Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2308569120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37917792

RESUMO

Toxoplasma gondii is a zoonotic protist pathogen that infects up to one third of the human population. This apicomplexan parasite contains three genome sequences: nuclear (65 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear integrants of mitochondrial DNA) and NUPTs (nuclear integrants of plastid DNA) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome-the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 mya, revealed that the movement and fixation of five NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb), and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together, these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.


Assuntos
Toxoplasma , Humanos , Toxoplasma/genética , Genoma , DNA Mitocondrial/genética , Mitocôndrias/genética , Evolução Molecular , Núcleo Celular/genética , Análise de Sequência de DNA
2.
BMC Genomics ; 24(1): 439, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542258

RESUMO

BACKGROUND: DNA methylation is one of the best characterized epigenetic modifications in the mammalian nuclear genome and is known to play a significant role in various biological processes. Nonetheless, the presence of 5-methylcytosine (5mC) in mitochondrial DNA remains controversial, as data ranging from the lack of 5mC to very extensive 5mC have been reported. RESULTS: By conducting comprehensive bioinformatic analyses of both published and our own data, we reveal that previous observations of extensive and strand-biased mtDNA-5mC are likely artifacts due to a combination of factors including inefficient bisulfite conversion, extremely low sequencing reads in the L strand, and interference from nuclear mitochondrial DNA sequences (NUMTs). To reduce false positive mtDNA-5mC signals, we establish an optimized procedure for library preparation and data analysis of bisulfite sequencing. Leveraging our modified workflow, we demonstrate an even distribution of 5mC signals across the mtDNA and an average methylation level ranging from 0.19% to 0.67% in both cell lines and primary cells, which is indistinguishable from the background noise. CONCLUSIONS: We have developed a framework for analyzing mtDNA-5mC through bisulfite sequencing, which enables us to present multiple lines of evidence for the lack of extensive 5mC in mammalian mtDNA. We assert that the data available to date do not support the reported presence of mtDNA-5mC.


Assuntos
5-Metilcitosina , DNA Mitocondrial , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , 5-Metilcitosina/metabolismo , Sulfitos , Mitocôndrias/genética , Metilação de DNA , Mamíferos/genética , Mamíferos/metabolismo , Análise de Sequência de DNA/métodos
3.
Mol Biol Rep ; 51(1): 36, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157080

RESUMO

BACKGROUND: Ellobius talpinus is a subterranean rodent representing an attractive model in population ecology studies due to its highly special lifestyle and sociality. In such studies, mitochondrial DNA (mtDNA) is widely used. However, if nuclear copies of mtDNA, aka NUMTs, are present, they may co-amplify with the target mtDNA fragment, generating misleading results. The aim of this study was to determine whether NUMTs are present in E. talpinus. METHODS AND RESULTS: PCR amplification of the putative mtDNA CytB-D-loop fragment using 'universal' primers from 56 E. talpinus samples produced multiple double peaks in 90% of the sequencing chromatograms. To reveal NUMTs, molecular cloning and sequencing of PCR products of three specimens was conducted, followed by phylogenetic analysis. The pseudogene nature of three out of the seven detected haplotypes was confirmed by their basal positions in relation to other Ellobius haplotypes in the phylogenetic tree. Additionally, 'haplotype B' was basal in relation to other E. talpinus haplotypes and found present in very distant sampling sites. BLASTN search revealed 195 NUMTs in the E. talpinus nuclear genome, including fragments of all four PCR amplified pseudogenes. Although the majority of the NUMTs studied were short, the entire mtDNA had copies in the nuclear genome. The most numerous NUMTs were found for rrnL, COXI, and D-loop. CONCLUSIONS: Numerous NUMTs are present in E. talpinus and can be difficult to discriminate against mtDNA sequences. Thus, in future population or phylogenetic studies in E. talpinus, the possibility of cryptic NUMTs amplification should always be taken into account.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Filogenia , Genoma , Mitocôndrias/genética , Arvicolinae/genética , Análise de Sequência de DNA , Genoma Mitocondrial/genética
4.
Brief Bioinform ; 21(4): 1368-1377, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31204429

RESUMO

Genetic associations between mitochondrial DNA (mtDNA) and economic traits have been widely reported for pigs, which indicate the importance of mtDNA. However, studies on mtDNA heteroplasmy in pigs are rare. Next generation sequencing (NGS) methodologies have emerged as a promising genomic approach for detection of mitochondrial heteroplasmy. Due to the short reads, flexible bioinformatic analyses and the contamination of nuclear mitochondrial sequences (NUMTs), NGS was expected to increase false-positive detection of heteroplasmy. In this study, Sanger sequencing was performed as a gold standard to detect heteroplasmy with a detection sensitivity of 5% in pigs and then one whole-genome sequencing method (WGS) and two mtDNA enrichment sequencing methods (Capture and LongPCR) were carried out. The aim of this study was to determine whether mitochondrial heteroplasmy identification from NGS data was affected by NUMTs. We find that WGS generated more false intra-individual polymorphisms and less mapping specificity than the two enrichment sequencing methods, suggesting NUMTs indeed led to false-positive mitochondrial heteroplasmies from NGS data. In addition, to accurately detect mitochondrial diversity, three commonly used tools-SAMtools, VarScan and GATK-with different parameter values were compared. VarScan achieved the best specificity and sensitivity when considering the base alignment quality re-computation and the minimum variant frequency of 0.25. It also suggested bioinformatic workflow interfere in the identification of mtDNA SNPs. In conclusion, intra-individual polymorphism in pig mitochondria from NGS data was confused with NUMTs, and mtDNA-specific enrichment is essential before high-throughput sequencing in the detection of mitochondrial genome sequences.


Assuntos
DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único , Suínos
5.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216360

RESUMO

Whole-genome sequencing (WGS) data present a readily available resource for mitochondrial genome (mitogenome) haplotypes that can be utilized for genetics research including population studies. However, the reconstruction of the mitogenome is complicated by nuclear mitochondrial DNA (mtDNA) segments (NUMTs) that co-align with the mtDNA sequences and mimic authentic heteroplasmy. Two minimum variant detection thresholds, 5% and 10%, were assessed for the ability to produce authentic mitogenome haplotypes from a previously generated WGS dataset. Variants associated with NUMTs were detected in the mtDNA alignments for 91 of 917 (~8%) Swedish samples when the 5% frequency threshold was applied. The 413 observed NUMT variants were predominantly detected in two regions (nps 12,612-13,105 and 16,390-16,527), which were consistent with previously documented NUMTs. The number of NUMT variants was reduced by ~97% (400) using a 10% frequency threshold. Furthermore, the 5% frequency data were inconsistent with a platinum-quality mitogenome dataset with respect to observed heteroplasmy. These analyses illustrate that a 10% variant detection threshold may be necessary to ensure the generation of reliable mitogenome haplotypes from WGS data resources.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Haplótipos/genética , Mitocôndrias/genética , Núcleo Celular/genética , Humanos , Sequenciamento Completo do Genoma/métodos
6.
Genome ; 63(8): 365-374, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32396758

RESUMO

We review the insertion of mitochondrial DNA (mtDNA) fragments into nuclear DNA (NUMTS) as a general and ongoing process that has occurred many times during genome evolution. Fragments of mtDNA are generated during the lifetime of organisms in both somatic and germinal cells, by the production of reactive oxygen species in the mitochondria. The fragments are inserted into the nucleus during the double-strand breaks repair via the non-homologous end-joining machinery, followed by genomic instability, giving rise to the high variability observed in NUMT patterns among species, populations, or genotypes. Some de novo produced mtDNA insertions show harmful effects, being involved in human diseases, carcinogenesis, and ageing. NUMT generation is a non-stop process overpassing the Mendelian transmission. This parasitic property ensures their survival even against their harmful effects. The accumulation of mtDNA fragments mainly at pericentromeric and subtelomeric regions is important to understand the transmission and integration of NUMTs into the genomes. The possible effect of female meiotic drive for mtDNA insertions at centromeres remains to be studied. In spite of the harmful feature of NUMTs, they are important in cell evolution, representing a major source of genomic variation.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/fisiologia , Evolução Molecular , Mutagênese Insercional , Envelhecimento/genética , Animais , Centrômero , DNA Mitocondrial/genética , Doença/genética , Humanos , Telômero
7.
BMC Genomics ; 20(1): 1017, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878873

RESUMO

BACKGROUND: Traces of interbreeding of Neanderthals and Denisovans with modern humans in the form of archaic DNA have been detected in the genomes of present-day human populations outside sub-Saharan Africa. Up to now, only nuclear archaic DNA has been detected in modern humans; we therefore attempted to identify archaic mitochondrial DNA (mtDNA) residing in modern human nuclear genomes as nuclear inserts of mitochondrial DNA (NUMTs). RESULTS: We analysed 221 high-coverage genomes from Oceania and Indonesia using an approach which identifies reads that map both to the nuclear and mitochondrial DNA. We then classified reads according to the source of the mtDNA, and found one NUMT of Denisovan mtDNA origin, present in 15 analysed genomes; analysis of the flanking region suggests that this insertion is more likely to have happened in a Denisovan individual and introgressed into modern humans with the Denisovan nuclear DNA, rather than in a descendant of a Denisovan female and a modern human male. CONCLUSIONS: Here we present our pipeline for detecting introgressed NUMTs in next generation sequencing data that can be used on genomes sequenced in the future. Further discovery of such archaic NUMTs in modern humans can be used to detect interbreeding between archaic and modern humans and can reveal new insights into the nature of such interbreeding events.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Genômica/métodos , Animais , Evolução Molecular , Hominidae/genética , Homem de Neandertal/genética , Filogenia
8.
BMC Evol Biol ; 18(1): 162, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390623

RESUMO

BACKGROUND: Mitochondrial and plastid DNA fragments are continuously transferred into eukaryotic nuclear genomes, giving rise to nuclear copies of mitochondrial DNA (numts) and nuclear copies of plastid DNA (nupts). Numts and nupts are classified as simple if they are composed of a single organelle fragment or as complex if they are composed of multiple fragments. Mosaic insertions are complex insertions composed of fragments of both mitochondrial and plastid DNA. Simple numts and nupts in eukaryotes have been extensively studied, their mechanism of insertion involves non-homologous end joining (NHEJ). Mosaic insertions have been less well-studied and their mechanisms of integration are unknown. RESULTS: Here we estimated the number of nuclear mosaic insertions (numins) in nine plant genomes. We show that numins compose up to 10% of the total nuclear insertions of organelle DNA in these plant genomes. The NHEJ hallmarks typical for numts and nupts were also identified in mosaic insertions. However, the number of identified insertions that integrated via NHEJ mechanism is underestimated, as NHEJ signatures are conserved only in recent insertions and mutationally eroded in older ones. A few complex insertions show signatures of long homology that cannot be attributed to NHEJ, a novel observation that implicates gene conversion or single strand annealing mechanisms in organelle nuclear insertions. CONCLUSIONS: The common NHEJ signature that was identified here reveals that, in plant cells, mitochondria and plastid fragments in numins must meet during or prior to integration into the nuclear genome.


Assuntos
Núcleo Celular/genética , Reparo do DNA por Junção de Extremidades/genética , Genoma de Planta , Recombinação Homóloga/genética , Mitocôndrias/genética , Mosaicismo , Mutagênese Insercional/genética , Plastídeos/genética , Sequência de Bases , DNA Mitocondrial/genética
9.
Anim Genet ; 49(3): 259-264, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29521475

RESUMO

Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Evolução Molecular , Perus/genética , Animais , Animais Domésticos/genética , Genoma , Pseudogenes , Análise de Sequência de DNA
10.
Mol Biol Evol ; 32(1): 275-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25261406

RESUMO

Our understanding of genome-wide and comparative sequence information has been broadened considerably by the databases available from the University of California Santa Cruz (UCSC) Genome Bioinformatics Department. In particular, the identification and visualization of genomic sequences, present in some species but absent in others, led to fundamental insights into gene and genome evolution. However, the UCSC tools currently enable one to visualize orthologous genomic loci for a range of species in only a single locus. For large-scale comparative analyses of such presence/absence patterns a multilocus view would be more desirable. Such a tool would enable us to compare thousands of relevant loci simultaneously and to resolve many different questions about, for example, phylogeny, specific aspects of genome and gene evolution, such as the gain or loss of exons and introns, the emergence of novel transposed elements, nonprotein-coding RNAs, and viral genomic particles. Here, we present the first tool to facilitate the parallel analysis of thousands of genomic loci for cross-species presence/absence patterns based on multiway genome alignments. This genome presence/absence compiler uses annotated or other compilations of coordinates of genomic locations and compiles all presence/absence patterns in a flexible, color-coded table linked to the individual UCSC Genome Browser alignments. We provide examples of the versatile information content of such a screening system especially for 7SL-derived transposed elements, nuclear mitochondrial DNA, DNA transposons, and miRNAs in primates (http://www.bioinformatics.uni-muenster.de/tools/gpac, last accessed October 1, 2014).


Assuntos
Genômica/métodos , Alinhamento de Sequência/métodos , Bases de Dados Genéticas , Evolução Molecular , Genoma , Humanos , Internet , Filogenia , Software , Interface Usuário-Computador
11.
Parasitol Res ; 115(4): 1473-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26677095

RESUMO

About 200 individual sarcocysts were excised from 12 samples of cattle beef from five countries (Argentina, Brazil, Germany, New Zealand, Uruguay) and tentatively identified to species or cyst type on the basis of their size and shape and cyst wall morphology. Genomic DNA was extracted from 147 of these sarcocysts and used initially for PCR amplification and sequencing of the partial mitochondrial cytochrome c oxidase subunit I gene (cox1) in order to identify the sarcocysts to species and/or sequence type. In addition, seven Sarcocystis sinensis-like sarcocysts collected from the oesophagus of water buffaloes in Egypt were examined at cox1 for comparative purposes. Based on the results from the cox1 marker, selected sarcocyst isolates from both hosts were further characterised at one to three regions of the nuclear ribosomal (r) DNA unit, i.e. the complete 18S rRNA gene, the complete internal transcribed spacer 1 (ITS1) region and the partial 28S rRNA gene. This was done in order to compare the results with previous molecular identifications based on 18S rRNA gene sequences and to evaluate the utility of these regions for species delimitations and phylogenetic inferences. On the basis of sarcocyst morphology and molecular data, primarily the cox1 sequences, four Sarcocystis spp. were identified in the samples of cattle beef. Twenty-two microscopic sarcocysts (1 × 0.1 mm) with hair-like protrusions were assigned to Sarcocystis cruzi, 56 macroscopic sarcocysts (3-8 × 0.5 mm) with finger-like protrusions were assigned to Sarcocystis hirsuta and 45 and 24 microscopic sarcocysts (1-3 × 0.1-0.2 mm) with finger-like protrusions were assigned to Sarcocystis bovifelis and Sarcocystis bovini n. sp., respectively. Sarcocysts of S. cruzi were identified in samples of beef from Argentina and Uruguay; sarcocysts of S. hirsuta in samples from Argentina, Brazil, Germany and New Zealand; sarcocysts of S. bovifelis in samples from Argentina and Germany; and sarcocysts of S. bovini in samples from Argentina and New Zealand. The microscopic sarcocysts from water buffaloes were confirmed to belong to S. sinensis. The cox1 sequences of S. bovifelis and S. bovini, respectively, shared an identity of 93-94 % with each other, and these sequences shared an identity of 89-90 % with cox1 of S. sinensis. In contrast, the intraspecific sequence identity was 98.4-100 % (n = 45), 99.3-100 % (n = 24) and 99.5-100 % (n = 7) for sequences of S. bovifelis, S. bovini and S. sinensis, respectively. In each of the latter three species, an aberrant type of cox1 sequences was also identified, which was only 91-92 % identical with the predominant cox1 type of the same species and about 98 % identical with the aberrant types of the two other species. These aberrant cox1 sequences are believed to represent non-functional nuclear copies of the mitochondrial genes (numts or pseudogenes). They might be used as additional markers to separate the three species from each other. Sequencing of a considerable number of clones of S. bovifelis, S. bovini and S. sinensis from each of the three regions of the rDNA unit revealed intraspecific sequence variation in all loci in all species and particularly in the ITS1 locus (78-100 % identity). As regards the 18S rRNA gene, it was possible to separate the three species from each other on the basis of a few consistent nucleotide differences in the less variable 3' end half of the gene. A comparison of the new sequences with GenBank sequences obtained from S. sinensis-like sarcocysts in cattle in other studies indicated that previous sequences derived from cattle in Germany and Austria belonged to S. bovifelis, whereas those derived from cattle in China belonged to S. bovini. On the basis of the new 28S rRNA sequences, it was possible to separate S. sinensis from S. bovifelis and S. bovini, whereas the latter two species could not be separated from each other. Based on ITS1 sequences, the three species were indistinguishable. Phylogenetic analysis using maximum parsimony placed with fairly high support cox1 sequences of S. bovifelis, S. bovini and S. sinensis, respectively, into three monophyletic clusters, with S. bovifelis and S. bovini being a sister group to S. sinensis. In contrast, phylogenies based on each of the three regions of the rDNA unit did not separate sequences of the three species completely from each other. Characterisation of cox1 of 56 isolates of S. hirsuta from four countries revealed only 13 haplotypes and an intraspecific sequence identity of 99.3-100 %. In the three regions of the rDNA unit, there was more extensive sequence variation, particularly in the ITS1 region. The 22 cox1 sequences of S. cruzi displayed a moderate intraspecific variation (98.6-100 %), whereas there was no variation at the 18S rRNA gene among 10 sequenced isolates. Sequencing of 16 clones of the partial 28S rRNA gene of S. cruzi yielded two markedly different sequence types, having an overall sequence identity of 95-100 %.


Assuntos
Búfalos , Doenças dos Bovinos/parasitologia , DNA de Protozoário/genética , Variação Genética , Sarcocystis/genética , Sarcocistose/veterinária , Animais , Bovinos , Ciclo-Oxigenase 1/genética , DNA Ribossômico , Genes Mitocondriais , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA de Protozoário/genética , RNA Ribossômico/genética , Sarcocystis/classificação , Sarcocystis/isolamento & purificação , Sarcocistose/parasitologia , Análise de Sequência de DNA , Especificidade da Espécie
12.
Postepy Biochem ; 62(2): 158-161, 2016.
Artigo em Polonês | MEDLINE | ID: mdl-28132467

RESUMO

Mitochondria are not only ATP producing organelles, but they play pivotal roles in apoptosis, neurodegeneration, cancer and aging. Mammalian mitochondrial genome is a small DNA molecule of about 16.5 kb, encoding less than 20 polypeptides and a set of ribosomal RNAs and tRNAs. In order to ensure proper cell functioning a continous communication between cell nucleus and mitochondria must be maintained. This review presents novel developments in the field of nucleo-mitochondrial communications. We discuss the import of regulatory cytosolic miRNAs into mitochondria, export of RNA from mitochondria, the existence of novel 3 polypeptides encoded by the mitochondrial genome and the transfer of mitochondrial DNA to nuclear genomes. Mechanisms of these processes and their significance for cellular homeostasis are poorly known and present an important challenge for molecular biology.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Transdução de Sinais , Animais , Transporte Biológico , Núcleo Celular/fisiologia , Cromossomos , DNA Mitocondrial/metabolismo , Eucariotos/metabolismo , Eucariotos/fisiologia , Genoma Mitocondrial , Humanos , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , RNA/metabolismo
13.
Mol Biol Evol ; 31(3): 636-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24336845

RESUMO

Recombination has been proposed as a possible mechanism to explain mitochondrial (mt) gene rearrangements, although the issue of whether mtDNA recombination occurs in animals has been controversial. In this study, we sequenced the entire mt genome of the megaspilid wasp Conostigmus sp., which possessed a highly rearranged mt genome. The sequence of the A+T-rich region contained a number of different types of repeats, similar to those reported previously in the nematode Meloidogyne javanica, in which recombination was discovered. In Conostigmus, we detected the end products of recombination: a range of minicircles. However, using isolated (cloned) fragments of the A+T-rich region, we established that some of these minicircles were found to be polymerase chain reaction (PCR) artifacts. It appears that regions with repeats are prone to PCR template switching or PCR jumping. Nevertheless, there is strong evidence that one minicircle is real, as amplification primers that straddle the putative breakpoint junction produce a single strong amplicon from genomic DNA but not from the cloned A+T-rich region. The results provide support for the direct link between recombination and mt gene rearrangement. Furthermore, we developed a model of recombination which is important for our understanding of mtDNA evolution.


Assuntos
DNA Circular/genética , DNA Mitocondrial/genética , Rearranjo Gênico/genética , Genoma Mitocondrial/genética , Recombinação Genética , Vespas/genética , Animais , Artefatos , Reparo do DNA/genética , Eletroforese em Gel de Ágar , Modelos Genéticos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
14.
J Hered ; 106(6): 711-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26297730

RESUMO

Morphological identification and molecular data (mtDNA COI) were used to resolve the taxonomic identity of a non-native freshwater shrimp in the Cape Floristic Region (CFR) of South Africa and to evaluate levels of genetic diversity and differentiation in the species' core natural distribution. The species was morphologically and genetically identified as Caridina africana Kingsley, 1882, whose main natural distribution is in the KwaZulu-Natal (KZN) Province, more than 1200 km from the point of new discovery. Subsequently, sequence data from natural populations occurring in seven rivers throughout KZN showed the presence of nuclear copies of the mtDNA COI gene (NUMTs) in 46 out of 140 individuals. Upon removal of sequences containing NUMTs, levels of genetic diversity were low in the alien population (possibly as a consequence of a bottleneck event), while varying levels of genetic diversity and differentiation were found in natural populations, indicating habitat heterogeneity, fragmentation and restricted gene flow between rivers. Following the present study, the alien shrimp has survived the Western Cape's winter and dispersed into a nearby tributary of the Eerste River System, hence posing an additional potential threat to endangered endemics. Understanding the biology of this alien species will aid detection and eradication procedures.


Assuntos
Crustáceos/classificação , Variação Genética , Genética Populacional , Animais , Crustáceos/anatomia & histologia , Crustáceos/genética , DNA Mitocondrial/genética , Feminino , Água Doce , Fluxo Gênico , Haplótipos , Espécies Introduzidas , Masculino , Rios , Análise de Sequência de DNA , África do Sul
15.
Ecol Evol ; 14(7): e11631, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38966247

RESUMO

Intraspecific genetic variation is important for the assessment of organisms' resistance to changing environments and anthropogenic pressures. Aquatic DNA metabarcoding provides a non-invasive method in biodiversity research, including investigations at the within-species level. Through the analysis of eDNA samples collected from the Peter the Great Gulf of the Japan Sea, in this study, we aimed to evaluate the identification of Amplicon Sequence Variants (ASVs) in marine eDNA among abundant species of the Zostera sp. community: Hexagrammos octogrammus, Pholidapus dybowskii (Teleostei: Perciformes), and Pandalus latirostris (Arthropoda: Decapoda). These species were collected from two distant locations to produce mock communities and gather aquatic eDNA both on the community and individual level. Our approach highlights the efficacy of eDNA metabarcoding in capturing haplotypic diversity and the potential for this methodology to track genetic diversity accurately, contributing to conservation efforts and ecosystem management. Additionally, our results elucidate the impact of nuclear mitochondrial DNA segments (NUMTs) on the reliability of metabarcoding data, indicating the necessity for cautious interpretation of such data in ecological studies. Moreover, we analyzed 83 publicly available COI sequence datasets from common groups of multicellular organisms (Mollusca, Echinodermata, Crustacea, Polychaeta, and Actinopterygii). The results reflect the decrease in population diversity that arises from using the metabarcode compared to the COI barcode.

16.
Life (Basel) ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672767

RESUMO

This study aimed to provide an overview of the methodological approach used for the species determination of big cats. The molecular system described herein employs mitochondrial DNA control region (CR-mtDNA)-length polymorphism in combination with highly sensitive and precise capillary electrophoresis. We demonstrated that the described CR-mtDNA barcoding system can be utilized for species determination where the presence of biological material from big cats is expected or used as a confirmatory test alongside Sanger or massive parallel sequencing (MPS). We have also addressed the fact that species barcoding, when based on the analysis of mtDNA targets, can be biased by nuclear inserts of the mitochondrial genome (NUMTs). The CR-mtDNA barcoding system is suitable even for problematic and challenging samples, such as hair. CR-mtDNA-length polymorphisms can also distinguish hybrids from pure breeds.

17.
Genome Med ; 16(1): 50, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566210

RESUMO

BACKGROUND: Mitochondria play essential roles in tumorigenesis; however, little is known about the contribution of mitochondrial DNA (mtDNA) to esophageal squamous cell carcinoma (ESCC). Whole-genome sequencing (WGS) is by far the most efficient technology to fully characterize the molecular features of mtDNA; however, due to the high redundancy and heterogeneity of mtDNA in regular WGS data, methods for mtDNA analysis are far from satisfactory. METHODS: Here, we developed a likelihood-based method dMTLV to identify low-heteroplasmic mtDNA variants. In addition, we described fNUMT, which can simultaneously detect non-reference nuclear sequences of mitochondrial origin (non-ref NUMTs) and their derived artifacts. Using these new methods, we explored the contribution of mtDNA to ESCC utilizing the multi-omics data of 663 paired tumor-normal samples. RESULTS: dMTLV outperformed the existing methods in sensitivity without sacrificing specificity. The verification using Nanopore long-read sequencing data showed that fNUMT has superior specificity and more accurate breakpoint identification than the current methods. Leveraging the new method, we identified a significant association between the ESCC overall survival and the ratio of mtDNA copy number of paired tumor-normal samples, which could be potentially explained by the differential expression of genes enriched in pathways related to metabolism, DNA damage repair, and cell cycle checkpoint. Additionally, we observed that the expression of CBWD1 was downregulated by the non-ref NUMTs inserted into its intron region, which might provide precursor conditions for the tumor cells to adapt to a hypoxic environment. Moreover, we identified a strong positive relationship between the number of mtDNA truncating mutations and the contribution of signatures linked to tumorigenesis and treatment response. CONCLUSIONS: Our new frameworks promote the characterization of mtDNA features, which enables the elucidation of the landscapes and roles of mtDNA in ESCC essential for extending the current understanding of ESCC etiology. dMTLV and fNUMT are freely available from https://github.com/sunnyzxh/dMTLV and https://github.com/sunnyzxh/fNUMT , respectively.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , DNA Mitocondrial/genética , DNA Mitocondrial/análise , DNA Mitocondrial/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Funções Verossimilhança , Mitocôndrias/genética , Carcinogênese
18.
Mol Ecol Resour ; 23(5): 1002-1013, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36740932

RESUMO

Inserts of DNA from extranuclear sources, such as organelles and microbes, are common in eukaryote nuclear genomes. However, sequence similarity between the nuclear and extranuclear DNA, and a history of multiple insertions, make the assembly of these regions challenging. Consequently, the number, sequence and location of these vagrant DNAs cannot be reliably inferred from the genome assemblies of most organisms. We introduce two statistical methods to estimate the abundance of nuclear inserts even in the absence of a nuclear genome assembly. The first (intercept method) only requires low-coverage (<1×) sequencing data, as commonly generated for population studies of organellar and ribosomal DNAs. The second method additionally requires that a subset of the individuals carry extranuclear DNA with diverged genotypes. We validated our intercept method using simulations and by re-estimating the frequency of human NUMTs (nuclear mitochondrial inserts). We then applied it to the grasshopper Podisma pedestris, exceptional for both its large genome size and reports of numerous NUMT inserts, estimating that NUMTs make up 0.056% of the nuclear genome, equivalent to >500 times the mitochondrial genome size. We also re-analysed a museomics data set of the parrot Psephotellus varius, obtaining an estimate of only 0.0043%, in line with reports from other species of bird. Our study demonstrates the utility of low-coverage high-throughput sequencing data for the quantification of nuclear vagrant DNAs. Beyond quantifying organellar inserts, these methods could also be used on endosymbiont-derived sequences. We provide an R implementation of our methods called "vagrantDNA" and code to simulate test data sets.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Humanos , DNA Mitocondrial/genética , Mitocôndrias/genética , Eucariotos/genética , Núcleo Celular/genética , Análise de Sequência de DNA , Filogenia
19.
Genes (Basel) ; 14(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003036

RESUMO

Practices related to mitochondrial research have long been hindered by the presence of mitochondrial pseudogenes within the nuclear genome (NUMTs). Even though partially assembled human reference genomes like hg38 have included NUMTs compilation, the exhaustive NUMTs within the only complete reference genome (T2T-CHR13) remain unknown. Here, we comprehensively identified the fixed NUMTs within the reference genome using human pan-mitogenome (HPMT) from GeneBank. The inclusion of HPMT serves the purpose of establishing an authentic mitochondrial DNA (mtDNA) mutational spectrum for the identification of NUMTs, distinguishing it from the polymorphic variations found in NUMTs. Using HPMT, we identified approximately 10% of additional NUMTs in three human reference genomes under stricter thresholds. And we also observed an approximate 6% increase in NUMTs in T2T-CHR13 compared to hg38, including NUMTs on the short arms of chromosomes 13, 14, and 15 that were not assembled previously. Furthermore, alignments based on 20-mer from mtDNA suggested the presence of more mtDNA-like short segments within the nuclear genome, which should be avoided for short amplicon or cell free mtDNA detection. Finally, through the assay of transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) on cell lines before and after mtDNA elimination, we concluded that NUMTs have a minimal impact on bulk ATAC-seq, even though 16% of sequencing data originated from mtDNA.


Assuntos
Mitocôndrias , Pseudogenes , Humanos , Pseudogenes/genética , Mitocôndrias/genética , DNA Mitocondrial/genética , Genoma Humano , Telômero
20.
Front Cell Dev Biol ; 11: 1274807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152346

RESUMO

Cellular senescence is characterized by replication arrest in response to stress stimuli. Senescent cells accumulate in aging tissues and can trigger organ-specific and possibly systemic dysfunction. Although senescent cell populations are heterogeneous, a key feature is that they exhibit epigenetic changes. Epigenetic changes such as loss of repressive constitutive heterochromatin could lead to subsequent LINE-1 derepression, a phenomenon often described in the context of senescence or somatic evolution. LINE-1 elements decode the retroposition machinery and reverse transcription generates cDNA from autonomous and non-autonomous TEs that can potentially reintegrate into genomes and cause structural variants. Another feature of cellular senescence is mitochondrial dysfunction caused by mitochondrial damage. In combination with impaired mitophagy, which is characteristic of senescent cells, this could lead to cytosolic mtDNA accumulation and, as a genomic consequence, integrations of mtDNA into nuclear DNA (nDNA), resulting in mitochondrial pseudogenes called numts. Thus, both phenomena could cause structural variants in aging genomes that go beyond epigenetic changes. We therefore compared proliferating and senescent IMR-90 cells in terms of somatic de novo numts and integrations of a non-autonomous composite retrotransposons - the so-called SVA elements-that hijack the retropositional machinery of LINE-1. We applied a subtractive and kinetic enrichment technique using proliferating cell DNA as a driver and senescent genomes as a tester for the detection of nuclear flanks of de novo SVA integrations. Coupled with deep sequencing we obtained a genomic readout for SVA retrotransposition possibly linked to cellular senescence in the IMR-90 model. Furthermore, we compared the genomes of proliferative and senescent IMR-90 cells by deep sequencing or after enrichment of nuclear DNA using AluScan technology. A total of 1,695 de novo SVA integrations were detected in senescent IMR-90 cells, of which 333 were unique. Moreover, we identified a total of 81 de novo numts with perfect identity to both mtDNA and nuclear hg38 flanks. In summary, we present evidence for possible age-dependent structural genomic changes by paralogization that go beyond epigenetic modifications. We hypothesize, that the structural variants we observe potentially impact processes associated with replicative aging of IMR-90 cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa