20 mL of peripheral blood (n = 38) after 14 days of culture and 8.4 × 10(9) NK cells after 18 days of culture through the use of a cryopreservation procedure. The number of NK cells and cytotoxic activity in the peripheral blood of the patient with pancreatic cancer greatly increased, and successful clinical responses were observed after multiple infusions of expanded NK cells. CONCLUSIONS: These data demonstrate that this simple and safe methodology for the ex vivo expansion of NK cells can be used for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/imunologia , Antígeno CD52 , Proliferação de Células , Separação Celular , Citotoxicidade Imunológica/efeitos dos fármacos , Glicoproteínas/metabolismo , Humanos , Interferon gama/biossíntese , Células K562 , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo , Receptores de Superfície Celular/metabolismo
6.
Cytotherapy ; 18(5): 653-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27059202

RESUMO

BACKGROUND AIMS: Natural killer (NK) cell immunotherapy for treatment of cancer is promising, but requires methods that expand cytotoxic NK cells that persist in circulation and home to disease site. METHODS: We developed a particle-based method that is simple, effective and specifically expands cytotoxic NK cells from peripheral blood mononuclear cells (PBMCs) both ex vivo and in vivo. This method uses particles prepared from plasma membranes of K562-mb21-41BBL cells, expressing 41BBL and membrane bound interleukin-21 (PM21 particles). RESULTS: Ex vivo, PM21 particles caused specific NK-cell expansion from PBMCs from healthy donors (mean 825-fold, range 163-2216, n = 13 in 14 days) and acute myeloid leukemia patients. The PM21 particles also stimulated in vivo NK cell expansion in NSG mice. Ex vivo pre-activation of PBMCs with PM21 particles (PM21-PBMC) before intraperitoneal (i.p.) injection resulted in 66-fold higher amounts of hNK cells in peripheral blood (PB) of mice compared with unactivated PBMCs on day 12 after injection. In vivo administration of PM21 particles resulted in a dose-dependent increase of PB hNK cells in mice injected i.p. with 2.0 × 10(6) PM21-PBMCs (11% NK cells). Optimal dose of 800 µg/injection of PM21 particles (twice weekly) with low-dose interleukin 2 (1000 U/thrice weekly) resulted in 470 ± 40 hNK/µL and 95 ± 2% of total hCD45(+) cells by day 12 in PB. Furthermore, hNK cells were found in marrow, spleen, lung, liver and brain (day 16 after i.p. PM21/PBMC injection), and mice injected with PM21 particles had higher amounts. CONCLUSIONS: The extent of NK cells observed in PB, their persistence and the biodistribution would be relevant for cancer treatment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Interleucina-2/farmacologia , Interleucinas/farmacologia , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/terapia , Ativação Linfocitária/imunologia , Animais , Linhagem Celular Tumoral , Membrana Celular , Feminino , Humanos , Imunoterapia/métodos , Células K562 , Células Matadoras Naturais/citologia , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
7.
Biol Blood Marrow Transplant ; 21(4): 632-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25576425

RESUMO

Natural killer (NK) cell immunotherapy as a cancer treatment shows promise, but expanding NK cells consistently from a small fraction (∼ 5%) of peripheral blood mononuclear cells (PBMCs) to therapeutic amounts remains challenging. Most current ex vivo expansion methods use co-culture with feeder cells (FC), but their use poses challenges for wide clinical application. We developed a particle-based NK cell expansion technology that uses plasma membrane particles (PM-particles) derived from K562-mbIL15-41BBL FCs. These PM-particles induce selective expansion of NK cells from unsorted PBMCs, with NK cells increasing 250-fold (median, 35; 10 donors; range, 94 to 1492) after 14 days of culture and up to 1265-fold (n = 14; range, 280 to 4426) typically after 17 days. The rate and efficiency of NK cell expansions with PM-particles and live FCs are comparable and far better than stimulation with soluble 41BBL, IL-15, and IL-2. Furthermore, NK cells expand selectively with PM-particles to 86% (median, 35; range, 71% to 99%) of total cells after 14 days. The extent of NK cell expansion and cell content was PM-particle concentration dependent. These NK cells were highly cytotoxic against several leukemic cell lines and also against patient acute myelogenous leukemia blasts. Phenotype analysis of these PM-particle-expanded NK cells was consistent with an activated cytotoxic phenotype. This novel NK cell expansion methodology has promising clinical therapeutic implications.


Assuntos
Proliferação de Células , Micropartículas Derivadas de Células/imunologia , Imunidade Celular , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Técnicas de Cultura de Células , Feminino , Células HL-60 , Humanos , Células K562 , Masculino , Fatores de Tempo
8.
Eur J Immunol ; 44(5): 1517-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24469995

RESUMO

NK cells are innate immune lymphocytes that express a vast repertoire of germ-line encoded receptors for target recognition. These receptors include inhibitory and activating proteins, among the latter of which is CD16, a low affinity binding Fc receptor. Here, we show that human NK cells expand in response to stimulation with various tumor cell lines. We further demonstrate that the tumor-derived expansion of NK cells is accompanied by rapid, cell-dependent, changes in CD16 expression levels. We show that in NK cells expanded in response to the EBV-transformed cell line 721.221, CD16 is shed and therefore approximately half of the expanded 721.221-derived NK-cell population does not express CD16. We also show, in contrast, that in response to 1106mel cells, CD16 expression is maintained on the cell surface of the expanded NK cells due to an antibody-dependent mechanism. Our results may provide a basis for the selective expansion of NK cells that may be used for tumor immunotherapy.


Assuntos
Anticorpos Antineoplásicos/imunologia , Regulação da Expressão Gênica/imunologia , Neoplasias/imunologia , Receptores de IgG/imunologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Regulação da Expressão Gênica/genética , Humanos , Imunoterapia , Células Matadoras Naturais , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Receptores de IgG/biossíntese , Receptores de IgG/genética
9.
Cytotherapy ; 17(5): 621-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25881519

RESUMO

BACKGROUND AIMS: Ex vivo expansion of natural killer (NK) cells is a strategy to produce large numbers of these effector cells for immunotherapy. However, the transfer of bench-top expansion protocols to clinically applicable methods is challenging for NK cell-based therapy because of regulatory aspects and scale-up issues. Therefore, we developed an automated, large-scale NK cell expansion process. METHODS: Enriched NK cells were expanded with interleukin-2 and irradiated clinical-grade Epstein-Barr virus-transformed lymphoblastoid feeder cells with the use of an automated system in comparison to manual expansion, and the cells were investigated for their functionality, phenotype and gene expression. RESULTS: Automated expansion resulted in a mean 850-fold expansion of NK cells by day 14, yielding 1.3 (± 0.9) × 10(9) activated NK cells. Automatically and manually produced NK cells were comparable in target cell lysis, degranulation and production of interferon-γ and tumor necrosis factor-α and had similar high levels of antibody-dependent cellular cytotoxicity against rituximab-treated leukemic cells. NK cells after automated or manual expansion showed similar gene expression and marker profiles. However, expanded NK cells differed significantly from primary NK cells including upregulation of the functional relevant molecules TRAIL and FasL and NK cell-activating receptors NKp30, NKG2D and DNAM-1. Neither automatically nor manually expanded NK cells showed reduced telomere length indicative of a conserved proliferative potential. CONCLUSIONS: We established an automated method to expand high numbers of clinical-grade NK cells with properties similar to their manually produced counterparts. This automated process represents a highly efficient tool to standardize NK cell processing for therapeutic applications.


Assuntos
Imunoterapia Adotiva/métodos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Automação , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células K562 , Cinética , Homeostase do Telômero
10.
Pharmaceutics ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276503

RESUMO

Human cytomegalovirus (HCMV)-specific adaptive NK cells are capable of recognizing viral peptides presented by HLA-E on infected cells via the NKG2C receptor. Using retroviral transduction, we have generated a K562-cell-based line expressing HLA-E in the presence of the HLA-E-stabilizing peptide, which has previously shown the capacity to enhance adaptive NK cell response. The obtained K562-21E cell line was employed to investigate proliferative responses of the CD57- NK cell subset of HCMV-seropositive and seronegative donors. Stimulation of CD57- NK cells with K562-21E/peptide resulted in an increased cell expansion during the 12-day culturing period, regardless of the serological HCMV status of the donor. The enhanced proliferation in response to the peptide was associated with a greater proportion of CD56brightHLA-DR+ NK cells. In later stages of cultivation, the greatest proliferative response to K562-21E/peptide was shown for a highly HCMV-seropositive donor. These expanded NK cells were characterized by the accumulation of CD57-KIR2DL2/3+NKG2C+NKG2A- cells, which are hypothesized to represent adaptive NK cell progenitors. The K562-21E feeder cells can be applied both for the accumulation of NK cells as therapeutic effectors, and for the study of NK cell maturation into the adaptive state after the HLA-E peptide presentation.

11.
Anticancer Res ; 43(9): 3897-3904, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648291

RESUMO

BACKGROUND/AIM: To obtain sufficient numbers of high-quality natural killer (NK) cells, we developed feeder cells using synthetic biology techniques. MATERIALS AND METHODS: K562 cells were engineered to express membrane bound interleukin-2 (mbIL2) or interleukin-13 (mbIL13). RESULTS: The incubation of human primary NK cells isolated from peripheral blood mononuclear cells (PBMCs) with these feeder cells significantly increased the number of activated NK cells compared to K562 parental cells. Fluorescence-activated cell sorting (FACS) analysis demonstrated that NKG2D activating receptors were abundant on the surface of NK cells expanded by K562-mbIL2 or mbIL13 cells. NK cells expanded on K562-mbIL2 or mbIL13 lysed cancer cells more effectively than those cultured with normal K562 cells. Using NK cells incubated with our feeder cells, we developed anti-CD19 chimeric antigen receptor (CAR)-NK cells. They showed robust cytotoxic effect against CD19 positive cancer cell line. CONCLUSION: Our newly developed feeder cells could provide useful tools for NK cell therapy.


Assuntos
Células Matadoras Naturais , Leucócitos Mononucleares , Humanos , Células Alimentadoras , Proliferação de Células , Células K562
12.
Mol Ther Oncolytics ; 28: 74-87, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36699615

RESUMO

Multiple clinical trials exploring the potential of adoptive natural killer (NK) cell therapy for cancer have employed ex vivo expansion using feeder cells to obtain large numbers of NK cells. We have previously utilized the rhesus macaque model to clonally track the NK cell progeny of barcode-transduced CD34+ stem and progenitor cells after transplant. In this study, NK cells from barcoded rhesus macaques were used to study the changes in NK cell clonal patterns that occurred during ex vivo expansion using culture protocols similar to those employed in clinical preparation of human NK cells including irradiated lymphoblastoid cell line (LCL) feeder cells or K562 cells expressing 4-1BBL and membrane-bound interleukin-21 (IL-21). NK expansion cultures resulted in the proliferation of clonally diverse NK cells, which, at day 14 harvest, contained greater than 50% of the starting barcode repertoire. Diversity as measured by Shannon index was maintained after culture. With both LCL and K562 feeders, proliferation of long-lived putative memory-like NK cell clones was observed, with these clones continuing to constitute a mean of 31% of the total repertoire of expanded cells. These experiments provide insight into the clonal makeup of expanded NK cell clinical products.

13.
Front Immunol ; 12: 798087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058934

RESUMO

The generation and expansion of functionally competent NK cells in vitro is of great interest for their application in immunotherapy of cancer. Since CD33 constitutes a promising target for immunotherapy of myeloid malignancies, NK cells expressing a CD33-specific chimeric antigen receptor (CAR) were generated. Unexpectedly, we noted that CD33-CAR NK cells could not be efficiently expanded in vitro due to a fratricide-like process in which CD33-CAR NK cells killed other CD33-CAR NK cells that had upregulated CD33 in culture. This upregulation was dependent on the stimulation protocol and encompassed up to 50% of NK cells including CD56dim NK cells that do generally not express CD33 in vivo. RNAseq analysis revealed that upregulation of CD33+ NK cells was accompanied by a unique transcriptional signature combining features of canonical CD56bright (CD117high, CD16low) and CD56dim NK cells (high expression of granzyme B and perforin). CD33+ NK cells exhibited significantly higher mobilization of cytotoxic granula and comparable levels of cytotoxicity against different leukemic target cells compared to the CD33- subset. Moreover, CD33+ NK cells showed superior production of IFNγ and TNFα, whereas CD33- NK cells exerted increased antibody-dependent cellular cytotoxicity (ADCC). In summary, the study delineates a novel functional divergence between NK cell subsets upon in vitro stimulation that is marked by CD33 expression. By choosing suitable stimulation protocols, it is possible to preferentially generate CD33+ NK cells combining efficient target cell killing and cytokine production, or alternatively CD33- NK cells, which produce less cytokines but are more efficient in antibody-dependent applications.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Citocinas/imunologia , Células Matadoras Naturais/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Antígeno CD56/imunologia , Antígeno CD56/metabolismo , Células Cultivadas , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Células K562 , Células Matadoras Naturais/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/imunologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de IgG/genética , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Regulação para Cima
14.
Front Oncol ; 11: 632540, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937033

RESUMO

Adoptive natural killer (NK) cell transfer has been demonstrated to be a promising immunotherapy approach against malignancies, but requires the administration of sufficient activated cells for treatment effectiveness. However, the paucity of clinical-grade to support the for large-scale cell expansion limits its feasibility. Here we developed a feeder-based NK cell expansion approach that utilizes OX40L armed NK-92 cell with secreting neoleukin-2/15 (Neo-2/15), a hyper-stable mimetic with a high affinity to IL-2Rßγ. The novel feeder cells (NK92-Neo2/15-OX40L) induced the expansion of NK cells with a 2180-fold expansion (median; 5 donors; range, 1767 to 2719) after 21 days of co-culture without added cytokines. These cells were highly cytotoxic against Raji cells and against several solid tumors in vivo. Mechanistically, NK92-Neo2/15-OX40L induced OX40 and OX40L expression on expanded NK cells and promoted the OX40-OX40L positive feedback loop, thus boosting NK cell function. Our data provided a novel NK cell expansion mechanism and insights into OX40-OX40L axis regulation of NK cell expansion.

15.
Front Immunol ; 12: 626098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717142

RESUMO

Natural killer (NK) cells are innate lymphocytes recognized for their important role against tumor cells. NK cells expressing chimeric antigen receptors (CARs) have enhanced effector function against various type of cancer and are attractive contenders for the next generation of cancer immunotherapies. However, a number of factors have hindered the application of NK cells for cellular therapy, including their poor in vitro growth kinetics and relatively low starting percentages within the mononuclear cell fraction of peripheral blood or cord blood (CB). To overcome these limitations, we genetically-engineered human leukocyte antigen (HLA)-A- and HLA-B- K562 cells to enforce the expression of CD48, 4-1BBL, and membrane-bound IL-21 (mbIL21), creating a universal antigen presenting cell (uAPC) capable of stimulating their cognate receptors on NK cells. We have shown that uAPC can drive the expansion of both non-transduced (NT) and CAR-transduced CB derived NK cells by >900-fold in 2 weeks of co-culture with excellent purity (>99.9%) and without indications of senescence/exhaustion. We confirmed that uAPC-expanded research- and clinical-grade NT and CAR-transduced NK cells have higher metabolic fitness and display enhanced effector function against tumor targets compared to the corresponding cell fractions cultured without uAPCs. This novel approach allowed the expansion of highly pure GMP-grade CAR NK cells at optimal cell numbers to be used for adoptive CAR NK cell-based cancer immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Engenharia Celular , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica , Sangue Fetal , Antígenos HLA/genética , Humanos , Células K562 , Camundongos , Camundongos Knockout , Receptores de Células Matadoras Naturais/metabolismo , Transcriptoma , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Leukoc Biol ; 109(5): 901-914, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33145806

RESUMO

IL2 receptor signaling is crucial for human NK cell activation and gain of effector functions. The molecular mechanisms involved in termination of IL2 activation are largely unknown in human NK cells. PR/SET domain 1 was previously reported to decrease cell growth and increase apoptosis in an IL2-dependent manner in malignant NK cell lines, suggesting the possibility of down-regulation of IL2 signaling pathway gene(s) through direct transcriptional repression. Using ChIP-Seq, we identified a PRDM1 binding site on the first intron of CD25 (IL2RA), which codes for the IL2 receptor subunit regulating sensitivity to IL2 signaling, in primary NK cells activated with engineered K562 cells or IL2. Ectopic expression of PRDM1 down-regulated CD25 expression at transcript and protein levels in two PRDM1 nonexpressing NK cell lines. shRNA-mediated knockdown of CD25 in two malignant NK cell lines led to progressive depletion of NK cells in low IL2 concentrations. By contrast, ectopic CD25 expression in primary human NK cells led to progressive increase in cell number in CD25-transduced cells in low IL2 concentrations. Altogether these results reveal a pivotal role of PRDM1 in inhibition of IL2-induced NK cell expansion through direct repression of CD25 in activated human NK cells. These observations provide additional support for the role of PRDM1 in attenuation of NK cell activation and growth, with implications on neoplastic transformation or NK cell function when it is deregulated.


Assuntos
Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-2/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Linhagem Celular , Proliferação de Células , Regulação para Baixo/genética , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Íntrons/genética , Ativação Linfocitária/imunologia , Masculino , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
17.
Front Immunol ; 12: 732135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925314

RESUMO

Natural killer cells (NK cells) are the first line of the innate immune defense system, primarily located in peripheral circulation and lymphoid tissues. They kill virally infected and malignant cells through a balancing play of inhibitory and stimulatory receptors. In pre-clinical investigational studies, NK cells show promising anti-tumor effects and are used in adoptive transfer of activated and expanded cells, ex-vivo. NK cells express co-stimulatory molecules that are attractive targets for the immunotherapy of cancers. Recent clinical trials are investigating the use of CAR-NK for different cancers to determine the efficiency. Herein, we review NK cell therapy approaches (NK cell preparation from tissue sources, ways of expansion ex-vivo for "off-the-shelf" allogeneic cell-doses for therapies, and how different vector delivery systems are used to engineer NK cells with CARs) for cancer immunotherapy.


Assuntos
Células Alógenas/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Engenharia Celular/métodos , Sangue Fetal/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética , Resultado do Tratamento
18.
Methods Enzymol ; 631: 257-275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31948551

RESUMO

Natural killer (NK) cells have shown to play a critical, but as yet poorly defined, role in the process by which the immune system controls tumor progression. Indeed, NK cell-based immunotherapy, particularly NK cell adoptive transfer therapy, has become a very attractive cancer weapon against multiple types of cancers such as metastatic and hematological cancers. Unfortunately, the implementation of these therapies has been challenged by the existence of immunosuppression mechanisms that have prevented NK cell functionality. Additionally, the development of protocols to obtain purified and functional NK cells has faced some difficulties due to the limitations in the numbers of cells that can be obtained and the development of an exhaustion phenotype with impaired proliferative and functional capabilities during lengthy ex vivo NK cell expansion protocols. Thus, the development of new strategies to obtain a rapid expansion of highly functional NK cells without the appearance of exhaustion is still much needed. This is particularly true in the case of mouse NK cells, a surrogate commonly used to evaluate NK cell biology and human NK cell-based immunotherapeutic alternatives. Here, we describe a feasible and rapid protocol to produce strongly activated mouse NK cells in vivo taking advantage of the hydrodynamic delivery of a plasmid that contains interleukin-15, a cytokine known to cause NK cell expansion and activation, fused with the binding domain of the IL-15Rα ("sushi" domain) and apolipoprotein A-I.


Assuntos
Separação Celular/métodos , Células Matadoras Naturais , Animais , Interleucina-15 , Camundongos
19.
Immune Netw ; 18(4): e31, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30181919

RESUMO

Allogeneic natural killer (NK) cell therapy is a potential therapeutic approach for a variety of solid tumors. We established an expansion method for large-scale production of highly purified and functionally active NK cells, as well as a freezing medium for the expanded NK cells. In the present study, we assessed the effect of cryopreservation on the expanded NK cells in regards to viability, phenotype, and anti-tumor activity. NK cells were enormously expanded (about 15,000-fold expansion) with high viability and purity by stimulating CD3+ T cell-depleted peripheral blood mononuclear cells (PBMCs) with irradiated autologous PBMCs in the presence of IL-2 and OKT3 for 3 weeks. Cell viability was slightly reduced after freezing and thawing, but cytotoxicity and cytokine secretion were not significantly different. In a xenograft mouse model of hepatocellular carcinoma cells, cryopreserved NK cells had slightly lower anti-tumor efficacy than freshly expanded NK cells, but this was overcome by a 2-fold increased dose of cryopreserved NK cells. In vivo antibody-dependent cell cytotoxicity (ADCC) activity of cryopreserved NK cells was also demonstrated in a SCID mouse model injected with Raji cells with rituximab co-administration. Therefore, we demonstrated that expanded/frozen NK cells maintain viability, phenotype, and anti-tumor activity immediately after thawing, indicating that expanded/frozen NK cells can provide 'ready-to-use' cell therapy for cancer patients.

20.
Oncoimmunology ; 5(9): e1219007, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757317

RESUMO

Natural killer (NK) cells are promising antitumor effector cells, but the generation of sufficient NK cell numbers for adoptive immunotherapy remains challenging. Therefore, we developed a method for highly efficient ex vivo expansion of human NK cells. Ex vivo expansion of NK cells in medium containing IL-2 and irradiated clinical-grade feeder cells (EBV-LCL) induced a 22-fold NK cell expansion after one week that was significantly increased to 53-fold by IL-21. Repeated stimulation with irradiated EBV-LCL and IL-2 and addition of IL-21 at the initiation of the culture allowed sustained NK cell proliferation with 1011-fold NK cell expansion after 6 weeks. Compared to naive NK cells, expanded NK cells upregulated TRAIL, NKG2D, and DNAM-1, had superior cytotoxicity against tumor cell lines in vitro and produced more IFNγ and TNF-α upon PMA/Iono stimulation. Most importantly, adoptive transfer of NK cells expanded using feeder cells, IL-2 and IL-21 led to significant inhibition of tumor growth in a melanoma xenograft mouse model, which was greater than with NK cells activated with IL-2 alone. Intriguingly, adoptively transferred NK cells maintained their enhanced production of IFNγ and TNF-α upon ex vivo restimulation, although they rapidly lost their capacity to degranulate and mediate tumor cytotoxicity after the in vivo transfer. In conclusion, we developed a protocol for ex vivo NK cell expansion that results in outstanding cell yields. The expanded NK cells possess potent antitumor activity in vitro and in vivo and could be utilized at high numbers for adoptive immunotherapy in the clinic.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa