RESUMO
Na5YSi4O12 (NYSO) is demonstrated as a promising electrolyte with high ionic conductivity and low activation energy for practical use in solid Na-ion batteries. Solid-state NMR was employed to identify the six types of coordination of Na+ ions and migration pathway, which is vital to master working mechanism and enhance performance. The assignment of each sodium site is clearly determined from high-quality 23Na NMR spectra by the aid of Density Functional Theory calculation. Well-resolved 23Na exchangespectroscopy and electrochemical tracer exchange spectra provide the first experimental evidence to show the existence of ionic exchange between sodium at Na5 and Na6 sites, revealing that Na transport route is possibly along three-dimensional chain of open channel-Na4-open channel. Variable-temperature NMR relaxometry is developed to evaluate Na jump rates and self-diffusion coefficient to probe the sodium-ion dynamics in NYSO. Furthermore, NYSO works well as a dual ion conductor in Na and Li metal batteries with Na3V2(PO4)3 and LiFePO4 as cathodes, respectively.
RESUMO
Covalent organic frameworks (COFs), featuring structural diversity, permanent porosity, and functional versatility, have emerged as promising electrode materials for rechargeable batteries. To date, amorphous polymer, COF, or their composites are mostly explored in lithium-ion batteries (LIBs), while their research in other alkali metal ion batteries is still in infancy. This can be due to the challenges that arise from large volume changes, slow diffusion kinetics, and inefficient active site utilization by the large Na+ or K+ ion. Herein, microwave-assisted imide-based 2D COF, TAPB-NDA covalently connected with amine-functionalized carbon nanotubes (TAPB-NDA@CNT) targeting the application in both Li-/Na-ion batteries, is synthesized. As-synthesized, TAPB-NDA@CNT50 displays the good performance as LIB cathode with a specific capacity of ≈138 mAh g-1 at 25 mA g-1, long cycling stability (81.2% retention after 2000 cycles at 300 mA g-1), with excellent reversible capacity retention of ≈79.6%. Similarly, TAPB-NDA@CNT50, when employed in sodium-ion battery (SIB), exhibited 136.7 mAh g-1 specific capacity at 25 mA g-1, retained ≈80% of the reversible capacity after 1000 cycles at 300 mA g-1 and showing excellent rate performance. The structural advantage of TAPB-NDA@CNT will encourage researchers to design COF-based cathodes for the alkali ion batteries.
RESUMO
Tremendous efforts are put forward to develop novel high-performance electrodes for Na-ion batteries (SIBs) in order to replace commercial Li-ion batteries (LIBs). Graphite, the most versatile anode for LIBs, fails to accommodate Na+ions owing to the poor thermodynamic stability of the binary graphite intercalation compound. This study aims to exfoliate the layers of graphite through a simple mechanical process at different time intervals (1, 5, 10, 20, 40, and 80 h) and examine the potential candidate for Na-storage in the presence of carbonate-based electrolytes. This study reports that ball milling plays a vital role in the performance of the graphite in Na-storage. The graphite exfoliated for 80 h (EG-80h) rendered an excellent reversible capacity of 209 mAh g-1 with coulombic efficiency of >99% after 100 cycles in EC-based electrolyte. In situ impedance analysis is performed to validate the charge storage mechanism and Na-ion kinetics. The performance of EG-80h in a full-cell assembly is evaluated with a carbon-coated Na3V2(PO4)3 cathode, which exhibited an initial capacity of ≈75 mAh g-1 and energy density of 201 Wh kg-1. In addition, the adaptability of the NVPC/EG-80h cell at different temperatures is examined from -10 to 50 °C, displaying excellent performance in both high and low-temperature conditions.
RESUMO
Li-ion battery is currently considered to be the most proven technology for energy storage systems when it comes to the overall combination of energy, power, cyclability and cost. However, there are continuous expectations for cost reduction in large-scale applications, especially in electric vehicles and grids, alongside growing concerns over safety, availability of natural resources for lithium, and environmental remediation. Therefore, industry and academia have consequently shifted their focus towards 'beyond Li-ion technologies'. In this respect, other non-Li-based alkali-ion/polyvalent-ion batteries, non-Li-based all solid-state batteries, fluoride-ion/ammonium-ion batteries, redox-flow batteries, sand batteries and hydrogen fuel cells etc. are becoming potential cost-effective alternatives. While there has been notable swift advancement across various materials, chemistries, architectures, and applications in this field, a comprehensive overview encompassing high-energy 'beyond Li-ion' technologies, along with considerations of commercial viability, is currently lacking. Therefore, in this review article, a rationalized approach is adopted to identify notable 'post-Li' candidates. Their pros and cons are comprehensively presented by discussing the fundamental principles in terms of material characteristics, relevant chemistries, and architectural developments that make a good high-energy 'beyond Li' storage system. Furthermore, a concise summary outlining the primary challenges of each system is provided, alongside the potential strategies being implemented to mitigate these issues. Additionally, the extent to which these strategies have positively influenced the performance of these 'post-Li' technologies is discussed.
RESUMO
Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.
RESUMO
Sodium-ion batteries (SIBs) have received tremendous attention owing to their low cost, high working voltages, and energy density. However, the design and development of highly efficient SIBs represent a great challenge. Here, a unique and reliable approach is reported to prepare carbon nitride (CN) hybridized with nickel iron sulfide (NFCN) using simple reaction between Ni-Fe layered double hydroxide and dithiooxamide. The characterization results demonstrate that the hybridization with optimal amount of CN induces local distortion in the crystal structure of the hybrid, which would benefit SIB performance. Systematic electrochemical studies with a half-cell configuration show that the present hybrid structure exhibits a promising reversible specific capacity of 348 mAh g-1 at 0.1 A g-1 after 100 cycles with good rate capability. Simulation result reveals that the iron atoms in nickel iron sulfide act as a primary active site to accommodate Na+ ions. At last, with a full cell configuration using NFCN and Na3 V2 (PO4 )2 O2 F as the anode and cathode, respectively, the specific capacity appears to be ≈95 mAh g-1 after 50 cycles at 0.1 A g-1 condition. This excellent performance of these hybrids can be attributed to the synergistic effect of the incorporated CN species and the high conductivity of nickel-iron sulfide.
RESUMO
Lithium-ion batteries (LIBs) have emerged as a technological game-changer. Due to the rising price of lithium and the environmental concerns LIBs pose, their use is no longer viable. Sodium (Na) may be the best contender among the alternatives for replacing lithium. Conventional graphite has a limited capacity for Na storage. Hence,α-graphyne, an allotrope of carbon, was studied here as a potential anode material for Na-ion batteries (NIBs), employing density functional theory. In-plane Na atom adsorption results in a semi-metallic to metallic transition ofα-graphyne. Electronic transport calculations show an increase in current after Na adsorption in graphyne. The successive adsorption of Na atoms on the surface of graphyne leads to a theoretical capacity of 1395.89 mA h g-1, which is much greater than graphite. The average open circuit voltage is 0.81 V, which is an ideal operating voltage for NIBs. Intra- and inter-hexagon Na diffusions have very low energy barriers of 0.18 eV and 0.96 eV, respectively, which ensure smooth operation during charge/discharge cycles. According to this study, theα-graphyne monolayer thus has the potential to be employed as an anode in NIBs.
RESUMO
To mitigate the associated challenges of instability and capacity improvement in Na3 V2 (PO4 )2 F3 (NVPF), rationally designed uniformly distributed hollow spherical NVPF and coating the surface of NVPF with ultrathin (≈2 nm) amorphous TiO2 by atomic layer deposition is demonstrated. The coating facilitates higher mobility of the ion through the cathode electrolyte interphase (CEI) and enables higher capacity during cycling. The TiO2 @NVPF exhibit discharge capacity of >120 mAhg-1 , even at 1C rates, and show lower irreversible capacity in the first cycle. Further, nearly 100% capacity retention after rate performance in high current densities and 99.9% coulombic efficiency after prolonged cycling in high current density is reported. The improved performance in TiO2 @NVPF is ascribed to the passivation behavior of TiO2 coating which protects the surface of NVPF from volume expansion, significantly less formation of carbonates, and decomposition of electrolyte, which is also validated through post cycling analysis. The study shows the importance of ultrathin surface protection artificial CEI for advanced sodium-ion battery cathodes. The protection layer is diminishing parasitic reaction, which eventually enhances the Na ion participation in reaction and stabilizes the cathode structure.
RESUMO
Taking into the consideration safety, environmental impact, and economic issue, the construction of aqueous batteries based on aqueous electrolyte has become an indispensable technical option for large-scale electrical energy storage. The narrow electrochemical window is the main problem of conventional aqueous electrolyte. Here, an economical room-temperature inorganic hydrated molten salt (RTMS) electrolyte with a large electrochemical stability window of 3.1 V is proposed. Compared with organic fluorinated molten salts, RTMS is composed of lithium nitrate hydrate and sodium nitrate with much lower cost. Based on the RTMS electrolyte, a hybrid Li/Na-ion full battery is fabricated from cobalt hexacyanoferrate cathode (NaCoHCF) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) anode. The full cell with the RTMS electrolyte exhibits a fantastic performance with high capacity of 139 mAh g-1 at 1 C, 90 mAh g-1 at 20 C, and capacity retention of 94.7% over 500 cycles at 3 C. The excellent performances are contributed to the unique properties of RTMS with a large electrochemical window, solvated H2 O free and high mobility of Li+ , which exhibits excellent Li-ions insertion and extraction capacity of NaCoHCF. This RTMS cell provides a new economic choice for large-scale energy storage.
RESUMO
Density functional theory calculations are performed to investigate electronic properties and Li/Na storage capability of Hf3 C2 and its derivatives (uniform passivated: Hf3 C2 T2 [T = F, O, OH] and hybrid passivated: Hf3 C2 Fx O2-x and Hf3 C2 Ox (OH)2-x [x = 1.0, 1.5]). For Hf3 C2 monolayer, it has excellent performance, such as good conductivity, low diffusion energy barrier, low open circuit voltage, and high storage capacities (Li(1034.70 mAh g-1 ), Na(444.90 mAh g-1 )), providing the most prospective as anode material. However, due to the unsaturated dangling bonds of surface Hf, so it is easily passivated. For the uniform passivated ones, Hf3 C2 T2 , show higher diffusion barriers and lower storage capacities than bare monolayer Hf3 C2 . Nevertheless, compared with uniform passivated ones, the hybrid passivated derivative, Hf3 C2 F1.5 O0.5 and Hf3 C2 OOH possess a lower energy barrier and a better storage capacity. Therefore, Hf3 C2 F1.5 O0.5 and Hf3 C2 OOH are deemed to be a suitable candidate as anode electrode material for Li-ion batteries. © 2019 Wiley Periodicals, Inc.
RESUMO
Na2 FePO4 F is a promising cathode material for a Na-ion battery because of its high electronic capacity and good cycle performance. In this work, first principle calculations combined with cluster expansion and the Monte Carlo method have been applied to analyze the charge and discharge processes of Na2 FePO4 F by examining the voltage curve and the phase diagram. As a result of the density functional theory calculation and experimental verification with structural analysis, we found that the most stable structure of Na1.5 FePO4 F has the P21 /b11 space group, which has not been reported to date. The estimated voltage curve has two clear plateaus caused by the two-phase structure composed of P21 /b11 Na1.5 FePO4 F and Pbcn Na2 FePO4 F or Na1 FePO4 F and separated along the c-axis direction. The phase diagram shows the stability of the phase-separated structure. Considering that Na2 FePO4 F has diffusion paths in the a- and c-axis directions, Na2 FePO4 F has both innerphase and interphase diffusion paths. We suggest that the stable two-phase structure and the diffusion paths to both the innerphase and interphases are a key for the very clear plateau. We challenge to simulate a nonequilibrium state at high rate discharge with high temperature by introducing a coordinate-dependent chemical potential. The simulation shows agreement with the experimental discharge curve on the disappearance of the two plateaus. © 2018 Wiley Periodicals, Inc.
RESUMO
Owing to developments in theoretical chemistry and computer power, the combination of calculations and experiments is now standard practice in understanding and developing new materials for battery systems. Here, we briefly review our recent combined studies based on density functional theory and molecular dynamics calculations for electrode and electrolyte materials for sodium-ion batteries. These findings represent case studies of successful combinations of experimental and theoretical methods.
RESUMO
We study the Na-ion battery characteristics of SnS as a negative electrode by first-principles calculations. From energy analyses, we clarify the discharge reaction process of the Na/SnS half-cell system. We show a phase diagram of Na-Sn-S ternary systems by constructing convex-hull curves, and show a possible reaction route considering intermediate products in discharge reactions. Voltage-capacity curves are calculated based on the Na-SnS reaction path that is obtained from the ternary phase diagram. It is found that the conversion reactions and subsequently the alloying reactions proceed in the SnS electrode, contributing to its high capacity compared with the metallic Sn electrode, in which only the alloying reactions progresses stepwise. To verify the calculated reaction process, x-ray absorption spectra (XAS) are calculated and compared with experimental XAS at S K-edge, showing meaningful XAS changes associated with Na2 S and SnS in discharged and charged states, respectively.
RESUMO
It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.
RESUMO
Despite their large theoretical storage capability, Na-Sn batteries exhibit poor round-trip energy efficiencies as compared to Li-Si batteries. Here, we report the results of a comprehensive study to elucidate how and why Na-Sn batteries exhibit such a low energy efficiency. As a convincing evidence for this behavior, we observed that the resistivity of the Sn anode increased by 8 orders of magnitude during in situ sodiation experiments, which is attributed to the formation of electrically resistive Zintl ions in the sodiated Sn. Continual sodiation induced the development of residual stresses at the Sn anode and caused the distortion of Zintl ions from their ideal configuration. This distortion caused a change in the electronic structure, resulting in the increased resistivity of the sodiated Sn. Our findings offer some solutions that can be used to improve the energy efficiency of Na-Sn batteries.
RESUMO
Nanohybrid anode materials for Na-ion batteries (NIBs) based on conversion and/or alloying reactions can provide significantly improved energy and power characteristics, while suffering from low Coulombic efficiency and unfavorable voltage properties. An NIB paper-type nanohybrid anode (PNA) based on tin sulfide nanoparticles and acid-treated multiwalled carbon nanotubes is reported. In 1 m NaPF6 dissolved in diethylene glycol dimethyl ether as an electrolyte, the above PNA shows a high reversible capacity of ≈1200 mAh g-1 and a large voltage plateau corresponding to a capacity of ≈550 mAh g-1 in the low-voltage region of ≈0.1 V versus Na+ /Na, exhibiting high rate capabilities at a current rate of 1 A g-1 and good cycling performance over 250 cycles. In addition, the PNA exhibits a high first Coulombic efficiency of ≈90%, achieving values above 99% during subsequent cycles. Furthermore, the feasibility of PNA usage is demonstrated by full-cell tests with a reported cathode, which results in high specific energy and power values of ≈256 Wh kg-1 and 471 W kg-1 , respectively, with stable cycling.
RESUMO
Transition-metal sulfides have been regarded as perspective anode candidates for high-energy Na-ion batteries. Their application, however, is precluded severely by either low charge storage or huge volumetric change along with sluggish reaction kinetics. Herein, an effective synergetic Sn incorporation-Zn substitution strategy is proposed based on copper-based sulfides. First, Na-ion storage capability of copper sulfide is significantly improved via incorporating an alloy-based Sn element. However, this process is accompanied by sacrifice of structural stability due to the high Na-ion uptake. Subsequently, to maintain the high Na-ion storage capacity, and concurrently improve cycling and rate capabilities, a Zn substitution strategy (taking partial Sn sites) is carried out, which could significantly promote Na-ion diffusion/reaction kinetics and relieve mechanical strain-stress within the crystal framework. The synergetic Sn incorporation and Zn substitution endow copper-based sulfides with high specific capacity (≈560 mAh g-1 at 0.5 A g-1 ), ultrastable cyclability (80 k cycles with ≈100% capacity retention), superior rate capability up to 200 A g-1 , and ultrafast charging feature (≈4 s per charging with ≈190 mAh g-1 input). This work provides in-depth insights for developing superior anode materials via synergetic multi-cation incorporation/substitution, aiming at solving their intrinsic issues of either low specific capacity or poor cyclability.
RESUMO
Sodium-ion batteries have emerged as a promising alternative to Li-ion batteries due to the abundance of sodium. However, anodes in Na-ion batteries face challenges such as dendrite formation and an unstable solid electrolyte interface layer. To address these challenges, NaK liquid metal alloy anodes have been proposed as an alternative because they do not form dendrites. In our study, we demonstrate that the NaK alloy anode interacts with the commonly used ethylene carbonate and dimethyl carbonate electrolyte, leading to a continuously growing unstable SEI layer, evidenced by cycling failures under 100 cycles and an increasing charge transfer resistance in electrochemical impedance spectroscopy studies. In situ surface-enhanced Raman spectroscopy and X-ray photoelectron spectroscopy reveal that over the course of cycling the surface of the NaK anode becomes increasingly sodium-rich. After 30 cycles, XPS analysis detects only trace amounts of potassium on the NaK anode surface. When the electrolyte is analyzed postcycling using inductively coupled plasma optical emission spectroscopy, there is a noticeable increase in potassium levels, suggesting that potassium metal dissolves into the electrolyte. The introduction of a 10 wt % fluoroethylene carbonate additive can mitigate this problem to some extent, enabling an enhanced cycling performance of up to 800 cycles at 1C. Nevertheless, the dissolution of K metal is still evident in the XPS results, albeit to a lesser degree. These discoveries provide valuable insights for designing a more robust SEI layer for the NaK anode.
RESUMO
Natural ores are abundant, cost-effective, and environmentally friendly. Ultrathin (2D) layers of a naturally abundant van der Waals mineral, Biotite, have been prepared in bulk via exfoliation. We report here that this 2D Biotene material has shown extraordinary Li-Na-ion battery anode properties with ultralong cycling stability. Biotene shows 302 and 141 mAh g-1 first cycle-specific charge capacity for Li- and Na-ion battery applications with â¼90% initial Coulombic efficiency. The electrode exhibits significantly extended cycling stability with â¼75% capacity retention after 4000 cycles even at higher current densities (500-2000 mA g-1). Further, density functional theory studies show the possible Li intercalation mechanism between the 2D Biotene layers. Our work brings new directions toward designing the next generation of metal-ion battery anodes.
RESUMO
Development of new anode materials for Na-ion batteries strongly depends on a detailed understanding of their cycling mechanism. Due to instrumental limitations, the majority of mechanistic studies focus on operando materials' characterization at low cycling rates. In this work, we evaluate and compare the (de)sodiation mechanisms of BiFeO3 in Na-ion batteries at different current densities using operando X-ray diffraction (XRD) and ex situ X-ray absorption spectroscopy (XAS). BiFeO3 is a conversion-alloying anode material with a high initial sodiation capacity of â¼600 mAh g-1, when cycled at 0.1 A g-1. It does not change its performance or cycling mechanism, except for minor losses in capacity, when the current density is increased to 1 A g-1. In addition, operando XRD characterization carried out over multiple cycles shows that the Bi â NaBi (de)alloying reaction and the oxidation of Bi at the interface with the Na-Fe-O matrix are detrimental for cycling stability. The isolated NaBi â Na3Bi reaction is less damaging to the cycling stability of the material.