Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inflammopharmacology ; 29(5): 1459-1473, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34532846

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are a major cause of upper gastro-intestinal (GI) ulceration and bleeding as well as cardiovascular (CV) diseases (e.g., myocardial infarction and stroke). A feature common to both these adverse events is a variety of vascular reactions. One approach to overcome these side effects has been the development of nitric-oxide (NO)-donating NSAIDs. The NO is considered to overcome some of these vascular reactions caused by NSAIDs. Unfortunately, the NO-NSAIDs developed so far have not had the expected benefits compared with NSAIDs alone. OBJECTIVES: Using in vitro preparations it is hoped to gain insight into the vascular and smooth muscle reactions induced by NO-NSAIDs compared with NSAIDs as a basis for improving the protective responses attributed to the NO-donating properties of these drugs. METHODS: A range of NO-NSAIDs was synthesized based on the esterification of NSAIDs with the nitro-butoxylate as a prototype of an NO-donor. These compounds, as well as NO-donor agents and NSAIDS, were examined for their possible effects on isolated segments of digital arteries of fallow deer, which provide a robust model for determining the effects of vasodilator and vasoconstrictor activities, in comparison with those of standard pharmacological agents. RESULTS: The NO-NSAIDs were found to antagonise the smooth muscle contractions produced by 5-hydroxytryptamine (serotonin, 5-HT). However, while almost all their parent NSAIDs had little or no effect, with the exception of the R-(-)-isomers of both ibuprofen and flurbiprofen, which caused vasodilatation, all the NO-NSAIDs tested antagonised the increase in tension produced by 5-HT. CONCLUSIONS: R-(-)-ibuprofen and R-(-)-flurbiprofen, along with the nitro-butoxyl esters of the NSAIDs examined, produce relaxation of segments of deer digital artery smooth muscle in vitro. The evidence presented suggests that their mechanism involves the release of NO or its products.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/toxicidade , Artérias/efeitos dos fármacos , Cervos , Ésteres/química , Feminino , Masculino , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/toxicidade , Serotonina/metabolismo , Vasodilatadores/química , Vasodilatadores/farmacologia
2.
Molecules ; 20(7): 12481-99, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26184135

RESUMO

Estrogen receptor negative (ER(-)) breast cancer is aggressive, responds poorly to current treatments and has a poor prognosis. The NF-κB signaling pathway is implicated in ER(-) tumorigenesis. Aspirin (ASA) is chemopreventive against ER(+) but not for ER(-) breast cancers. Nitric oxide-releasing aspirin (NO-ASA) is a safer ASA where ASA is linked to an NO-releasing moiety through a spacer. In vitro, we investigated anti-proliferation effects of NO-ASA (para- and meta-isomers) against ER(-) breast cancer cells MDA-MB-231 and SK-BR-23, effects on NF-κB signaling, and reactive oxygen species by standard techniques. In vivo, effects of NO-ASA were evaluated in a mouse xenograft model using MDA-MB-231 cells. p-NO-ASA inhibited the growth of MDA-MB-231 and SK-BR-3 cells at 24 h, the respective IC50s were 13 ± 2 and 17 ± 2 µM; ASA had an IC50 of >3000 µM in both cell lines. The IC50s for m-NO-ASA in MDA-MB-231 and SK-BR-3 were 173 ± 15 and 185 ± 12 µM, respectively, therefore, implying p-NO-ASA as a stronger inhibitor of growth p-NO-ASA reduced cell growth by inhibiting proliferation, inducing apoptosis and causing G0/G1 cell cycle block. Activation of NF-κB was inhibited by both isomers as demonstrated by decreases in NF-κB-DNA binding and luciferase activity at 24 h, However, m-NO-ASA produced transient effects at 3 h such as increased NF-κB-DNA-binding, increased levels of nuclear p50, even though both isomers inhibited IκB degradation. Increase in nuclear p50 by m-NO-ASA was associated with translocation of p50 in to the nucleus as observed by immunoflouresence at 3 h. NO-ASA induced reactive oxygen species (ROS) as evidenced by overall increases in both H2DCFDA (2',7'-dichlorodihydrofluorescein) and DHE (dihydroethidium)-derived fluorescence. Inhibition of ROS by N-acetyl-cysteine reversed the m-NO-ASA-mediated translocation of p50 in to the nucleus. In xenografts, p-NO-ASA inhibited tumor growth by inhibiting proliferation (PCNA and tumor volume), inducing apoptosis (TUNEL positive cells) and reducing NF-κB expression. Both isomers inhibit cancer cells, inhibit NF-κB pathway and induce ROS, and have potential as anticancer compounds.


Assuntos
Antineoplásicos/farmacologia , Aspirina/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , NF-kappa B/antagonistas & inibidores , Receptor ErbB-2/deficiência , Receptores de Estrogênio/deficiência , Animais , Apoptose/efeitos dos fármacos , Aspirina/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Genes Reporter , Humanos , Concentração Inibidora 50 , Injeções Subcutâneas , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioorg Med Chem Lett ; 24(24): 5587-5592, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25466180

RESUMO

Nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) are gaining attention as potentially gastric-sparing NSAIDs. Herein, we report a novel class of '1-(nitrooxy)ethyl ester' group-containing NSAIDS as efficient NO releasing 'true' prodrugs of aspirin and naproxen. While an aspirin prodrug exhibited comparable oral bioavailability and antiplatelet activity (i.e., TXB2 inhibition) to those of aspirin, a naproxen prodrug exhibited better bioavailability than naproxen. These promising NO-NSAIDs protected experimental rats from gastric damage. We therefore believe that these promising NO-NSAIDs could represent a new class of potentially 'Safe NSAIDs' for the treatment of arthritic pain, inflammation and cardiovascular disorders in the case of NO-aspirin.


Assuntos
Aspirina/análogos & derivados , Naproxeno/análogos & derivados , Nitratos/química , Pró-Fármacos/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/toxicidade , Área Sob a Curva , Aspirina/química , Aspirina/farmacocinética , Aspirina/farmacologia , Aspirina/toxicidade , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Desenho de Fármacos , Estabilidade de Medicamentos , Mucosa Gástrica/efeitos dos fármacos , Meia-Vida , Humanos , Naproxeno/química , Naproxeno/farmacocinética , Naproxeno/farmacologia , Naproxeno/toxicidade , Nitratos/farmacocinética , Nitratos/farmacologia , Nitratos/toxicidade , Óxido Nítrico/metabolismo , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/toxicidade , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/toxicidade , Curva ROC , Ratos , Ratos Sprague-Dawley , Tromboxano B2/metabolismo
4.
Cureus ; 15(4): e37080, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37153279

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for their anti-inflammatory, antipyretic, and analgesic properties. However, their use is often associated with gastrointestinal tract (GIT) side effects due to the inhibition of both cyclooxygenase (COX)-1 and COX-2 enzymes, leading to a decrease in gastroprotective prostaglandins (PG). To minimize these adverse effects, various approaches have been explored, including selective COX-2 inhibitors, NO-NSAIDs (nitric oxide-releasing NSAIDs), and dual COX/LOX (lipoxygenase) NSAIDs. However, the effects of these gastroprotective NSAIDs on the GIT and their efficacy remains uncertain. This review aims to provide an overview of the current understanding of the effects of traditional NSAIDs and gastroprotective NSAIDs on GIT. We discuss the underlying mechanisms of GIT damage caused by NSAIDs, including mucosal injury, ulceration, and bleeding, and the potential of gastroprotective NSAIDs to mitigate these effects. We also summarize recent studies on the efficacy and safety of various gastroprotective NSAIDs and highlight the limitations and challenges of these approaches. The review concludes with recommendations for future research in this field.

5.
Curr Hypertens Rev ; 17(1): 35-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31858899

RESUMO

Arterial hypertension is a worldwide public health threat. High Blood Pressure (BP) is commonly associated with endothelial dysfunction, nitric oxide synthases (NOS) unbalance and high peripheral vascular resistance. In addition to those, inflammation has also been designated as one of the major components of BP increase and organ damage in hypertension. This minireview discusses vascular inflammatory triggers of high BP and aims to fill the existing gaps of antiinflammatory therapy of hypertension. Among the reasons discussed, enhanced prostaglandins rather than resolvins lipid mediators, immune cell infiltration and oxidative/nitrosative stress are pivotal players of BP increase within the inflammatory hypothesis. To address these inflammatory targets, this review also proposes new concepts in hypertension treatment with non-steroidal antiinflammatory drugs (NSAIDs), nitric oxide-releasing NSAIDs (NO-NSAIDs) and specialized proresolving mediators (SPM). In this context, the failure of NSAIDs in hypertension treatment seems to be associated with the reduction of endogenous NO bioavailability, which is not necessarily an effect of all drug members of this pharmacological class. For this reason, NO-releasing NSAIDs seem to be safer and more specific therapy to treat vascular inflammation in hypertension than regular NSAIDs.


Assuntos
Hipertensão , Estresse Nitrosativo , Anti-Inflamatórios não Esteroides/uso terapêutico , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Inflamação/tratamento farmacológico , Lipídeos
6.
Prog Lipid Res ; 52(4): 571-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23981364

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world due to their anti-inflammatory, analgesic and antipyretic properties. Nevertheless, the consumption of these drugs is still associated with the occurrence of a wide spectrum of adverse effects. Regarding the major role of membranes in cellular events, the hypothesis that the biological actions of NSAIDs may be related to their effect at the membrane level has triggered the in vitro assessment of NSAIDs-membrane interactions. The use of membrane mimetic models, cell cultures, a wide range of experimental techniques and molecular dynamics simulations has been providing significant information about drugs partition and location within membranes and also about their effect on diverse membrane properties. These studies have indeed been providing evidences that the effect of NSAIDs at membrane level may be an additional mechanism of action and toxicity of NSAIDs. In fact, the pharmacokinetic properties of NSAIDs are closely related to the ability of these drugs to interact and overcome biological membranes. Moreover, the therapeutic actions of NSAIDs may also result from the indirect inhibition of cyclooxygenase due to the disturbing effect of NSAIDs on membrane properties. Furthermore, increasing evidences suggest that the disordering effects of these drugs on membranes may be in the basis of the NSAIDs-induced toxicity in diverse organ systems. Overall, the study of NSAIDs-membrane interactions has proved to be not only important for the better understanding of their pharmacological actions, but also for the rational development of new approaches to overcome NSAIDs adverse effects.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Membrana Celular/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/toxicidade , Membrana Celular/química , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Dinâmica Molecular , Prostaglandina-Endoperóxido Sintases/química , Prostaglandina-Endoperóxido Sintases/metabolismo , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
7.
For Immunopathol Dis Therap ; 3(2): 97-108, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23730526

RESUMO

Nitric oxide (NO)-releasing agents such as JS-K and NO-releasing hybrids such as NO- and NONO-nonsteroidal anti-inflammatory drugs are novel agents with great potential for controlling cancer. Although studied extensively, a key question pertaining to their molecular targets and mechanism of action remains unclear: the role of NO in the overall biological effect of these agents. It has been shown that NO can directly modify sulfhydryl residues of proteins through S-nitrosylation and induce apoptosis. We showed that 3 structurally diverse NO-nonsteroidal anti-inflammatory drugs S-nitrosylated nuclear factor-κB p65 in vitro and in vivo and also showed that these agents S-nitrosylated caspase-3 in vivo. JS-K reduced nuclear ß-catenin and cyclin D1 protein levels without affecting cytosolic ß-catenin expression. On the basis of a time course study, S-nitrsolyation of nuclear ß-catenin was determined to precede its degradation. These data provide a mechanistic role for NO and a rationale for the chemopreventive effects of these novel agents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa