Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Commun Signal ; 22(1): 256, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705997

RESUMO

BACKGROUND: Melanoma is a highly heterogeneous cancer, in which frequent changes in activation of signaling pathways lead to a high adaptability to ever changing tumor microenvironments. The elucidation of cancer specific signaling pathways is of great importance, as demonstrated by the inhibitor of the common BrafV600E mutation PLX4032 in melanoma treatment. We therefore investigated signaling pathways that were influenced by neurotrophin NRN1, which has been shown to be upregulated in melanoma. METHODS: Using a cell culture model system with an NRN1 overexpression, we investigated the influence of NRN1 on melanoma cells' functionality and signaling. We employed real time cell analysis and spheroid formation assays, while for investigation of molecular mechanisms we used a kinase phosphorylation kit as well as promotor activity analysis followed by mRNA and protein analysis. RESULTS: We revealed that NRN1 interacts directly with the cleaved intracellular domain (NICD) of Notch1 and Notch3, causing a potential retention of NICD in the cytoplasm and thereby reducing the expression of its direct downstream target Hes1. This leads to decreased sequestration of JAK and STAT3 in a Hes1-driven phosphorylation complex. Consequently, our data shows less phosphorylation of STAT3 while presenting an accumulation of total protein levels of STAT3 in association with NRN1 overexpression. The potential of the STAT3 signaling pathway to act in both a tumor suppressive and oncogenic manner led us to investigate specific downstream targets - namely Vegf A, Mdr1, cMet - which were found to be upregulated under oncogenic levels of NRN1. CONCLUSIONS: In summary, we were able to show that NRN1 links oncogenic signaling events between Notch and STAT3 in melanoma. We also suggest that in future research more attention should be payed to cellular regulation of signaling molecules outside of the classically known phosphorylation events.


Assuntos
Melanoma , Neuropeptídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Fosforilação , Ligação Proteica , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
2.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806464

RESUMO

Included in the neurotrophins family, the Neuritin 1 gene (NRN1) has emerged as an attractive candidate gene for schizophrenia (SZ) since it has been associated with the risk for the disorder and general cognitive performance. In this work, we aimed to further investigate the association of NRN1 with SZ by exploring its role on age at onset and its brain activity correlates. First, we developed two genetic association analyses using a family-based sample (80 early-onset (EO) trios (offspring onset ≤ 18 years) and 71 adult-onset (AO) trios) and an independent case-control sample (120 healthy subjects (HS), 87 EO and 138 AO patients). Second, we explored the effect of NRN1 on brain activity during a working memory task (N-back task; 39 HS, 39 EO and 39 AO; matched by age, sex and estimated IQ). Different haplotypes encompassing the same three Single Nucleotide Polymorphisms(SNPs, rs3763180-rs10484320-rs4960155) were associated with EO in the two samples (GCT, TCC and GTT). Besides, the GTT haplotype was associated with worse N-back task performance in EO and was linked to an inefficient dorsolateral prefrontal cortex activity in subjects with EO compared to HS. Our results show convergent evidence on the NRN1 association with EO both from genetic and neuroimaging approaches, highlighting the role of neurotrophins in the pathophysiology of SZ.


Assuntos
Proteínas Ligadas por GPI , Neuropeptídeos , Esquizofrenia , Adulto , Proteínas Ligadas por GPI/genética , Humanos , Imageamento por Ressonância Magnética , Memória de Curto Prazo/fisiologia , Fatores de Crescimento Neural/genética , Neuroimagem , Neuropeptídeos/genética , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal , Esquizofrenia/diagnóstico , Esquizofrenia/genética
3.
Cancer Sci ; 112(7): 2870-2883, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33931924

RESUMO

Wnt, PI3K-Akt-mTOR, and NF-κB pathways were reported to be involved in DNA damage repair (DDR). DDR-deficient cancers become critically dependent on backup DNA repair pathways. Neuritin 1 (NRN1) is reported to be involved in PI3K-Akt-mTOR, and its role in DDR remains unclear. Methylation-specific PCR, siRNA, flow cytometry, esophageal cancer cell lines, and xenograft mouse models were used to examine the role of NRN1 in esophageal cancer. The expression of NRN1 is frequently repressed by promoter region methylation in human esophageal cancer cells. NRN1 was methylated in 50.4% (510/1012) of primary esophageal cancer samples. NRN1 methylation is associated significantly with age (P < .001), tumor size (P < .01), TNM stage (P < .001), differentiation (P < .001) and alcohol consumption (P < .05). We found that NRN1 methylation is an independent prognostic factor for poor 5-y overall survival (P < .001). NRN1 inhibits colony formation, cell proliferation, migration, and invasion, and induces apoptosis and G1/S arrest in esophageal cancer cells. NRN1 suppresses KYSE150 and KYSE30 cells xenografts growth in nude mice. PI3K signaling is reported to activate ATR signaling by targeting CHK1, the downstream component of ATR. By analyzing the synthetic efficiency of NVP-BEZ235 (PI3K inhibitor) and VE-822 (an ATR inhibitor), we found that the combination of NVP-BEZ235 and VE-822 increased cytotoxicity in NRN1 methylated esophageal cancer cells, as well as KYSE150 cell xenografts. In conclusion, NRN1 suppresses esophageal cancer growth both in vitro and in vivo by inhibiting PI3K-Akt-mTOR signaling. Methylation of NRN1 is a novel synthetic lethal marker for PI3K-Akt-mTOR and ATR inhibitors in human esophageal cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Reparo do DNA , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neuropeptídeos/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Dano ao DNA , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Xenoenxertos , Humanos , Masculino , Metilação , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Prognóstico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral
4.
J Cell Sci ; 130(21): 3650-3662, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28871047

RESUMO

HuD protein (also known as ELAVL4) has been shown to stabilize mRNAs with AU-rich elements (ARE) in their 3' untranslated regions (UTRs), including Gap43, which has been linked to axon growth. HuD also binds to neuritin (Nrn1) mRNA, whose 3'UTR contains ARE sequences. Although the Nrn1 3'UTR has been shown to mediate its axonal localization in embryonic hippocampal neurons, it is not active in adult dorsal root ganglion (DRG) neurons. Here, we asked why the 3'UTR is not sufficient to mediate the axonal localization of Nrn1 mRNA in DRG neurons. HuD overexpression increases the ability of the Nrn1 3'UTR to mediate axonal localizing in DRG neurons. HuD binds directly to the Nrn1 ARE with about a two-fold higher affinity than to the Gap43 ARE. Although the Nrn1 ARE can displace the Gap43 ARE from HuD binding, HuD binds to the full 3'UTR of Gap43 with higher affinity, such that higher levels of Nrn1 are needed to displace the Gap43 3'UTR. The Nrn1 3'UTR can mediate a higher level of axonal localization when endogenous Gap43 is depleted from DRG neurons. Taken together, our data indicate that endogenous Nrn1 and Gap43 mRNAs compete for binding to HuD for their axonal localization and activity of the Nrn1 3'UTR.


Assuntos
Regiões 3' não Traduzidas , Axônios/metabolismo , Proteína Semelhante a ELAV 4/metabolismo , Proteína GAP-43/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Axônios/ultraestrutura , Sequência de Bases , Ligação Competitiva , Proteína Semelhante a ELAV 4/genética , Proteína GAP-43/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Neuropeptídeos/genética , Cultura Primária de Células , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Elementos de Resposta , Transdução de Sinais
5.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491902

RESUMO

This study aimed to investigate the effect of gonadotropin-releasing hormone agonist (GnRHa) treatment on the expression of neuritin 1 (NRN1) in women with ovarian endometriosis. We collected tissues and serum from women with endometriosis treated with (n = 45) or without (n = 37) GnRHa. NRN1 mRNA and protein levels were measured using qPCR and Western blot. Immunolocalization of NRN1 in endometriotic tissues was examined using immunohistochemistry. In addition, a follow-up study was carried out to monitor the serum level of NRN1 in patients before and after GnRHa treatment. Both mRNA (p = 0.046) and protein (p = 0.0155) levels of NRN1 were significantly lower in endometriotic tissues from patients receiving GnRHa treatment compared to the untreated group. Both epithelial and stromal cells of endometriotic tissues from untreated women with endometriosis exhibited stronger staining of NRN1 but not in those who were treated with GnRHa. The follow-up study showed that the serum level of the NRN1 concentration decreased significantly from 1149 ± 192.3 to 379.2 ± 80.16 pg/mL after GnRHa treatment (p = 0.0098). The expression of NRN1 was significantly lower in women with ovarian endometriosis treated with GnRHa. These results suggest that NRN1 may be a biomarker response to the effect of GnRHa treatment for patients with ovarian endometriosis.


Assuntos
Endometriose/etiologia , Endometriose/metabolismo , Hormônio Liberador de Gonadotropina/agonistas , Neuropeptídeos/genética , Ovário/patologia , Adulto , Biomarcadores , Biópsia , Endometriose/tratamento farmacológico , Endometriose/patologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
6.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685361

RESUMO

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

7.
Drug Discov Ther ; 15(2): 55-65, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33678755

RESUMO

Immature neurons undergo morphological and physiological maturation in order to establish neuronal networks. During neuronal maturation, a large number of genes change their transcriptional levels, and these changes may be mediated by chromatin modifiers. In this study, we found that the level of Ezh1, a component of Polycomb repressive complex 2 (PRC2), increases during neuronal maturation in mouse neocortical culture. In addition, conditional knockout of Ezh1 in post-mitotic excitatory neurons leads to downregulation of a set of genes related to neuronal maturation. Moreover, the locus encoding Cpg15/Neuritin (Nrn1), which is regulated by neuronal activity and implicated in stabilization and maturation of excitatory synapses, is a direct target of Ezh1 in cortical neurons. Together, these results suggest that elevated expression of Ezh1 contributes to maturation of cortical neurons.


Assuntos
Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Córtex Cerebral/citologia , Depressão/genética , Depressão/metabolismo , Regulação para Baixo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Neurônios/fisiologia , Complexo Repressor Polycomb 2/sangue , Complexo Repressor Polycomb 2/genética
8.
Biomed Environ Sci ; 34(9): 705-718, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34530960

RESUMO

OBJECTIVE: The effects of interactions between genetic and environmental factors on the noise-induced hearing loss (NIHL) are still unclear. This study aimed to assess interactions among gene polymorphisms, noise metrics, and lifestyles on the risk of NIHL. METHODS: A case-control study was conducted using 307 patients with NIHL and 307 matched healthy individuals from five manufacturing industries. General demographic data, lifestyle details, and noise exposure levels were recorded. The Kompetitive allele-specific polymerase chain reaction (KASP) was used to analyze the genotypes of 18 SNPs. RESULTS: GMDR model demonstrated a relevant interaction between NRN1 rs3805789 and CAT rs7943316 (P = 0.0107). Subjects with T allele of rs3805789 or T allele of rs7943316 had higher risks of NIHL than those with the SNP pair of rs3805789-CC and rs7943316-AA (P < 0.05). There was an interaction among rs3805789, rs7943316, and kurtosis (P = 0.0010). Subjects exposed to complex noise and carrying both rs3805789-CT and rs7943316-TT or rs3805789-CT/TT and rs7943316-AA had higher risks of NIHL than those exposed to steady noise and carrying both rs3805789-CC and rs7943316-AA (P < 0.05). The best six-locus model involving NRN1 rs3805789, CAT rs7943316, smoking, video volume, physical exercise, and working pressure for the risk of NIHL was found to be the interaction (P = 0.0010). An interaction was also found among smoking, video volume, physical exercise, working pressure, and kurtosis (P = 0.0107). CONCLUSION: Concurrence of NRN1 and CAT constitutes a genetic risk factor for NIHL. Complex noise exposure significantly increases the risk of NIHL in subjects with a high genetic risk score. Interactions between genes and lifestyles as well as noise metrics and lifestyles affect the risk of NIHL.


Assuntos
Catalase/genética , Perda Auditiva Provocada por Ruído/genética , Neuropeptídeos/genética , Adulto , Estudos de Casos e Controles , Feminino , Proteínas Ligadas por GPI/genética , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
9.
J Mol Neurosci ; 71(1): 66-79, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32607759

RESUMO

Neuritin (Nrn1) is a small highly conserved extracellular membrane protein involved in the process of neural cell survival and differentiation, axonal and dendritic growth, and synapse formation and maturation. Previous studies have demonstrated that intravitreal injection of recombinant Nrn1 as a gene therapy could alleviate retinal ganglion cell (RGC) apoptosis and promote optic nerve axon regeneration after optic nerve crush (ONC). However, the mechanism underlying the repairing effect of Nrn1 against optic never injury remains elusive. In this study, a rAAV2-mediated Nrn1 overexpression vector (AAV2-Nrn1) was applied to treat ONC through intravitreal injection for the purpose of further exploring the effect and mechanism of Nrn1 in repairing the injured optic nerve. The results showed that AAV2-Nrn1 was mainly transfected into RGCs without affecting astrocytes. Nrn1 overexpression effectively reduced RGC apoptosis and promoted optic nerve regeneration and visual function restoration as demonstrated by retinal imaging, histopathological analysis, and physiological function detection in vivo following ONC. Immunoblot assay revealed that functional molecules of Nrn1 activated the Akt1 and Stat3 pathways and inhibited the mitochondrial apoptotic pathway. The results of the present study may provide experimental evidence for further application of Nrn1 to the clinical treatment of optic nerve injury.


Assuntos
Regeneração Nervosa/fisiologia , Neuropeptídeos/fisiologia , Traumatismos do Nervo Óptico/terapia , Células Ganglionares da Retina/patologia , Animais , Apoptose , Axônios/fisiologia , Dependovirus/genética , Potenciais Evocados Visuais , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/fisiologia , Regulação da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Células HEK293 , Humanos , Masculino , Compressão Nervosa , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Nervo Óptico/fisiologia , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Reflexo Pupilar , Células Ganglionares da Retina/metabolismo , Regulação para Cima
10.
J Mol Med (Berl) ; 98(5): 707-717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32285140

RESUMO

Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Very few therapeutic options are currently available in this neoplasia. The use of 5-Aza-2'-deoxycytidine (5-AZAdC) was approved for the treatment of myelodysplastic syndromes, and this drug can treat solid tumours at low doses. Epigenetic manipulation of GC cell lines is a useful tool to better understand gene expression regulatory mechanisms for clinical applications. Therefore, we compared the gene expression profile of 5-AZAdC-treated and untreated GC cell lines by a microarray assay. Among the genes identified in this analysis, we selected NRN1 and TNFAIP3 to be evaluated for gene expression by RT-qPCR and DNA methylation by bisulfite DNA next-generation sequencing in 43 and 52 pairs of GC and adjacent non-neoplastic tissue samples, respectively. We identified 83 candidate genes modulated by DNA methylation in GC cell lines. Increased expression of NRN1 and TNFAIP3 was associated with advanced tumours (P < 0.05). We showed that increased NRN1 and TNFAIP3 expression seems to be regulated by DNA demethylation in GC samples: inverse correlations between the mRNA and DNA methylation levels in the promoter of NRN1 (P < 0.05) and the intron of TNFAIP3 (P < 0.05) were detected. Reduced NRN1 promoter methylation was associated with III/IV TNM stage tumours (P = 0.03) and the presence of Helicobacter pylori infection (P = 0.02). The identification of demethylated activated genes in GC may be useful in clinical practice, stratifying patients who are less likely to benefit from 5-AZAdC-based therapies. KEY MESSAGES: Higher expression of NRN1 and TNFAIP3 is associated with advanced gastric cancer (GC). NRN1 promoter hypomethylation contributes to gene upregulation in advanced GC. TNFAIP3 intronic-specific CpG site demethylation contributes to gene upregulation in GC. These findings may be useful to stratify GC patients who are less likely to benefit from DNA demethylating-based therapies.


Assuntos
Desmetilação do DNA , Regulação Neoplásica da Expressão Gênica , Neuropeptídeos/genética , Neoplasias Gástricas/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Azacitidina/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Ilhas de CpG , Metilação de DNA , Decitabina/farmacologia , Epigênese Genética , Proteínas Ligadas por GPI/genética , Perfilação da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Prognóstico , Neoplasias Gástricas/patologia , Transcriptoma
11.
Genes (Basel) ; 10(4)2019 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-31010100

RESUMO

This article explores the mechanism of miR-194 on the proliferation and apoptosis of Aß1-42-transduced hippocampal neurons. Aß1-42-transduced hippocampal neuron model was established by inducing hippocampal neurons with Aß1-42. MTT assay and flow cytometry were used to detect the viability and apoptosis of hippocampal neurons, respectively. qRT-PCR was used to detect changes in miR-194 and Nrn1 expression after Aß1-42 induction. Aß1-42-transduced hippocampal neurons were transfected with miR-194 mimics and/or Nrn1 overexpression vectors. Their viability and neurite length were detected by MTT assay and immunofluorescence, respectively. Western blot was used to detect protein expression. Aß1-42 inhibited Aß1-42-transduced hippocampal neuron activity and promoted their apoptosis in a dose-dependent manner. miR-194 was upregulated and Nrn1 was downregulated in Aß1-42-transduced hippocampal neurons (p < 0.05). Compared with the model group, Aß1-42-transduced hippocampal neurons of the miR-194 mimic group had much lower activity, average longest neurite length, Nrn1, p-AkT, and Bcl-2 protein expression and had much higher Bax, Caspase-3, and Cleaved Caspase-3 protein expression. Compared with the model group, Aß1-42-transduced hippocampal neurons of the LV-Nrn1 group had much higher activity, average longest neurite length, Nrn1, p-AkT, and Bcl-2 protein expression and had much lower Bax, Caspase-3, and Cleaved Caspase-3 protein expression. Nrn1 is a target gene of miR-194. miR-194 inhibited apoptosis of Aß1-42-transduced hippocampal neurons by inhibiting Nrn1 and decreasing PI3K/AkT signaling pathway activity.


Assuntos
Peptídeos beta-Amiloides/genética , Hipocampo/citologia , MicroRNAs/genética , Neuropeptídeos/genética , Fragmentos de Peptídeos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/farmacologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/química , Hipocampo/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Modelos Biológicos , Neurônios/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Transdução Genética
12.
Int J Clin Exp Pathol ; 11(4): 1956-1964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31938301

RESUMO

OBJECTIVE(S): Neuritin (Nrn1) is a glycophosphatidylinositol-linked protein that can be induced by neural activity in the central nervous system. However, its expression outside the nervous system and association with human cancers is unclear. This study investigated the expression of Nrn1 in human tissues as well as its association with human cancers. MATERIALS AND METHODS: Nrn1 gene expression in human adult tissues was evaluated with the Clontech Multiple Tissue cDNA panel. Nrn1 protein in various tissues was detected by immunohistochemistry. Signal v.4.0 and TMHMM v.2.0 software were used to identify the signal peptide and transmembrane helix of Nrn1. The subcellular localization of Nrn1 in cultured SH-SY5Y cells was assessed by immunocytochemistry and western blotting. The expression of Nrn1 in human cancers were assessed using the online tools GEPIA. RESULTS: Nrn1 mRNA was expressed in various tissues, compared to mRNA levels in the brain tissues, expression was high in the placenta, lungs, skeletal muscle, thymus, pancreas, liver and the heart tissues; lower levels were detected in the small intestine, ovary, spleen, and testes, but there was no detectable expression in the kidneys, colon, prostate or leukocytes. In SY5Y cells, Nrn1 was colocalized with caveolin 1 at the plasma membrane. Nrn1 was downregulated in Bladder Urothelial Carcinoma (BLCA); Breast invasive carcinoma (BRCA); Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC); Colon adenocarcinoma (COAD); Glioblastoma multiforme (GBM); Kidney Chromophobe (KIHC); Kidney renal papillary cell carcinoma (KIRP); Lower Grade GLioma (LGG); Rectum adenocarcinoma (READ); Uterine Corpus Endometrial Carcinoma (UCEC); Lung adenocarcinoma (LUA), Ovarian serous cystadenocarcinoma (OV) and upregulated in Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC). A combination of the overall survival analysis of the 12 kinds of human tumors with Nrn1 downregulation revealed that patients with high levels of Nrn1 present a long term survival. But there is no significant effect on DLBC patients' survival. CONCLUSION: Nrn1 is expressed in various human tissues including the nervous system, specifically in the lipid rafts of cell membranes. We also provided the strong evidence that Nrn1 is associated with 13 kinds of human cancers and could function as biomarkers and therapeutic targets for these cancers.

13.
Oncotarget ; 8(1): 1117-1131, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27901477

RESUMO

The neurotrophin Neuritin1 (NRN1; cpg15) belongs to the candidate plasticity gene (CPG) family and is expressed in postmitotic-differentiating neurons of the developmental nervous system and neuronal structures associated with plasticity in the brain of human adult.Our newest findings document that NRN1 deregulation could contribute also to disease development and have impact on malignant melanoma. Our analyses displayed the over-expression of NRN1 in melanoma in vitro and in vivo, shown by immunohistochemistry and qRT-PCR on microdissected melanoma tissue; furthermore, soluble NRN1 was detectable in tissue culture supernatant and serum of melanoma patients.To investigate the role of NRN1 in melanoma we performed knockdown, over-expression and recombinant-NRN1-treatment experiments affiliated by functional assays. Our results show that migration, attachment independent growth and vasculogenesis were affected after manipulation of NRN1 on endogenous and extrinsic level. Interestingly, high NRN1 serum levels correlate with low MIA serum levels (< 10ng/ml). Therefore, we speculate that NRN1 could be a marker for early melanoma stages, in particular.In summary, we detected an overexpression of NRN1 in melanoma patient. In functional cell culture experiments we found a correlation between NRN1 expression and the cancerous behavior of melanoma cells.


Assuntos
Melanoma/genética , Melanoma/patologia , Neovascularização Patológica/genética , Neuropeptídeos/genética , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/farmacologia , Expressão Gênica , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Melanócitos/metabolismo , Melanoma/metabolismo , Neovascularização Patológica/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
14.
J Affect Disord ; 211: 92-98, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28107668

RESUMO

BACKGROUND: Neuritin-1 is a neurotrophic factor involved in synaptic plasticity that has been associated with depressive disorders, schizophrenia and cognitive performance. The study of genotype-phenotype relationships in healthy individuals is a useful framework to investigate the etiology of brain dysfunctions. We therefore aimed to investigate in a non-clinical sample whether NRN1 gene contributes to the psychopathological profile, with a particular focus on the clinical dimensions previously related to the NRN1 gene (i.e. depressive and psychotic). Furthermore, we aimed to analyze: i) the role of NRN1 on executive functions, ii) whether the association between either NRN1-psychopathological profile or NRN1-cognitive performance is moderated by the BDNF gene. METHODS: The sample comprised 410 non-clinical subjects who filled in the self-reported Brief Symptom Inventory (BSI) and were assessed for executive performance (Verbal Fluency, Wisconsin Card Sorting Test (WCST) and Letter-Number subscale (WAIS-III)). Genotyping included nine SNPs in NRN1 and one in BDNF. RESULTS: i) GG homozygotes (rs1475157-NRN1) showed higher scores on BSI depressive dimension and on total scores compared to A carriers (corrected p-values: 0.0004 and 0.0003, respectively). ii) a linear trend was detected between GG genotype of rs1475157 and a worse cognitive performance in WCST total correct responses (uncorrected p-value: 0.029). iii) Interaction between rs1475157-NRN1 and Val66Met-BDNF was found to modulate depressive symptoms (p=0.001, significant after correction). LIMITATIONS: Moderate sample size; replication in a larger sample is needed. CONCLUSIONS: NRN1 is associated with depressive symptoms and executive function in a non-clinical sample. Our results also suggest that the role of NRN1 seems to be modulated by BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Depressão/genética , Transtorno Depressivo/genética , Polimorfismo Genético , Adulto , Função Executiva , Feminino , Predisposição Genética para Doença , Genótipo , Heterozigoto , Humanos , Masculino , Plasticidade Neuronal , Esquizofrenia/genética
15.
Eur Psychiatry ; 40: 60-64, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27855309

RESUMO

BACKGROUND: The interest in studying gene-gene interactions is increasing for psychiatric diseases such as schizophrenia-spectrum disorders (SSD), where multiple genes are involved. Dysbindin-1 (DTNBP1) and Neuritin-1 (NRN1) genes have been previously associated with SSD and both are involved in synaptic plasticity. We aimed to study whether these genes show an epistatic effect on the risk for SSD. METHODS: The sample comprised 388 SSD patients and 397 healthy subjects. Interaction was tested between: (i) three DTNBP1 SNPs (rs2619537, rs2743864, rs1047631) related to changes in gene expression; and (ii) an haplotype in NRN1 previously associated with the risk for SSD (rs645649-rs582262: HAP-risk C-C). RESULTS: An interaction between DTNBP1 rs2743864 and NRN1 HAP-risk was detected by using the model based multifactor dimensionality reduction (MB-MDR) approach (P=0.0049, after permutation procedure), meaning that the risk for SSD is significantly higher in those subjects carrying both the A allele of rs2743864 and the HAP-risk C-C. This interaction was confirmed by using a logistic regression model (P=0.033, OR (95%CI)=2.699 (1.08-6.71), R2=0.162). DISCUSSION: Our results suggest that DTNBP1 and NRN1 genes show a joint effect on the risk for SSD. Although the precise mechanism underlying this effect is unclear, the fact that these genes have been involved in synaptic maturation, connectivity and glutamate signalling suggests that our findings could be of value as a link to the schizophrenia aetiology.


Assuntos
Disbindina/genética , Neuregulina-1/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Adulto , Alelos , Proteínas de Transporte/genética , Proteínas Associadas à Distrofina/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal
16.
World J Biol Psychiatry ; 17(2): 129-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26700405

RESUMO

OBJECTIVES: Neuritin 1 gene (NRN1) is involved in neurodevelopment processes and synaptic plasticity and its expression is regulated by brain-derived neurotrophic factor (BDNF). We aimed to investigate the association of NRN1 with schizophrenia-spectrum disorders (SSD) and bipolar disorders (BPD), to explore its role in age at onset and cognitive functioning, and to test the epistasis between NRN1 and BDNF. METHODS: The study was developed in a sample of 954 SSD/BPD patients and 668 healthy subjects. Genotyping analyses included 11 SNPs in NRN1 and one functional SNP in BDNF. RESULTS: The frequency of the haplotype C-C (rs645649-rs582262) was significantly increased in patients compared to controls (P = 0.0043), while the haplotype T-C-C-T-C-A (rs3763180-rs10484320-rs4960155-rs9379002-rs9405890-rs1475157) was more frequent in controls (P = 3.1 × 10(-5)). The variability at NRN1 was nominally related to changes in age at onset and to differences in intelligence quotient, in SSD patients. Epistasis between NRN1 and BDNF was significantly associated with the risk for SSD/BPD (P = 0.005). CONCLUSIONS: Results suggest that: (i) NRN1 variability is a shared risk factor for both SSD and BPD, (ii) NRN1 may have a selective impact on age at onset and intelligence in SSD, and (iii) the role of NRN1 seems to be not independent of BDNF.


Assuntos
Transtorno Bipolar/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Neuropeptídeos/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Adulto , Idade de Início , Estudos de Casos e Controles , Cognição , Feminino , Proteínas Ligadas por GPI/genética , Predisposição Genética para Doença , Haplótipos , Humanos , Testes de Inteligência , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal , Espanha , Adulto Jovem
17.
J Cancer ; 7(11): 1487-96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471565

RESUMO

Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133(+) primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfection and expression of a microRNA-374a overexpression plasmid in the glioma stem cells. Transmission electron microscopy detected the presence of significant magnetic nanoparticle substances within the CD133(+) glioma stem cells after transfection. The qRT-PCR and Northern blot results showed that the magnetic nanoparticles could be used to achieve the transfection of the microRNA-374a overexpression plasmid into glioma stem cells and the efficient expression of mature microRNA-374a. The MTT and flow cytometry results showed that the proliferation inhibition rate was significantly higher in cells from the microRNA-374a transfection group than in cells from the microRNA-mut transfection group; additionally, the former cells presented significant cell cycle arrest. The Transwell experiments confirmed that the overexpression of microRNA-374a could significantly reduce the invasiveness of CD133(+) glioma stem cells. Moreover, the high expression of microRNA-374a mediated by the magnetic nanoparticles effectively reduced the tumourigenicity of CD133(+) glioma stem cells in nude mice. The luciferase assays revealed that mature microRNA-374a fragments could bind to the 3'UTR of Neuritin (NRN1), thereby interfering with Neuritin mRNA expression. The qRT-PCR and Western blotting results showed that the overexpression of microRNA-374a significantly reduced the expression of genes such as NRN1, CCND1, CDK4 and Ki67 in glioma stem cells. Thus, magnetic nanoparticles can efficiently mediate the transfection and expression of microRNA expression plasmids in mammalian cells. The overexpression of microRNA-374a can effectively silence NRN1 expression, thereby inhibiting the proliferation, invasion and in vivo tumourigenicity of human glioma stem cells.

18.
Eur J Med Genet ; 58(5): 310-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25817395

RESUMO

The 6p terminal deletions are rare and present variability of clinical features, which increases the importance of reporting additional cases in order to better characterize genotype-phenotype correlations. We report a 12-year-old girl with a de novo deletion in 6p25.1-pter characterized by high-resolution karyotyping and FISH. Further analysis using oligonucleotide array-CGH revealed a 5.06 Mb 6p25.1-pter deletion associated with a contiguous 1 Mb 6p25.1 duplication. The patient presented normal growth, developmental delay, frontal bossing, severe hypertelorism, corectopia, wide and depressed nasal bridge, mild learning disability, hearing loss and diffuse leukopathy. Additionaly, she presented peculiar phenotypic features reported herein for the first time in 6p25 deletion syndrome: cerebrospinal fluid fistula and bones resembling those seen in 3-M syndrome. The distinctive phenotype of the 6p25 deletion syndrome has been mainly correlated with the FOXC1 and FOXF2 genes deletions, both related mainly to eye development. We also consider the SERPINB6 as a candidate for sensorineural hearing loss and TUBB2A as a candidate for our patient's skeletal features. In addition, as our patient had a duplication including NRN1, a gene related with neurodevelopment, synaptic plasticity and cognitive dysfunction in schizophrenia, we suggest that this gene could be associated with her white matter abnormalities and neurocognitive phenotype.


Assuntos
Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Criança , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 6/genética , Feminino , Fatores de Transcrição Forkhead/genética , Proteínas Ligadas por GPI/genética , Estudos de Associação Genética , Humanos , Neuropeptídeos/genética , Radiografia , Serpinas/genética , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa