Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Soc Nephrol ; 33(3): 584-600, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064051

RESUMO

BACKGROUND: Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) gene cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine (K) Kinase 4 (WNK4), inappropriately activating sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK), which then phosphorylates and hyperactivates the Na+Cl- cotransporter (NCC). The precise mechanism by which CUL3-Δ9 causes FHHt is unclear. We tested the hypothesis that reduced abundance of CUL3 and of Kelch-like 3 (KLHL3), the CUL3 substrate adaptor for WNK4, is mechanistically important. Because JAB1, an enzyme that inhibits CUL3 activity by removing the ubiquitin-like protein NEDD8, cannot interact with CUL3-Δ9, we also determined whether Jab1 disruption mimicked the effects of CUL3-Δ9 expression. METHODS: We used an inducible renal tubule-specific system to generate several mouse models expressing CUL3-Δ9, mice heterozygous for both CUL3 and KLHL3 (Cul3+/-/Klhl3+/- ), and mice with short-term Jab1 disruption (to avoid renal injury associated with long-term disruption). RESULTS: Renal KLHL3 was higher in Cul3-/- mice, but lower in Cul3-/-/Δ9 mice and in the Cul3+/-/Δ9 FHHt model, suggesting KLHL3 is a target for both WT and mutant CUL3. Cul3+/-/Klhl3+/- mice displayed increased WNK4-SPAK activation and phospho-NCC abundance and an FHHt-like phenotype with increased plasma [K+] and salt-sensitive blood pressure. Short-term Jab1 disruption in mice lowered the abundance of CUL3 and KLHL3 and increased the abundance of WNK4 and phospho-NCC. CONCLUSIONS: Jab1-/- mice and Cul3+/-/Klhl3+/- mice recapitulated the effects of CUL3-Δ9 expression on WNK4-SPAK-NCC. Our data suggest degradation of both KLHL3 and CUL3 plays a central mechanistic role in CUL3-Δ9-mediated FHHt.


Assuntos
Proteínas Culina , Hipertensão , Pseudo-Hipoaldosteronismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Culina/genética , Proteínas Culina/metabolismo , Feminino , Humanos , Hipertensão/genética , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas Serina-Treonina Quinases/genética , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
2.
Pflugers Arch ; 473(1): 79-93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200256

RESUMO

The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Deleção de Genes , Proteínas de Homeodomínio/genética , Túbulos Renais Distais/citologia , Magnésio/metabolismo , Camundongos , Potássio/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/genética , Proteínas Supressoras de Tumor/genética
3.
Am J Physiol Renal Physiol ; 320(5): F908-F921, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33779313

RESUMO

The hormone aldosterone is essential for maintaining K+ and Na+ balance and controlling blood pressure. Aldosterone has different effects if it is secreted due to hypovolemia or hyperkalemia. The kidney distal convoluted tubule (DCT) is believed to play a central role in mediating the differential responses to aldosterone. To determine the alterations in the DCT that may be responsible for these effects, male mice with green fluorescent protein expression specifically in the DCT were maintained on diets containing low NaCl (hypovolemic state) or high potassium citrate (hyperkalemic state) for 4 days, and DCT cells were isolated using fluorescence-activated cell sorting. This pure population of DCT cells was subjected to analysis by liquid chromatography-coupled tandem mass spectrometry. Over 3,000 proteins were identified in the DCT, creating the first proteome of the mouse DCT. Of the identified proteins, 210 proteins were altered in abundance following a low-NaCl diet and 625 proteins following the high-K+ diet. Many of these changes were not detectable by analyzing whole kidney samples from the same animals. When comparing responses to high-K+ versus low-Na+ diets, protein translation, chaperone-mediated protein folding, and protein ubiquitylation were likely to be significantly altered in the DCT subsequent to a high-K+ diet. In conclusion, this study defines an in vivo protein landscape of the DCT in male mice following either a low-NaCl or a high-K+ diet and acts as an essential resource for the kidney research community.NEW & NOTEWORTHY The mineralocorticoid aldosterone, essential for maintaining body K+ and Na+ balance, has different effects if secreted due to hypovolemia or hyperkalemia. Here, we used proteomics to profile kidney distal convoluted tubule (DCT) cells isolated by a novel FACS approach from mice fed a low-Na+ diet (mimicking hypovolemia) or a high-K+ diet (mimicking hyperkalemia). The study provides the first in-depth proteome of the mouse DCT and insights into how it is physiologically regulated.


Assuntos
Túbulos Renais Distais/fisiologia , Potássio na Dieta/administração & dosagem , Potássio na Dieta/farmacologia , Proteínas/metabolismo , Sódio na Dieta/administração & dosagem , Sódio na Dieta/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Potássio/administração & dosagem , Potássio/farmacologia , Sódio/administração & dosagem , Sódio/farmacologia
4.
Kidney Int ; 100(2): 321-335, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940111

RESUMO

The thiazide-sensitive sodium-chloride-cotransporter (NCC) in the kidney distal convoluted tubule (DCT) plays an essential role in sodium and potassium homeostasis. Here, we demonstrate that NCC activity is increased by the ß2-adrenoceptor agonist salbutamol, a drug prevalently used to treat asthma. Relative to ß1-adrenergic receptors, the ß2-adrenergic receptors were greatly enriched in mouse DCT cells. In mice, administration of salbutamol increased NCC phosphorylation (indicating increased activity) within 30 minutes but also caused hypokalemia, which also increases NCC phosphorylation. In ex vivo kidney slices and isolated tubules, salbutamol increased NCC phosphorylation in the pharmacologically relevant range of 0.01-10 µM, an effect observed after 15 minutes and maintained at 60 minutes. Inhibition of the inwardly rectifying potassium channel (Kir) 4.1 or the downstream with-no-lysine kinases (WNKs) and STE20/SPS1-related proline alanine-rich kinase (SPAK) pathway greatly attenuated, but did not prevent, salbutamol-induced NCC phosphorylation. Salbutamol increased cAMP in tubules, kidney slices and mpkDCT cells (model of DCT). Phosphoproteomics indicated that protein phosphatase 1 (PP1) was a key upstream regulator of salbutamol effects. A role for PP1 and the PP1 inhibitor 1 (I1) was confirmed in tubules using inhibitors of PP1 or kidney slices from I1 knockout mice. On normal and high salt diets, salbutamol infusion increased systolic blood pressure, but this increase was normalized by thiazide suggesting a role for NCC. Thus, ß2-adrenergic receptor signaling modulates NCC activity via I1/PP1 and WNK-dependent pathways, and chronic salbutamol administration may be a risk factor for hypertension.


Assuntos
Albuterol , Simportadores de Cloreto de Sódio , Agonistas Adrenérgicos/metabolismo , Albuterol/metabolismo , Albuterol/farmacologia , Animais , Pressão Sanguínea , Túbulos Renais Distais/metabolismo , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
5.
Am J Physiol Renal Physiol ; 319(3): F423-F435, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657158

RESUMO

Cre-lox technology has revolutionized research in renal physiology by allowing site-specific genetic recombination in individual nephron segments. The distal convoluted tubule (DCT), consisting of distinct early (DCT1) and late (DCT2) segments, plays a central role in Na+ and K+ homeostasis. The only established Cre line targeting the DCT is Pvalb-Cre, which is limited by noninducibility, activity along DCT1 only, and activity in neurons. Here, we report the characterization of the first Cre line specific to the entire DCT. CRISPR/Cas9 targeting was used to introduce a tamoxifen-inducible IRES-Cre-ERT2 cassette downstream of the coding region of the Slc12a3 gene encoding the NaCl cotransporter (NCC). The resulting Slc12a3-Cre-ERT2 mice were crossed with R26R-YFP reporter mice, which revealed minimal leakiness with 6.3% of NCC-positive cells expressing yellow fluorescent protein (YFP) in the absence of tamoxifen. After tamoxifen injection, YFP expression was observed in 91.2% of NCC-positive cells and only in NCC-positive cells, revealing high recombination efficiency and DCT specificity. Crossing to R26R-TdTomato mice revealed higher leakiness (64.5%), suggesting differential sensitivity of the floxed site. Western blot analysis revealed no differences in abundances of total NCC or the active phosphorylated form of NCC in Slc12a3-Cre-ERT2 mice of either sex compared with controls. Plasma K+ and Mg2+ concentrations and thiazide-sensitive Na+ and K+ excretion did not differ in Slc12a3-Cre-ERT2 mice compared with controls when sex matched. These data suggest genetic modification had no obvious effect on NCC function. Slc12a3-Cre-ERT2 mice are the first line generated demonstrating inducible Cre recombinase activity along the entire DCT and will be a useful tool to study DCT function.


Assuntos
Túbulos Renais Distais/enzimologia , Recombinases/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Animais , Antagonistas de Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Recombinases/genética , Simportadores de Cloreto de Sódio/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tamoxifeno/farmacologia
6.
Am J Physiol Renal Physiol ; 319(6): F1043-F1053, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135481

RESUMO

The genetic disease Gitelman syndrome, knockout mice, and pharmacological blockade with thiazide diuretics have revealed that reduced activity of the NaCl cotransporter (NCC) promotes renal Mg2+ wasting. NCC is expressed along the distal convoluted tubule (DCT), and its activity determines Mg2+ entry into DCT cells through transient receptor potential channel subfamily M member 6 (TRPM6). Several other genetic forms of hypomagnesemia lower the drive for Mg2+ entry by inhibiting activity of basolateral Na+-K+-ATPase, and reduced NCC activity may do the same. Lower intracellular Mg2+ may promote further Mg2+ loss by directly decreasing activity of Na+-K+-ATPase. Lower intracellular Mg2+ may also lower Na+-K+-ATPase indirectly by downregulating NCC. Lower NCC activity also induces atrophy of DCT cells, decreasing the available number of TRPM6 channels. Conversely, a mouse model with increased NCC activity was recently shown to display normal Mg2+ handling. Moreover, recent studies have identified calcineurin and uromodulin (UMOD) as regulators of both NCC and Mg2+ handling by the DCT. Calcineurin inhibitors paradoxically cause hypomagnesemia in a state of NCC activation, but this may be related to direct effects on TRPM6 gene expression. In Umod-/- mice, the cause of hypomagnesemia may be partly due to both decreased NCC expression and lower TRPM6 expression on the cell surface. This mini-review discusses these new findings and the possible role of altered Na+ flux through NCC and ultimately Na+-K+-ATPase in Mg2+ reabsorption by the DCT.


Assuntos
Síndrome de Gitelman/metabolismo , Túbulos Renais Distais/metabolismo , Magnésio/metabolismo , Eliminação Renal , Reabsorção Renal , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Calcineurina/metabolismo , Síndrome de Gitelman/genética , Síndrome de Gitelman/fisiopatologia , Humanos , Túbulos Renais Distais/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Canais de Cátion TRPM/metabolismo , Uromodulina/metabolismo
7.
Kidney Int ; 97(4): 713-727, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32059997

RESUMO

The inappropriate over-activation of the with-no-lysine kinase (WNK)-STE20/SPS1-related proline/alanine-rich kinase (SPAK)-sodium chloride cotransporter (NCC) phosphorylation cascade increases sodium reabsorption in distal kidney nephrons, resulting in salt-sensitive hypertension. Although chronic kidney disease (CKD) is a common cause of salt-sensitive hypertension, the involvement of the WNK phosphorylation cascade is unknown. Moreover, the effect of immune systems on WNK kinases has not been investigated despite the fact that immune systems are important for salt sensitivity. Here we demonstrate that the protein abundance of WNK1, but not of WNK4, was increased at the distal convoluted tubules in the aristolochic acid nephropathy mouse model of CKD. Accordingly, the phosphorylation of both SPAK and NCC was also increased. Moreover, a high-salt diet did not adequately suppress activation of the WNK1-SPAK-NCC phosphorylation cascade in this model, leading to salt-sensitive hypertension. WNK1 also was increased in adenine nephropathy, but not in subtotal nephrectomy, models of CKD. By comparing the transcripts of these three models focusing on immune systems, we hypothesized that tumor necrosis factor (TNF)-α regulates WNK1 protein expression. In fact, TNF-α increased WNK1 protein expression in cultured renal tubular cells by reducing the transcription and protein levels of NEDD4-2 E3-ligase, which degrades WNK1 protein. Furthermore, the TNF-α inhibitor etanercept reversed the reduction of NEDD4-2 expression and upregulation of the WNK1-SPAK-NCC phosphorylation cascade in distal convoluted tubules in vivo in the aristolochic acid nephropathy model. Thus, salt-sensitive hypertension is induced in CKD via activation of the renal WNK1- SPAK-NCC phosphorylation cascade by TNF-α, reflecting a link with the immune system.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Animais , Hipertensão/induzido quimicamente , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Fator de Necrose Tumoral alfa , Proteína Quinase 1 Deficiente de Lisina WNK
8.
Nephrol Dial Transplant ; 35(3): 411-432, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436795

RESUMO

BACKGROUND: Loss-of-function mutations in the sodium chloride (NaCl) co-transporter (NCC) of the renal distal convoluted tubule (DCT) cause Gitelman syndrome with hypokalemic alkalosis, hypomagnesemia and hypocalciuria. Since Gitelman patients are usually diagnosed around adolescence, we tested the idea that a progressive regression of the DCT explains the late clinical onset of the syndrome. METHODS: NCC wild-type and knockout (ko) mice were studied at Days 1, 4 and 10 and 6 weeks after birth using blood plasma analysis and morphological and biochemical methods. RESULTS: Plasma aldosterone levels and renal renin messenger RNA expression were elevated in NCC ko mice during the first days of life. In contrast, plasma ion levels did not differ between genotypes at age 10 days, but a significant hypomagnesemia was observed in NCC ko mice at 6 weeks. Immunofluorescent detection of parvalbumin (an early DCT marker) revealed that the fractional cortical volume of the early DCT is similar for mice of both genotypes at Day 4, but is significantly lower at Day 10 and is almost zero at 6 weeks in NCC ko mice. The DCT atrophy correlates with a marked reduction in the abundance of the DCT-specific Mg2+ channel TRPM6 (transient receptor potential cation channel subfamily M member 6) and an increased proteolytic activation of the epithelial Na+ channel (ENaC). CONCLUSION: After an initial outgrowth, DCT development lags behind in NCC ko mice. The impaired DCT development associates at Day 1 and Day 10 with elevated renal renin and plasma aldosterone levels and activation of ENaC, respectively, suggesting that Gitelman syndrome might be present much earlier in life than is usually expected. Despite an early downregulation of TRPM6, hypomagnesemia is a rather late symptom.


Assuntos
Síndrome de Bartter/patologia , Síndrome de Gitelman/patologia , Hiperaldosteronismo/patologia , Túbulos Renais Distais/patologia , Magnésio/metabolismo , Simportadores de Cloreto de Sódio/fisiologia , Sódio/metabolismo , Animais , Síndrome de Bartter/etiologia , Síndrome de Bartter/metabolismo , Síndrome de Gitelman/etiologia , Síndrome de Gitelman/metabolismo , Hiperaldosteronismo/etiologia , Hiperaldosteronismo/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Knockout , Renina/metabolismo , Canais de Cátion TRPM/metabolismo
9.
J Am Soc Nephrol ; 30(5): 737-750, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30902838

RESUMO

BACKGROUND: A number of cAMP-elevating hormones stimulate phosphorylation (and hence activity) of the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). Evidence suggests that protein phosphatase 1 (PP1) and other protein phosphatases modulate NCC phosphorylation, but little is known about PP1's role and the mechanism regulating its function in the DCT. METHODS: We used ex vivo mouse kidney preparations to test whether a DCT-enriched inhibitor of PP1, protein phosphatase 1 inhibitor-1 (I1), mediates cAMP's effects on NCC, and conducted yeast two-hybrid and coimmunoprecipitation experiments in NCC-expressing MDCK cells to explore protein interactions. RESULTS: Treating isolated DCTs with forskolin and IBMX increased NCC phosphorylation via a protein kinase A (PKA)-dependent pathway. Ex vivo incubation of mouse kidney slices with isoproterenol, norepinephrine, and parathyroid hormone similarly increased NCC phosphorylation. The cAMP-induced stimulation of NCC phosphorylation strongly correlated with the phosphorylation of I1 at its PKA consensus phosphorylation site (a threonine residue in position 35). We also found an interaction between NCC and the I1-target PP1. Moreover, PP1 dephosphorylated NCC in vitro, and the PP1 inhibitor calyculin A increased NCC phosphorylation. Studies in kidney slices and isolated perfused kidneys of control and I1-KO mice demonstrated that I1 participates in the cAMP-induced stimulation of NCC. CONCLUSIONS: Our data suggest a complete signal transduction pathway by which cAMP increases NCC phosphorylation via a PKA-dependent phosphorylation of I1 and subsequent inhibition of PP1. This pathway might be relevant for the physiologic regulation of renal sodium handling by cAMP-elevating hormones, and may contribute to salt-sensitive hypertension in patients with endocrine disorders or sympathetic hyperactivity.


Assuntos
Transporte Biológico/efeitos dos fármacos , Colforsina/farmacologia , Túbulos Renais Distais/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas/farmacologia , Análise de Variância , Animais , Transporte Biológico/genética , Humanos , Immunoblotting , Técnicas In Vitro , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Transdução de Sinais/genética , Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
10.
Curr Top Membr ; 83: 177-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31196605

RESUMO

The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the distal convoluted tubule, serves as a receptor for thiazide-type diuretics, and is involved in inherited diseases associated with abnormal blood pressure. The functional and structural characterization of NCC from different species has led us to gain insights into the structure-function relationships of the cotransporter. Here we present an overview of different studies that had described these properties. Additionally, we report the cloning and characterization of the NCC from the spiny dogfish (Squalus acanthias) kidney (sNCC). The purpose of the present study was to determine the main functional, pharmacological and regulatory properties of sNCC to make a direct comparison with other NCC orthologous. The sNCC cRNA encodes a 1033 amino acid membrane protein, when expressed in Xenopus oocytes, functions as a thiazide-sensitive Na-Cl cotransporter with NCC regulation and thiazide-inhibition properties similar to mammals, rather than to teleosts. However, the Km values for ion transport kinetics are significantly higher than those observed in the mammal species. In summary, we present a review on NCC structure-function relationships with the addition of the sNCC information in order to enrich the NCC cotransporter knowledge.


Assuntos
Rim/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/química , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Síndrome de Gitelman/genética , Humanos , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Relação Estrutura-Atividade
11.
Pflugers Arch ; 469(7-8): 859-867, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656378

RESUMO

Understanding the molecular basis of the complex regulatory networks controlling renal ion transports is of major physiological and clinical importance. In this study, we aimed to identify evolutionarily conserved critical players in the function of the renal distal convoluted tubule (DCT) by a comparative transcriptomic approach. We generated a transgenic zebrafish line with expression of the red fluorescent mCherry protein under the control of the zebrafish DCT-specific promoter of the thiazide-sensitive NaCl cotransporter (NCC). The mCherry expression was then used to isolate from the zebrafish mesonephric kidneys the distal late (DL) segments, the equivalent of the mammalian DCT, for subsequent RNA-seq analysis. We next compared this zebrafish DL transcriptome to the previously established mouse DCT transcriptome and identified a subset of gene products significantly enriched in both the teleost DL and the mammalian DCT, including SLCs and nuclear transcription factors. Surprisingly, several of the previously described regulators of NCC (e.g., SPAK, KLHL3, ppp1r1a) in the mouse were not found enriched in the zebrafish DL. Nevertheless, the zebrafish DL expressed enriched levels of related homologues. Functional knockdown of one of these genes, ppp1r1b, reduced the phosphorylation of NCC in the zebrafish pronephros, similar to what was seen previously in knockout mice for its homologue, Ppp1r1a. The present work is the first report on global gene expression profiling in a specific nephron portion of the zebrafish kidney, an increasingly used model system for kidney research. Our study suggests that comparative analysis of gene expression between phylogenetically distant species may be an effective approach to identify novel regulators of renal function.


Assuntos
Sequência Conservada , Túbulos Renais Distais/metabolismo , Transcriptoma , Animais , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Evolução Molecular , Camundongos , Receptores de Droga/genética , Receptores de Droga/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
Am J Physiol Renal Physiol ; 312(6): F1063-F1072, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274929

RESUMO

The thiazide-sensitive NaCl cotransporter (NCC), located apically in distal convoluted tubule epithelia, regulates the fine-tuning of renal sodium excretion. Three isoforms of NCC are generated through alternative splicing of the transcript, of which the third isoform has been the most extensively investigated in pathophysiological conditions. The aim of this study was to investigate the effect of different anti-hypertensive treatments on the abundance and phosphorylation of all three NCC isoforms in urinary extracellular vesicles (uEVs) of essential hypertensive patients. In uEVs isolated from patients (n = 23) before and after hydrochlorothiazide or valsartan treatment, the abundance and phosphorylation of the NCC isoforms was determined. Additionally, clinical biochemistry and blood pressure of the patients was assessed. Our results show that NCC detected in human uEVs has a glycosylated and oligomeric structure, comparable to NCC present in human kidney membrane fractions. Despite the inhibitory action of hydrochlorothiazide on NCC activity, immunoblot analysis of uEVs showed significantly increased abundance of NCC isoforms 1 and 2 (NCC1/2), total NCC (NCC1-3), and the phosphorylated form of total NCC (pNCC1-3-T55/T60) in essential hypertensive patients treated with hydrochlorothiazide but not with valsartan. This study highlights that NCC1/2, NCC1-3, and pNCC1-3-T55/T60 are upregulated by hydrochlorothiazide, and the increase in NCC abundance in uEVs of essential hypertensive patients correlates with the blood pressure response to hydrochlorothiazide.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Vesículas Extracelulares/efeitos dos fármacos , Hidroclorotiazida/uso terapêutico , Hipertensão/tratamento farmacológico , Rim/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio/uso terapêutico , Valsartana/uso terapêutico , Adolescente , Adulto , Idoso , Biomarcadores/urina , Pressão Sanguínea/efeitos dos fármacos , Estudos Cross-Over , Vesículas Extracelulares/metabolismo , Feminino , Glicosilação , Humanos , Hipertensão/fisiopatologia , Hipertensão/urina , Rim/metabolismo , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Países Baixos , Fosforilação , Estudos Prospectivos , Isoformas de Proteínas , Membro 3 da Família 12 de Carreador de Soluto/efeitos dos fármacos , Membro 3 da Família 12 de Carreador de Soluto/urina , Resultado do Tratamento , Regulação para Cima , Adulto Jovem
13.
Kidney Int ; 89(1): 127-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26422504

RESUMO

Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo.


Assuntos
Cloretos/metabolismo , Homeostase , Potássio/sangue , Proteínas Serina-Treonina Quinases/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Túbulos Renais Distais/citologia , Túbulos Renais Distais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mutação , Néfrons/fisiologia , Fosforilação/genética , Potássio/metabolismo , Potássio na Dieta/administração & dosagem , Proteínas Serina-Treonina Quinases/genética , Proteína Quinase 1 Deficiente de Lisina WNK
14.
Am J Physiol Renal Physiol ; 306(4): F457-67, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24402096

RESUMO

Na(+) reabsorption from the distal renal tubule involves electroneutral and electrogenic pathways, with the latter promoting K(+) excretion. The relative activities of these two pathways are tightly controlled, participating in the minute-to-minute regulation of systemic K(+) balance. The pathways are interdependent: the activity of the NaCl cotransporter (NCC) in the distal convoluted tubule influences the activity of the epithelial Na(+) channel (ENaC) downstream. This effect might be mediated by changes in distal Na(+) delivery per se or by molecular and structural adaptations in the connecting tubule and collecting ducts. We hypothesized that acute inhibition of NCC activity would cause an immediate increase in Na(+) flux through ENaC, with a concomitant increase in renal K(+) excretion. We tested this using renal clearance methodology in anesthetized mice, by the administration of hydrochlorothiazide (HCTZ) and/or benzamil (BZM) to exert specific blockade of NCC and ENaC, respectively. Bolus HCTZ elicited a natriuresis that was sustained for up to 110 min; urinary K(+) excretion was not affected. Furthermore, the magnitude of the natriuresis was no greater during concomitant BZM administration. This suggests that ENaC-mediated Na(+) reabsorption was not normally limited by Na(+) delivery, accounting for the absence of thiazide-induced kaliuresis. After dietary Na(+) restriction, HCTZ elicited a kaliuresis, but the natiuretic effect of HCTZ was not enhanced by BZM. Our findings support a model in which inhibition of NCC activity does not increase Na(+) reabsorption through ENaC solely by increasing distal Na(+) delivery but rather by inducing a molecular and structural adaptation in downstream nephron segments.


Assuntos
Transporte de Íons/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio/metabolismo , Sódio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Diuréticos/farmacologia , Hidroclorotiazida/farmacologia , Túbulos Renais Distais/metabolismo , Camundongos , Natriurese/efeitos dos fármacos
15.
Acta Physiol (Oxf) ; 238(2): e13948, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36764674

RESUMO

AIM: Cyclosporin A (CsA) is a widely used immunosuppressive drug that causes hypertension and hyperkalemia. Moreover, CsA-induced stimulation of the thiazide-sensitive NaCl cotransporter (NCC) in the kidney has been shown to be responsible for the development of hyperkalemic hypertension. In this study, we tested whether CsA induces the activation of NCC by stimulating the basolateral Kir4.1/Kir5.1 channel in the distal convoluted tubule (DCT). METHODS: Electrophysiology, immunoblotting, metabolic cages, and radio-telemetry methods were used to examine the effects of CsA on Kir4.1/Kir5.1 activity in the DCT, NCC function, and blood pressure in wild-type (WT) and kidney-specific Kir4.1 knockout (KS-Kir4.1 KO) mice. RESULTS: The single-channel patch clamp experiment demonstrated that CsA stimulated the basolateral 40 pS K+ channel in the DCT. Whole-cell recording showed that short-term CsA administration (2 h) not only increased DCT K+ currents but also shifted the K+ current (IK ) reversal potential to the negative range (hyperpolarization). Furthermore, CsA administration increased phosphorylated NCC (pNCC) levels and inhibited renal Na+ and K+ excretions in WT mice but not in KS-Kir4.1 KO mice, suggesting that Kir4.1 is required to mediate CsA effects on NCC function. Finally, long-term CsA infusion (14 days) increased blood pressure, plasma K+ concentration, and total NCC or pNCC abundance in WT mice, but these effects were blunted in KS-Kir4.1 KO mice. CONCLUSION: We conclude that CsA stimulates basolateral K+ channel activity in the DCT and that Kir4.1 is essential for CsA-induced NCC activation and hyperkalemic hypertension.


Assuntos
Hiperpotassemia , Hipertensão , Animais , Camundongos , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Hiperpotassemia/metabolismo , Ciclosporina/farmacologia , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Camundongos Knockout , Túbulos Renais Distais , Hipertensão/induzido quimicamente , Hipertensão/metabolismo
16.
Acta Pharm Sin B ; 11(5): 1117-1128, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094823

RESUMO

Hypertension is the largest risk factor for cardiovascular disease, the leading cause of mortality worldwide. As blood pressure regulation is influenced by multiple physiological systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of research into Mendelian forms of hypertension implicated alterations in the renal tubular sodium handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na-Cl cotransporter (NCC). Altered functions of the NCC have shown to have profound effects on blood pressure regulation as illustrated by the over activation and inactivation of the NCC in Gordon's and Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect the expression and activity of the NCC. In particular, NCC activity is controlled by phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected regulator of the NCC. In recent years, there have been considerable advances in our understanding of NCC control mechanisms, particularly via the pathway containing the with-no-lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive 1 (OSR1), which has led to the discovery of novel inhibitory molecules. This review summarizes the currently reported regulatory mechanisms of the NCC and discusses their potential as therapeutic targets for treating hypertension.

17.
Hypertens Res ; 43(8): 733-743, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32286498

RESUMO

The distal nephron of the kidney has a central role in sodium and fluid homeostasis, and disruption of this homeostasis due to mutations of with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), or Cullin 3 (CUL3) causes pseudohypoaldosteronism type II (PHAII), an inherited hypertensive disease. WNK1 and WNK4 activate the NaCl cotransporter (NCC) at the distal convoluted tubule through oxidative stress-responsive gene 1 (OSR1)/Ste20-related proline-alanine-rich kinase (SPAK), constituting the WNK-OSR1/SPAK-NCC phosphorylation cascade. The level of WNK protein is regulated through degradation by the CUL3-KLHL3 E3 ligase complex. In the normal state, the activity of WNK signaling in the kidney is physiologically regulated by sodium intake to maintain sodium homeostasis in the body. In patients with PHAII, however, because of the defective degradation of WNK kinases, NCC is constitutively active and not properly suppressed by a high salt diet, leading to abnormally increased salt reabsorption and salt-sensitive hypertension. Importantly, recent studies have demonstrated that potassium intake, insulin, and TNFα are also physiological regulators of WNK signaling, suggesting that they contribute to the salt-sensitive hypertension associated with a low potassium diet, metabolic syndrome, and chronic kidney disease, respectively. Moreover, emerging evidence suggests that WNK signaling also has some unique roles in metabolic, cardiovascular, and immunological organs. Here, we review the recent literature and discuss the molecular mechanisms of the WNK signaling pathway and its potential as a therapeutic target.


Assuntos
Hipertensão/metabolismo , Rim/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Via de Sinalização Wnt/fisiologia , Animais , Humanos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Rim/fisiopatologia , Transdução de Sinais/fisiologia
18.
Endocrine ; 67(3): 673-677, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31808035

RESUMO

PURPOSE: Gitelman syndrome (GS) is an autosomal recessive renal tubular disorder characterized by salt wasting and hypokalemia resulting from loss-of-function mutations in the solute carrier family 12A3 (SLC12A3) gene encoding the thiazide-sensitive NaCl cotransporter (NCC). Here, we investigated the clinical manifestations and genetic features of a Chinese pedigree with GS. METHODS: Next-generation sequencing and Sanger sequencing analysis were performed to define and confirm the SLC12A3 gene mutations of the patient (proband II:1) and this pedigree. Clinical manifestations and biochemical parameters were collected and analyzed. RESULTS: Genetic analysis of the SLC12A3 gene identified two novel mutations in the proband, heterozygous (c.2842delT) and heterozygous (c.1569_1586del) mutation, respectively. Additionally, heterozygous (c.2842delT) mutation in SLC12A3 gene was found in his father and younger brother. The other heterozygous (c.1569_1586del) mutation in SLC12A3 gene was carried by his mother. CONCLUSIONS: Two novel mutations may be related to the occurrence of the GS in the pedigree. However, additional studies are particularly required to explore the underlying molecular mechanisms.


Assuntos
Síndrome de Gitelman , China , Síndrome de Gitelman/genética , Humanos , Masculino , Mutação , Linhagem , Membro 3 da Família 12 de Carreador de Soluto/genética
19.
Mol Cell Biol ; 37(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052936

RESUMO

Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3-/- mice that expressed ß-galactosidase (ß-Gal) under the control of the endogenous KLHL3 promoter. Immunoblots of ß-Gal and LacZ staining revealed that KLHL3 was expressed in some organs, such as brain. However, the expression levels of WNK kinases were not increased in any of these organs other than the kidney, where WNK1 and WNK4 increased in KLHL3-/- mice but not in KLHL3+/- mice. KLHL3-/- mice also showed PHAII-like phenotypes, whereas KLHL3+/- mice did not. This clearly demonstrates that the heterozygous deletion of KLHL3 was not sufficient to cause PHAII, indicating that autosomal dominant type PHAII is caused by the dominant negative effect of mutant KLHL3. We further demonstrated that the dimerization of KLHL3 can explain this dominant negative effect. These findings could help us to further understand the physiological roles of KLHL3 and the pathophysiology of PHAII caused by mutant KLHL3.


Assuntos
Proteínas dos Microfilamentos/genética , Mutação/genética , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Técnicas de Introdução de Genes , Genes Dominantes , Rim/enzimologia , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fenótipo , Fosforilação , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/sangue , Distribuição Tecidual
20.
World J Nephrol ; 5(6): 551-555, 2016 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872838

RESUMO

Gitelman's syndrome (GS) is a salt-losing tubulopathy with an autosomal recessive inheritance caused by mutations of SLC12A3, which encodes for the thiazide-sensitive NaCl cotransporter. In this study we report a new mutation of SLC12A3 found in two brothers affected by GS. Hypokalemia, hypocalciuria and hyper-reninemia were present in both patients while hypomagnesemia was detected only in one. Both patients are compound heterozygotes carrying one well known GS associated mutation (c.2581 C > T) and a new one (c.283delC) in SLC12A3 gene. The new mutation results in a possible frame-shift with a premature stop-codon (pGln95ArgfsX19). The parents of the patients, heterozygous carriers of the mutations found in SLC12A3, have no disease associated phenotype. Therefore, the new mutation is causative of GS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa