Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2403655, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881262

RESUMO

Developing advanced functional carbon materials is essential for electrocatalysis, caused by their vast merits for boosting many key energy conversion reactions. Herein, the covalent organic frameworks (COFs) is utilized on metal-organic frameworks (MOFs) as the template, under the controllable metal atoms thermal migration process successfully in situ constructs Pd-Co alloy nanoparticles on hollow cubic graphene. The electrocatalytic oxygen reduction reaction (ORR) evaluation showed excellent performances with a half-wave potential of 0.866 V, and a limited current density of 4.975 mA cm-2, that superior to the commercial Pt/C and Co nanoparticles. The contrast experiments and X-ray absorption spectrum demonstrated the aggregated electrons at highly dispersed Pd atoms on Co nanoparticle that promoted the main activities. This work not only enlightens the novel carbon materials designing strategies but also suggests heterogeneous electrocatalysis.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542240

RESUMO

The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.


Assuntos
Nanopartículas , Nanoestruturas , Nanopartículas/química , Nanoestruturas/química , Sistemas de Liberação de Medicamentos/métodos , Engenharia Tecidual , Propriedades de Superfície
3.
Angew Chem Int Ed Engl ; 63(15): e202400582, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38308672

RESUMO

Large-scale deployment of proton exchange membranes water electrolysis (PEM-WE) requires a substantial reduction in usage of platinum group metals (PGMs) as indispensable electrocatalyst for cathodic hydrogen evolution reaction (HER). Ultra-fine PGMs nanocatalysts possess abundant catalytic sites at lower loading, but usually exhibit reduced stability in long-term operations under corrosive acidic environments. Here we report grafting the ultra-fine PtRu crystalline nanoalloys with PtxRuySez "amorphous skin" (c-PtRu@a-PtxRuySez) by in situ atomic layer selenation to simultaneously improve catalytic activity and stability. We found that the c-PtRu@a-PtxRuySez-1 with ~0.6 nm thickness amorphous skin achieved an ultra-high mass activity of 26.7 A mg-1 Pt+Ru at -0.07 V as well as a state-of-the-art durability maintained for at least 1000 h at -10 mA cm-2 and 550 h at -100 mA⋅cm-2 for acid HER. Experimental and theoretical investigations suggested that the amorphous skin not only improved the electrochemical accessibility of the catalyst surface and increasing the intrinsic activity of the catalytic sites, but also mitigated the dissolution/diffusion of the active species, thus resulting in improved catalytic activity and stability under acidic electrolyte. This work demonstrates a direction of designing ultra-fine PGMs electrocatalysts both with high utilization and robust durability, offers an in situ "amorphous skin" engineering strategy.

4.
Small ; 19(43): e2303031, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356067

RESUMO

Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.

5.
Small ; 19(40): e2300110, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37282800

RESUMO

Platinum-rare earth metal (Pt-RE) nanoalloys are regarded as a potential high performance oxygen reduction reaction (ORR) catalyst. However, wet chemical synthesis of the nanoalloys is a crucial challenge because of the extremely high oxygen affinity of RE elements and the significantly different standard reduction potentials between Pt and RE. Here, this paper presents a molten-salt electrochemical synthetic strategy for the compositional-controlled preparation of platinum-neodymium (Pt-Nd) nanoalloy catalysts. Carbon-supported platinum-neodymium (Ptx Nd/C) nanoalloys, with distinct compositions of Pt5 Nd and Pt2 Nd, are obtained through molten-salt electrochemical deoxidation of platinum and neodymium oxide (Pt-Nd2 O3 ) precursors supported on carbon. The Ptx Nd/C nanoalloys, especially the Pt5 Nd/C exhibit a mass activity of 0.40 A mg-1 Pt and a specific activity of 1.41 mA cm-2 Pt at 0.9 V versus RHE, which are 3.1 and 7.1 times higher, respectively, than that of commercial Pt/C catalyst. More significantly, the Pt5 Nd/C catalyst is remarkably stable after undergoing 20 000 accelerated durability cycles. Furthermore, the density-functional-theory (DFT) calculations confirm that the ORR catalytic performance of Ptx Nd/C nanoalloys is enhanced by compressive strain effect of Pt overlayer, causing a suitable weakened binding energies of O* Δ E O ∗ $\Delta {E}_{{{\rm{O}}}^*}$ and Δ E OH ∗ $\Delta {E}_{{\rm{OH}}^*}$ .

6.
Environ Res ; 232: 116232, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263471

RESUMO

Biochar-supported nanocatalysts emerged as unique materials for environmental remediation. Herein, sugarcane pulp bagasse (SCPB) was wet-impregnated with Cu(NO3)23H2O and Ni(NO3)26H2O, then pyrolyzed at 500 °C, under N2, for 1 h. We specifically focused on sugarcane pulp instead of SCB and biochar materials. The metal nitrate to biomass ratio was set at 0.5, 1, and 2 mmol/g, with Cu/Ni initial ratio = 1. The process provided hierarchically structured porous biochar, topped with evenly dispersed 40 nm-sized CuNi alloy nanoparticles (SCPBB@CuNi). The biochar exhibited an unusual fishing net-like structure induced by nickel, with slits having a length in the 3-12 µm range. Such a fishing net-like porous structure was obtained without any harsh acidic or basic treatment of the biomass. It was induced, during pyrolysis, by the nanocatalysts or their precursors. The CuNi nanoparticles form true alloy as proved by XRD, and are prone to agglomeration at high initial metal nitrate concentration (2 mmol/g). Stepwise metal loading was probed by XPS versus the initial metal nitrate concentration. This is also reflected in the thermal gravimetric analyses. The SCPBB@CuNi/H2O2 (catalyst dose: 0.25 g/L) system served for the catalyzed removal of Malachite Green (MG), Methylene Blue (MB), and Methyl Orange (MO) dyes (concentration = 0.01 mmol/L). Both single and mixed dye solutions were treated in this advanced oxidation process (AOP). The dyes were removed in less than 30 min for MG and 3 h for MB, respectively, but 8 h for MO, therefore showing selectivity for the degradation of MG, under optimized degradation conditions. The catalysts could be collected with a magnet and reused three times, without any significant loss of activity (∼85%). AOP conditions did not induce any nanocatalyst leaching. To sum up, we provide a simple wet impregnation route that permitted to design highly active Fenton-like biochar@CuNi composite catalyst for the degradation of organic pollutants, under daylight conditions.


Assuntos
Nanopartículas , Saccharum , Peróxido de Hidrogênio/química , Corantes , Nitratos , Ligas
7.
Angew Chem Int Ed Engl ; 62(26): e202217888, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36999638

RESUMO

Colloidal synthesis is an excellent tool for the study of cooperative effects in nanoalloys. In this work, bimetallic CuNi nanoparticles of defined size and composition are fully characterized and tested for the oxygen evolution reaction. Copper addition to nickel leads to modifications in the structural and electronic properties, showing a higher concentration of surface oxygen defects and formation of active Ni3+ sites under reaction conditions. The ratio OV /OL between oxygen vacancies and lattice oxygen shows a clear correlation with the overpotential, being an excellent descriptor of the electrocatalytic activity. This is attributed to modifications in the crystalline structure, leading to lattice strain and grain size effects. Bimetallic Cu50 Ni50 NP showed the lowest overpotential (318 mV vs RHE), low Tafel slope (63.9 mV dec-1 ), and excellent stability. This work unravels the relative concentration between oxygen defects and lattice oxygen (OV /OL ) as an excellent descriptor of the catalytic activity of bimetallic precatalysts.


Assuntos
Cobre , Nanopartículas , Eletrônica , Níquel , Oxigênio
8.
Angew Chem Int Ed Engl ; 61(45): e202209693, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36114595

RESUMO

The efficiency of direct methanol fuel cell (DMFC) is largely determined by the activity and durability of methanol oxidation reaction (MOR) catalysts. Herein, we present a CO-resilient MOR catalyst of palladium-tin nano-alloy anchored on Se-doped MXene (PdSn0.5 /Se-Ti3 C2 ) via a progressive one-step electrochemical deposition strategy. MOR mass activity resulting from Pd/Se-Ti3 C2 catalyst (1046.2 mA mg-1 ) is over 2-fold larger than that of Pd/Ti3 C2 , suggesting that the introduction of Se atoms on MXene might accelerate the reaction kinetics. PdSn0.5 /Se-Ti3 C2 with Se-doping progress of MXene and the cooperated Pd-Sn sites has a superior MOR mass activity (4762.8 mA mg-1 ), outperforming many other reported Pd-based catalysts. Both experimental results and theoretical calculation reveal that boosted electron interaction of metal crystals with Se-doped MXene and optimized distribution of Pd-Sn sites can modulate the d band center, reduce adsorption energies of CO* at Pd site and enhance OH* generation at Sn site, resulting in highly efficient removal of CO intermediates by reaction with neighboring OH species on adjacent Sn sites.

9.
Nanotechnology ; 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33440358

RESUMO

A facile synthesis method is introduced how to prepare magnetically active ultraviolet emitting manganese ions incorporated into ZnSxSe1-xcolloidal quantum dot (nanoalloy) at 110°C in aqueous solutions. The reaction time is the main factor to control the hydrodynamic size from 3 to 10 nm and the precursor ratio is significant to tune the alloy composition. ZnS shell layer on the ZnSxSe1-xcore was grown to passivate environmental effects. The nanoalloy has ultraviolet emission at 380 nm having a lifetime of 80 ns and 7% quantum yield. Incorporation of Mn2+ions into the nanoalloys induced magnetic activity but did not modify the structure and photophysical properties of the nanoalloys. Colloidal and powdery samples were prepared and analyzed by electron paramagnetic resonance (EPR) spectroscopy. In the colloidal dispersions, EPR spectra showed hyperfine line splitting regardless of the Mn2+ion fractions, up to 6%, indicating that Mn2+ions incorporated into the nanoalloys were isolated. EPR signals of the powdery samples were broadened when the fraction of Mn2+ions was higher than 0.1 %. The EPR spectra were simulated to reveal the locations and interactions of Mn2+ions. The simulations suggest that the Mn2+ions are located on the nanoalloy surfaces. These findings infer that the magnetic dipolar interactions are regulated by the initial mole ratio of Mn/Zn and the physical state of the nanoalloys adjusted by preparation methods.

10.
Luminescence ; 36(1): 11-19, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32602594

RESUMO

Bacterial pathogen control is important in seafood production. In this study, a Cu/Co/Ni ternary nanoalloy (Cu/Co/Ni TNA) was synthesized using the oleylamine reducing method. It was found that Cu/Co/Ni TNA greatly enhanced the chemiluminescence (CL) signal of the hydroxylamine-O-sulfonic acid (HOSA)-luminol system. The CL properties of Cu/Co/Ni TNA were investigated systemically. The possible CL mechanism also was intensively investigated. Based on the enhanced CL phenomenon of Cu/Co/Ni TNA, a Cu/Co/Ni TNA, penicillin, and anti-L. monocytogenes (Listeria monocytogenes) antibody-based sandwich complex assay for detection of L. monocytogenes was established. In this sandwich CL assay, penicillin was employed to capture and enrich pathogenic bacteria with penicillin-binding proteins (PBPs) while anti-L. monocytogenes antibody was adopted as the specific recognition molecule to recognize L. monocytogenes. L. monocytogenes was detected sensitively based on this new Cu/Co/Ni TNA-HOSA-luminol CL system. The CL intensity was proportional to the L. monocytogenes concentration ranging from 2.0 × 102 CFU ml-1 to 3.0 × 107 CFU ml-1 and the limit of detection wa 70 CFU ml-1 . The reliability and potential applications of our method was verified by comparison with official methods and recovery tests in environment and food samples.


Assuntos
Listeria monocytogenes , Luminescência , Medições Luminescentes , Penicilinas , Reprodutibilidade dos Testes
11.
Nano Lett ; 20(5): 3778-3785, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32330053

RESUMO

Hybrid plasmonic metamaterials offer a pathway to exotic properties and technologically important applications including subdiffraction imaging and plasmonic energy harvesting. Challenges remain for practical applications including high absorption losses of noble metals and tedious growth/fabrication processes. In this work, a self-assembled hybrid plasmonic metamaterial consisting of anisotropic AgxAu1-x alloy nanopillars embedded in a ZnO matrix has been successfully grown. The chemical composition of the nanoalloy was determined to be Ag61Au39. The microstructure and optical properties arising from ZnO-Ag61Au39 alloyed hybrid systems were investigated and compared with that of the ZnO-Ag particle-in-matrix nanocomposite and the ZnO-Au vertically aligned nanocomposite. The ZnO-Ag61Au39 hybrid system demonstrates anisotropic morphology, excellent epitaxial quality, and enhanced optical properties, including surface plasmon resonance, hyperbolic dispersion, low absorption losses, and numerous epsilon-near-zero permittivity points, making it a promising candidate for practical applications of hybrid plasmonic metamaterials.

12.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684823

RESUMO

Molecular dynamics simulations are performed to investigate the changes of packing structures, and thermodynamic quantities including internal energy, entropy, and free energy are used to determine temperature regime and transition time of atomic packing structures. The simulation results show different packing structures as the component composition changes, and there are different packing patterns during cooling. For these Cu-Ag alloy clusters containing only a small number of atoms of Cu, they present FCC packing structures in different parts at high temperatures, and then there are transformations to icosahedral structures. With the increase in content of Cu atoms, there is a transition mechanism from molten state to icosahedron. When the content of Cu atoms is appropriate, core-shell structures can be formed at room temperature.

13.
Angew Chem Int Ed Engl ; 59(32): 13568-13574, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32495981

RESUMO

Synthesis of well-defined atomically mixed alloy nanoparticles on desired substrates is an ultimate goal for their practical application. Herein we report a general approach for preparing atomically mixed AuPt, AuPd, PtPd, AuPtPd NAs(nanoalloys) through single-atom level manipulation. By utilizing the ubiquitous tendency of aggregation of single atoms into nanoparticles at elevated temperatures, we have synthesized nanoalloys on a solid solvent with CeO2 as a carrier and transition-metal single atoms as an intermediate state. The supported nanoalloys/CeO2 with ultra-low noble metal content (containing 0.2 wt % Au and 0.2 wt % Pt) exhibit enhanced catalytic performance towards complete CO oxidation at room temperature and remarkable thermostability. This work provides a general strategy for facile and rapid synthesis of well-defined atomically mixed nanoalloys that can be applied for a range of emerging techniques.

14.
Sensors (Basel) ; 20(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877704

RESUMO

Catching cancer at an early stage is necessary to make it easier to treat and to save people's lives rather than just extending them. Reactive oxygen species (ROS) have sparked a huge interest owing to their vital role in various biological processes, especially in tumorigenesis, thus leading to the potential of ROS as prognostic biomarkers for cancer. Herein, a non-enzymatic biosensor for the dynamic monitoring of intracellular hydrogen peroxide (H2O2), the most important ROS, via an effective electrode composed of poly (diallyldimethylammonium chloride) (PDDA)-capped reduced graphene oxide (RGO) nanosheets with high loading trimetallic AuPtAg nanoalloy, is proposed. The designed biosensor was able to measure H2O2 released from different cancerous cells promptly and precisely owing to the impressive conductivity of RGO and PDDA and the excellent synergistic effect of the ternary alloy in boosting the electrocatalytic activity. Built upon the peroxidase-like activity of the nanoalloy, the developed sensor exhibited distinguished electrochemical performance, resulting in a low detection limit of 1.2 nM and a wide linear range from 0.05 µM to 5.5 mM. Our approach offers a significant contribution toward the further elucidation of the role of ROS in carcinogenesis and the effective screening of cancer at an early stage.


Assuntos
Ligas/química , Técnicas Eletroquímicas/métodos , Grafite/química , Peróxido de Hidrogênio/análise , Nanocompostos/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Linhagem Celular Tumoral , Eletrodos , Ouro/química , Humanos , Limite de Detecção , Platina/química , Reprodutibilidade dos Testes , Prata/química
15.
Proc Natl Acad Sci U S A ; 112(52): 15809-14, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668386

RESUMO

Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world's continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd-H sites and Cu-CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices.

16.
J Environ Sci (China) ; 64: 122-129, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29478631

RESUMO

In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag1-Cu0.1/SBA-15 catalyst, on which the soot combustion starts at Tig=225°C with a T50=285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance.


Assuntos
Modelos Químicos , Fuligem/química , Catálise , Cobre/química , Ouro/química , Dióxido de Silício/química , Temperatura , Difração de Raios X
17.
Anal Bioanal Chem ; 408(2): 619-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26547191

RESUMO

A novel and environmentally friendly reverse fluorescent immunoassay approach was proposed and utilized for sensing human chorionic gonadotropin (HCG) in human serum by coupling a newly prepared and highly fluorescent glutathione-stabilized silver-gold nano-alloy (GSH-AgAuNAs) with magnetic nanoparticles (MNPs). To construct such a reverse system, fluorescent GSH-AgAuNAs and MNPs were first prepared and bio-functionalized with monoclonal antibodies (Mab-I and Mab-II) toward HCG antigen, respectively. Then, the GSH-AgAuNAs functionalized with Mab-I were incubated with HCG, followed by the addition of MNPs attached to Mab-II. Thereafter, a sandwich-type immunoassay could be constructed for determination of HCG owing to the antibody-antigen recognition between the functionalized GSH-AgAuNAs and MNPs. Afterwards, a magnetic collection was employed. Hence, the amount of GSH-AgAuNAs would be reduced through an immuno-magnetic separation, thus weakening the fluorescent intensity. Different from conventional immunoassay, our work determined the quantitative signal by measuring the decreasing gradient fluorescent intensity. Under optimal conditions, the developed reverse method exhibited a wide linear range of 0.5-600 ng mL(-1) toward HCG with a detection limit of 0.25 ng mL(-1). Additionally, the proposed immunoassay was validated using spiked samples, illustrating a satisfactory result in practical application.


Assuntos
Técnicas Biossensoriais/métodos , Gonadotropina Coriônica/análise , Imunoensaio/métodos , Ligas/química , Técnicas Biossensoriais/instrumentação , Fluorescência , Ouro/química , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Nanopartículas de Magnetita/química , Prata/química
18.
Luminescence ; 30(3): 296-302, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24989972

RESUMO

The substrate chain of double-stranded DNA (dsDNA) could be specifically cleaved by Pb(2+) to release single-stranded DNA (ssDNA) that adsorbs onto the AuPd nanoalloy (AuPdNP) to form a stable AuPdNP-ssDNA complex, but the dsDNA can not protect AuPdNPs in large AuPdNP aggregates (AuPdNPA) under the action of NaCl. AuPdNP-ssDNA and large AuPdNPA could be separated by centrifugation. On increasing the concentration of Pb(2+) , the amount of released ssDNA increased; AuPdNP-ssDNA increased in the centrifugation solution exhibiting a catalytic effect on the slow reaction of rhodamine 6G (Rh6G) and NaH2 PO2 , which led to fluorescence quenching at 552 nm. The decrease in fluorescence intensity (ΔF) was linear to the concentration of Pb(2+) within the range 0.33-8.00 nmol/L, with a detection limit of 0.21 nmol/L. The proposed method was applied to detect Pb(2+) in water samples, with satisfactory results.


Assuntos
Chumbo/análise , Nanoestruturas/química , Rodaminas/química , Espectrometria de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Catálise , DNA de Cadeia Simples/química , Fluorescência , Corantes Fluorescentes/química , Ligas de Ouro/química , Microscopia Eletrônica de Varredura , Águas Residuárias/análise
19.
Nano Lett ; 14(11): 6718-26, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25338111

RESUMO

Gold-copper (Au-Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core-shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations.


Assuntos
Cobre/química , Ligas de Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Simulação de Dinâmica Molecular , Nanotecnologia , Tamanho da Partícula , Transição de Fase , Termodinâmica
20.
Nano Lett ; 14(12): 7077-84, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25411918

RESUMO

Changes in the chemical configuration of alloyed nanoparticle (NP) catalysts induced by adsorbates under working conditions, such as reversal in core-shell preference, are crucial to understand and design NP functionality. We extend the cluster expansion method to predict the configurational thermodynamics of alloyed NPs with adsorbates based on density functional theory data. Exemplified with PdRh NPs having O-coverage up to a monolayer, we fully detail the core-shell behavior across the entire range of NP composition and O-coverage with quantitative agreement to in situ experimental data. Optimally fitted cluster interactions in the heterogeneous system are the key to enable quantitative Monte Carlo simulations and design.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa