Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33912935

RESUMO

In response to signals from the embryonic testis, the germ cell intrinsic factor NANOS2 coordinates a transcriptional program necessary for the differentiation of pluripotent-like primordial germ cells toward a unipotent spermatogonial stem cell fate. Emerging evidence indicates that genetic risk factors contribute to testicular germ cell tumor initiation by disrupting sex-specific differentiation. Here, using the 129.MOLF-Chr19 mouse model of testicular teratomas and a NANOS2 reporter allele, we report that the developmental phenotypes required for tumorigenesis, including failure to enter mitotic arrest, retention of pluripotency and delayed sex-specific differentiation, were exclusive to a subpopulation of germ cells failing to express NANOS2. Single-cell RNA sequencing revealed that embryonic day 15.5 NANOS2-deficient germ cells and embryonal carcinoma cells developed a transcriptional profile enriched for MYC signaling, NODAL signaling and primed pluripotency. Moreover, lineage-tracing experiments demonstrated that embryonal carcinoma cells arose exclusively from germ cells failing to express NANOS2. Our results indicate that NANOS2 is the nexus through which several genetic risk factors influence tumor susceptibility. We propose that, in the absence of sex specification, signals native to the developing testis drive germ cell transformation.


Assuntos
Diferenciação Celular , Neoplasias Embrionárias de Células Germinativas , Diferenciação Sexual , Neoplasias Testiculares , Animais , Diferenciação Celular/genética , Proliferação de Células , Células-Tronco de Carcinoma Embrionário/metabolismo , Células Germinativas Embrionárias , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Proteínas de Ligação a RNA , Transdução de Sinais , Espermatogônias/metabolismo , Teratoma
2.
Fish Physiol Biochem ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639895

RESUMO

Identification of specific molecular markers for spermatogonial stem cells in teleost is crucial for enhancing the efficacy of reproductive biotechnologies in aquaculture, such as transplantation and surrogate production in fishes. Since it is not yet possible to distinguish spermatogonial stem cells of European eel (Anguilla anguilla) using specific molecular markers, we isolated spermatogonial cells from immature European eels to find these potential markers. We attempted this by studying three candidate genes: vasa, nanos2, and dnd1. Two vasa (vasa1 and vasa2) genes, nanos2, and dnd1 were identified, characterized, and studied in the muscle, testis, and isolated spermatogonia. Our results showed that vasa1 and vasa2 had the highest levels of expression when measured by qPCR. In situ hybridization and immunochemistry assays showed that the four genes were localized explicitly in type A spermatogonia. However, vasa1 and vasa2 exhibited stronger signals in the immature testicular tissue than the other two potential markers. According to this, vasa1 and vasa2 were found to be the most effective markers for spermatogonial cells in the European eel.

3.
Proc Natl Acad Sci U S A ; 117(39): 24195-24204, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929012

RESUMO

Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the NANOS2 gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal. In adult pigs and goats, SSCT with allogeneic donor stem cells led to sustained donor-derived spermatogenesis. With prepubertal mice, allogeneic SSCT resulted in attainment of natural fertility. Collectively, these advancements represent a major step toward realizing the enormous potential of surrogate sires as a tool for dissemination and regeneration of germplasm in all mammalian species.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Proteínas de Ligação a RNA/fisiologia , Espermatogênese , Animais , Bovinos , Feminino , Cabras , Masculino , Camundongos , Camundongos Knockout , Suínos , Testículo/anatomia & histologia , Testículo/fisiologia , Transplante Homólogo
4.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012673

RESUMO

In recent years, growing evidence demonstrates that mammalian Nanos RNA-binding proteins (Nanos1, Nanos2, and Nanos3), known for their indispensable roles in germline development, are overexpressed in a variety of cancers. This overexpression contributes to various oncogenic properties including cancer growth, invasiveness, and metastasis. Here, we highlight recent findings regarding the role of mammalian Nanos RNA-binding proteins and the mechanisms of their overexpression in cancer. In addition, we present expression profiles of human NANOS genes and their oncogenic transcriptional regulators obtained from publicly available cancer and normal tissue RNA-Seq datasets. Altogether, we emphasize the functional significance of NANOS proteins across human cancers as well as highlight the missing links to understanding the full scope of their role in carcinogenesis.


Assuntos
Neoplasias , Proteínas de Ligação a RNA , Células Germinativas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
5.
Development ; 145(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545285

RESUMO

Testicular teratomas result from anomalies in embryonic germ cell development. In 129 inbred mice, teratoma initiation coincides with germ cell sex-specific differentiation and the mitotic-meiotic switch: XX and XY germ cells repress pluripotency, XX germ cells initiate meiosis, and XY germ cells activate male-specific differentiation and mitotic arrest. Here, we report that expression of Nanos2, a gene that is crucial to male sex specification, is delayed in teratoma-susceptible germ cells. Decreased expression of Nanos2 was found to be due, in part, to the Nanos2 allele present in 129 mice. In teratoma-susceptible germ cells, diminished expression of genes downstream of Nanos2 disrupted processes that were crucial to male germ cell differentiation. Deficiency for Nanos2 increased teratoma incidence in 129 mice and induced developmental abnormalities associated with tumor initiation in teratoma-resistant germ cells. Finally, in the absence of commitment to the male germ cell fate, we discovered that a subpopulation of teratoma-susceptible germ cells transition into embryonal carcinoma (EC) cells with primed pluripotent features. We conclude that delayed male germ cell sex-specification facilitates the transformation of germ cells with naïve pluripotent features into primed pluripotent EC cells.


Assuntos
Células-Tronco de Carcinoma Embrionário/metabolismo , Células Germinativas Embrionárias/metabolismo , Teratoma/metabolismo , Neoplasias Testiculares/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular/genética , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos da Linhagem 129 , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Processos de Determinação Sexual/genética
6.
J Cell Physiol ; 234(4): 3762-3774, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146792

RESUMO

The transcription factor positioning in promoter regions relate to gene regulation, and the level of DNA methylation and histone acetylation also impact the promoter activity. In this study, we tested and verified the core promoter region and key transcription factor of Nanos2 which is a male-critical gene in the differentiation of embryonic stem cells to male germ cells, meanwhile, epigenetic effects by mean of 5-Aza-2'-deoxycytidine (5-Azadc) and Trichostin A (TSA) on the activity of Nanos2 promoter were detected. The results reveal that key transcription factor Foxd3 is a negative regulator of Nanos2, which suggests that loss-of-function of Foxd3 causes strong expression of Nanos2 responsive to large amounts of primordial germ cells and spermatogonial stem cells,whereas its overexpression causes the opposite effect. Furthermore, both 5-Azadc and TSA can provoke responses of Nanos2, but the combination effect of the two is better.


Assuntos
Células-Tronco Germinativas Adultas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Decitabina/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Ácidos Hidroxâmicos/farmacologia , Proteínas de Ligação a RNA/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Animais , Linhagem da Célula , Embrião de Galinha , Metilação de DNA/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Transcrição Gênica
7.
Biol Reprod ; 101(1): 177-187, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095680

RESUMO

Gene editing technologies, such as CRISPR-Cas9, have important applications in mammalian embryos for generating novel animal models in biomedical research and lines of livestock with enhanced production traits. However, the lack of methods for efficient introduction of gene editing reagents into zygotes of various species and the need for surgical embryo transfer in mice have been technical barriers of widespread use. Here, we described methodologies that overcome these limitations for embryos of mice, cattle, and pigs. Using mutation of the Nanos2 gene as a readout, we refined electroporation parameters with preassembled sgRNA-Cas9 RNPs for zygotes of all three species without the need for zona pellucida dissolution that led to high-efficiency INDEL edits. In addition, we optimized culture conditions to support maturation from zygote to the multicellular stage for all three species that generates embryos ready for transfer to produce gene-edited animals. Moreover, for mice, we devised a nonsurgical embryo transfer method that yields offspring at an efficiency comparable to conventional surgical approaches. Collectively, outcomes of these studies provide simplified pipelines for CRISPR-Cas9-based gene editing that are applicable in a variety of mammalian species.


Assuntos
Sistemas CRISPR-Cas/genética , Clonagem de Organismos/métodos , Eletroporação/métodos , Embrião de Mamíferos/citologia , Edição de Genes/métodos , Engenharia Genética/métodos , Animais , Bovinos/embriologia , Células Cultivadas , Clonagem de Organismos/veterinária , Eletroporação/veterinária , Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura Embrionária/veterinária , Transferência Embrionária/métodos , Transferência Embrionária/veterinária , Embrião de Mamíferos/metabolismo , Feminino , Edição de Genes/veterinária , Técnicas de Transferência de Genes/veterinária , Engenharia Genética/veterinária , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Ligação a RNA/genética , Suínos/embriologia
8.
Transgenic Res ; 28(Suppl 2): 57-60, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321684

RESUMO

Animal husbandry is believed to predate farming of crops, and remains a core component of most agricultural systems. Historic breeding strategies were based largely on visual observation, crossing animals that were perceived to display enhanced merit. Advances in sequencing capacity coupled with reduced costs have allowed genomic selection tools to deliver significant contribution to breeding regimes. The application of genome editors to make specific changes to livestock genomes has the potential to deliver additional benefits.


Assuntos
Produtos Agrícolas/genética , Edição de Genes/tendências , Genômica , Criação de Animais Domésticos/tendências , Cruzamento , Produtos Agrícolas/crescimento & desenvolvimento , Engenharia Genética/tendências , Genoma/genética , Humanos
9.
Zygote ; 27(2): 82-88, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30888312

RESUMO

SummaryThe decision by germ cells to differentiate and undergo either oogenesis or spermatogenesis takes place during embryonic development and Nanos plays an important role in this process. The present study was designed to investigate the expression patterns in rat of Nanos2-homologue protein in primordial germ cells (PGCs) over different embryonic developmental days as well as in spermatogonial stem cells (SSCs). Embryos from three different embryonic days (E8.5, E10.5, E11.5) and SSCs were isolated and used to detect Nanos2-homologue protein using immunocytochemistry, western blotting, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. Interestingly, Nanos2 expression was detected in PGCs at day E11.5 onwards and up to colonization of PGCs in the genital ridge of fetal gonads. No Nanos2 expression was found in PGCs during early embryonic days (E8.5 and 10.5). Furthermore, immunohistochemical and immunofluorescence data revealed that Nanos2 expression was restricted within a subpopulation of undifferentiated spermatogonia (As, single type A SSCs and Apr, paired type A SSCs). The same results were confirmed by our western blot and RT-PCR data, as Nanos2 protein and transcripts were detected only in PGCs from day E11.5 and in undifferentiated spermatogonia (As and Apr). Furthermore, Nanos2-positive cells were also immunodetected and sorted using flow cytometry from the THY1-positive SSCs population, and this strengthened the idea that these cells are stem cells. Our findings suggested that stage-specific expression of Nanos2 occurred on different embryonic developmental days, while during the postnatal period Nanos2 expression is restricted to As and Apr SSCs.


Assuntos
Proteínas de Ligação a RNA/genética , Espermatogônias/fisiologia , Células-Tronco/fisiologia , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/fisiologia , Masculino , Gravidez , Proteínas de Ligação a RNA/metabolismo , Ratos Endogâmicos , Espermatogônias/citologia , Células-Tronco/citologia
10.
Int J Mol Sci ; 20(11)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159444

RESUMO

Sea urchin (Mesocentrotus nudus) is an economically important mariculture species in China and the gonads are the solely edible parts to human. The molecular mechanisms of gonad development have attracted increasing attention in recent years. Although the nanos2 gene has been identified as a germ cell marker in several invertebrates, little is known about nanos2 in adult sea urchins. Hereinto, we report the characterization of Mnnano2, an M. nudus nanos2 homology gene. Mnnanos2 is a maternal factor and can be detected continuously during embryogenesis and early ontogeny. Real-time quantitative PCR (RT-qPCR) and section in situ hybridization (ISH) analysis revealed a dynamic and sexually dimorphic expression pattern of Mnnano2 in the gonads. Its expression reached the maximal level at Stage 2 along with the gonad development in both ovary and testis. In the ovary, Mnnanos2 is specifically expressed in germ cells. In contrast, Mnnanos2 is expressed in both nutritive phagocytes (NP) cells and male germ cells in testis. Moreover, knocking down of Mnnanos2 by means of RNA interference (RNAi) reduced nanos2 and boule expression but conversely increased the expression of foxl2. Therefore, our data suggest that Mnnanos2 may serve as a female germ cell marker during gametogenesis and provide chances to uncover its function in adult sea urchin.


Assuntos
Clonagem Molecular , Perfilação da Expressão Gênica , Proteínas de Ligação a RNA/genética , Ouriços-do-Mar/genética , Caracteres Sexuais , Sequência de Aminoácidos , Animais , Desenvolvimento Embrionário/genética , Feminino , Células Germinativas/metabolismo , Humanos , Masculino , Ovário/metabolismo , Interferência de RNA , Análise de Sequência de DNA , Desenvolvimento Sexual/genética , Testículo/metabolismo , Transcriptoma
11.
J Cell Biochem ; 119(6): 4435-4446, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29143989

RESUMO

Nanos2 is an evolutionarily conserved RNA-binding protein containing 2 CCHC-type zinc finger motives. Here, we report that Nanos2 is strongly expressed in the testis compared to other tissues in chicken (Gallus gallus). Overexpression and knockout plasmid vectors were constructed, and in-vitro Cas9/gRNA digestion and T7 endonuclease I (T7E1) assay indicated that Nanos2-g1 possessed the highest knockout activity. In vitro and in vivo, Nanos2 overexpression accelerated the production of embryoid bodies (EBs) and SSC-like cells and promoted cvh, c-kit, and integrin α6 expression. Immunofluorescence staining, periodic acid schiff (PAS) and flow cytometry (FCM) assay showed that primordial germ cells (PGCs) and spermatogonial stem cells (SSCs) formation were significantly promoted. On the contrary, Nanos2 knockout delayed the production of EBs and SSC-like cells and correspondingly reduced cvh, c-kit, and integrin α6 expression. Simultaneously, the quantity of PGCs and SSCs was blocked. Collectively, these results uncovered a novel function of Nanos2 involved in chicken male germ cell differentiation, where it acts as a facilitator.


Assuntos
Proteínas Aviárias/metabolismo , Diferenciação Celular , Galinhas/metabolismo , Células-Tronco Embrionárias/metabolismo , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Aviárias/genética , Galinhas/genética , Células-Tronco Embrionárias/citologia , Técnicas de Inativação de Genes , Células Germinativas/citologia , Masculino , Proteínas de Ligação a RNA/genética
12.
Development ; 142(3): 575-86, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25605784

RESUMO

The sex of primordial germ cells (PGCs) is determined in developing gonads on the basis of cues from somatic cells. In XY gonads, sex-determining region Y (SRY) triggers fibroblast growth factor 9 (FGF9) expression in somatic cells. FGF signaling, together with downstream nodal/activin signaling, promotes male differentiation in XY germ cells by suppressing retinoic acid (RA)-dependent meiotic entry and inducing male-specific genes. However, the mechanism by which nodal/activin signaling regulates XY PGC fate is unknown. We uncovered the roles of SMAD2/3 and p38 MAPK, the putative downstream factors of nodal/activin signaling, in PGC sexual fate decision. We found that conditional deletion of Smad2, but not Smad3, from XY PGCs led to a loss of male-specific gene expression. Moreover, suppression of RA signaling did not rescue male-specific gene expression in Smad2-mutant testes, indicating that SMAD2 signaling promotes male differentiation in a RA-independent manner. By contrast, we found that p38 signaling has an important role in the suppression of RA signaling. The Smad2 deletion did not disrupt the p38 signaling pathway even though Nodal expression was significantly reduced, suggesting that p38 was not regulated by nodal signaling in XY PGCs. Additionally, the inhibition of p38 signaling in the Smad2-mutant testes severely impeded XY PGC differentiation and induced meiosis. In conclusion, we propose a model in which p38 and SMAD2 signaling coordinate to determine the sexual fate of XY PGCs.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Espermatozoides/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Análise de Variância , Animais , Western Blotting , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Subunidades beta de Inibinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia Confocal , Proteína Nodal/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/metabolismo
13.
Cytokine ; 106: 1-11, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501710

RESUMO

The self-renewal capacity of germline derived stem cells (GSCs) makes them an ideal source for research and use in clinics. Despite the presence of active gene network similarities between embryonic stem cells (ESCs) and GSCs, there are unanswered questions regarding the roles of evolutionary conserved genes in GSCs. To determine the reprogramming potential of germ cell- specific genes, we designed a polycistronic gene cassette expressing Stella, Oct4 and Nanos2 in a lentiviral-based vector. Deep transcriptome analysis showed the activation of a set of pluripotency and germ-cell-specific markers and the downregulation of innate immune system. The global shut down of antiviral genes included MHC class I, interferon response genes and dsRNA 2'-5'-oligoadenylate synthetase are critical pathways that has been affected . Individual expression of each factor highlighted suppressive effect of Nanos2 on genes such as Isg15 and Oasl2. Collectively, to our knowledge this is the first report showing that Nanos2 could be considered as an immunosuppressive factor. Furthermore, our results demonstrate suppression of endogenous retrotransposons that harbor immune response but further analysis require to uncover the correlation between transposon suppression and immune response in germ cell development.


Assuntos
Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Imunidade Inata/genética , Fator 3 de Transcrição de Octâmero/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Animais , Reprogramação Celular , Proteínas Cromossômicas não Histona , Elementos de DNA Transponíveis/genética , Regulação para Baixo/genética , Retrovirus Endógenos/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética
14.
Reprod Biol Endocrinol ; 16(1): 97, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30322389

RESUMO

BACKGROUND: Cryptorchidism as a common genitourinary malformation with the serious complication of male infertility draws widespread attention. With several reported miRNAs playing critical roles in spermatogonial stem cells (SSCs), we aimed to explore the fundamental function of the highly conserved miR-34c in cryptorchidism. METHODS: To explore whether miR-34c participates in spermatogenesis by regulating Nanos2, we examined the effect of overexpression and inhibition for miR-34c on Nanos2 expression in GC-1 cells. Moreover, the expression levels of miR-34c and Nanos2 with cryptorchidism in humans and mice were examined. Furthermore, the homeostasis of SSCs was evaluated through counting the number of promyelocytic leukemia zinc finger (PLZF) positive spermatogonia in murine cryptorchid testes. RESULTS: In the present study, we show that miR-34c could inhibit the expression of Nanos2 in GC-1 cells. Meanwhile, miR-34c significantly decreased in both the testicular tissues of patients with cryptorchidism and surgery-induced murine model of cryptorchidism. Western blot revealed that the protein level of Nanos2 was up-regulated and showed to be negatively correlated to the expression of miR-34c in our model. The abnormal expression of miR-34c/Nanos2 disrupted the balance between SSC self-renewal and differentiation, eventually damaging the spermatogenesis of cryptorchid testes. CONCLUSIONS: The miR-34c/Nanos2 pathway provides new insight into the mechanism of male infertility caused by cryptorchidism. Our results indicate that miR-34c may serve as a biological marker for treatment of infertility caused by cryptorchidism.


Assuntos
Criptorquidismo/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Adolescente , Adulto , Animais , Linhagem Celular , Criptorquidismo/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Homeostase/genética , Humanos , Masculino , Camundongos Endogâmicos ICR , Proteínas de Ligação a RNA/metabolismo , Testículo/patologia , Adulto Jovem
15.
Zhonghua Nan Ke Xue ; 24(6): 558-561, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-30173464

RESUMO

Nanos2, a member of the Nanos2 gene family, is a specific gene in male germ cells and encodes an evolutionarily conserved RNA binding protein expressed in male primordial germ cells (PGCs) during the embryonic period as well as in the spermatogonial stem cells (SSCs) of the testis. In the embryonic period, Nanos2 promotes the development of male PGCs and inhibits them from meiosis. In the process of spermatogenesis, Nanos2 suppresses the differentiation of SSCs in the testis and maintains the stability of the SSC pool. The knockout of Nanos2 may cause the disappearance of germ cells and sterility in male mice while its overexpression in the testis may lead to accumulation of SSCs in seminiferous tubules. Besides, Nanos2 is involved in the degradation of specific RNAs and possibly associated with some diseases of the male reproductive system. This review focuses on the recent progress in the studies of Nanos2 in the male reproductive system.


Assuntos
Diferenciação Celular , Proteínas de Ligação a RNA/genética , Espermatozoides , Animais , Técnicas de Inativação de Genes , Masculino , Meiose , Camundongos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogênese/fisiologia , Espermatogônias , Testículo/citologia
16.
Biochem Biophys Res Commun ; 480(4): 635-640, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27794480

RESUMO

Germline stem cells (GSCs) are attractive biological models because of their strict control on pluripotency gene expression, and their potential for huge epigenetic changes in a short period of time. Few data exists on the cooperative impact of GSC-specific genes on differentiated cells. In this study, we over-expressed 3 GSC-specific markers, STELLA, OCT4 and NANOS2, collectively designated as (SON), using the novel polycistronic lentiviral gene construct FUM-FD, in HEK293T cells and evaluated promoter activity of the Stra8 GSC marker gene We could show that HEK293T cells expressed pluripotency and GSC markers following ectopic expression of the SON genes. We also found induction of pluripotency markers after serum starvation in non-transduced HEK293T cells. Expression profiling of SON-expressing and serum-starved cells at mRNA and protein level showed the potential of SON factors and serum starvation in the induction of ESRRB, NANOG, OCT4 and REX1 expression. Additionally, the data indicated that the mouse Stra8 promoter could only be activated in a subpopulation of HEK293T cells, regardless of SON gene expression. We conclude that heterogeneous population of the HEK293T cells might be easily shifted towards expression of the pluripotency markers by ectopic expression of the SON factors or by growth in serum depleted media.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células HEK293/citologia , Células HEK293/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Diferenciação Celular/fisiologia , Proteínas Cromossômicas não Histona , Humanos , Células-Tronco Pluripotentes/metabolismo
17.
Dev Biol ; 385(1): 32-40, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24183939

RESUMO

NANOS2 is an RNA-binding protein essential for fetal male germ cell development. While we have shown that the function of NANOS2 is vital for suppressing meiosis in embryonic XY germ cells, it is still unknown whether NANOS2 plays other roles in the sexual differentiation of male germ cells. In this study, we addressed the issue by generating Nanos2/Stra8 double knockout (dKO) mice, whereby meiosis was prohibited in the double-mutant male germ cells. We found that the expression of male-specific genes, which was decreased in the Nanos2 mutant, was hardly recovered in the dKO embryo, suggesting that NANOS2 plays a role in male gene expression other than suppression of meiosis. To investigate the molecular events that may be controlled by NANOS2, we conducted a series of microarray analyses to search putative targets of NANOS2 that fulfilled 2 criteria: (1) increased expression in the Nanos2 mutant and (2) the mRNA associated with NANOS2. Interestingly, the genes predominantly expressed in undifferentiated primordial germ cells (PGCs) were significantly selected, implying the involvement of NANOS2 in the termination of the characteristics of PGCs. Furthermore, we showed that NANOS2 is required for the maintenance of mitotic quiescence, but not for the initiation of the quiescence in fetal male germ cells. These results suggest that NANOS2 is not merely a suppressor of meiosis, but instead plays pivotal roles in the sexual differentiation of male germ cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Meiose , Proteínas de Ligação a RNA/fisiologia , Espermatozoides/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/genética , Diferenciação Sexual/genética , Transdução de Sinais , Espermatozoides/citologia , Espermatozoides/metabolismo
18.
J Cell Biochem ; 115(2): 232-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24038201

RESUMO

miRNAs are expressed in many mammalian cells, acting specific roles in regulating gene expression or mediating special mRNAs cleavage by targeting their 3'-untranslated region (3'UTR). Some miRNAs are essential and important for animal development. However, it is still unclear what the relationship is between miR-34c and mammalian spermatogonial stem cells (SSCs). We found that a conserved microRNA-34c through its target-Nanos2, regulating SSCs' differentiation in mouse. Immunohistochemistry analysis of Nanos2 and miR-34c FISH results revealed the opposite expression trends between them. Seven bioinformatics websites and programs predicted that miR-34c has interaction sites in Nanos2's 3'UTR. Dual-luciferase reporter vector and mutated dual-luciferase reporter vector analysis validated that they are interacted. After transfection miR-34c mimics into mouse SSCs, or miR-34c lentiviral vector in vitro co-cultivation with seminiferous tubules, and Western blot analysis demonstrated that miR-34c over-expression could suppress Nanos2 expression in post-transcription level. Our experiments identified that miR-34c may promote meiosis process by interacting with Nanos2 leading up-regulation of Stra8 in mouse spermatogonial stem cells.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Meiose , Camundongos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética
19.
Biol Reprod ; 90(4): 79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24554733

RESUMO

Continuous or cyclic production of spermatozoa throughout life in adult male vertebrates depends on a subpopulation of undifferentiated germ cells acting as spermatogonial stem cells (SSCs). What makes these cells self-renew or differentiate is barely understood, in particular in nonmammalian species, including fish. In the highly seasonal rainbow trout, at the end of the annual spermatogenetic cycle, tubules of the spawning testis contain only spermatozoa, with the exception of scarce undifferentiated spermatogonia that remain on the tubular wall and that will support the next round of spermatogenesis. Taking advantage of this model, we identified putative SSCs in fish testis using morphological, molecular, and functional approaches. In all stages, large spermatogonia with ultrastructural characteristics of germinal stem cells were found, isolated or in doublet. Trout homologues of SSC and/or immature progenitor markers in mammals-nanos2 and nanos3, pou2, plzf, and piwil2-were preferentially expressed in the prepubertal testis and in the undifferentiated A spermatogonia populations purified by centrifugal elutriation. This expression profile strongly suggests that these genes are functionally conserved between fish and mammals. Moreover, transplantation into embryonic recipients of the undifferentiated spermatogonial cells demonstrated their high "stemness" efficiency in terms of migration into gonads and the ability to give functional gametes. Interestingly, we show that nanos2 expression was restricted to a subpopulation of undifferentiated spermatogonia (less than 20%) present as isolated cells or in doublet in the juvenile and in the maturing trout testis. In contrast, nanos2 transcript was detected in all the undifferentiated spermatogonia remaining in the spawning testis. Plzf was also immunodetected in A-Spg from spawning testis, reinforcing the idea that these cells are stem cells. From those results, we hypothesize that the subset of undifferentiated A spermatogonia expressing nanos2 transcript are putative SSC in trout.


Assuntos
Oncorhynchus mykiss/fisiologia , Proteínas de Ligação a RNA/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Células-Tronco/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Evolução Molecular , Masculino , Mamíferos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas de Ligação a RNA/genética , Reprodução/fisiologia , Espermatogônias/citologia , Células-Tronco/citologia , Testículo/citologia , Testículo/metabolismo
20.
Gen Comp Endocrinol ; 192: 95-106, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792279

RESUMO

In association with in vitro culture and transplantation, isolation of spermatogonial stem cells (SSCs) is an excellent approach for investigating spermatogonial physiology in vertebrates. However, in fish, the lack of SSC molecular markers represents a great limitation to identify/purify these cells, rendering it difficult to apply several valuable biotechnologies in fish-farming. Herein, we describe potential molecular markers, which served to phenotypically characterize, cultivate and transplant Nile tilapia SSCs. Immunolocalization revealed that Gfra1 is expressed exclusively in single type A undifferentiated spermatogonia (Aund, presumptive SSCs). Likewise, the expression of Nanos2 protein was observed in Aund cells. However, Nanos2-positive spermatogonia have also been identified in cysts with two to eight germ cells that encompass type A differentiated spermatogonia (Adiff). Moreover, we also established effective primary culture conditions that allowed the Nile tilapia spermatogonia to expand their population for at least one month while conserving their original undifferentiated (stemness) characteristics. The maintenance of Aund spermatogonial phenotype was demonstrated by the expression of early germ cell specific markers and, more convincingly, by their ability to colonize and develop in the busulfan-treated adult Nile tilapia recipient testes after germ cell transplantation. In addition to advancing our knowledge on the identity and physiology of fish SSCs, these findings provide the first step in establishing a system that will allow fish SSCs expansion in vitro, representing an important progress towards the development of new biotechnologies in aquaculture, including the possibility of producing transgenic fish.


Assuntos
Ciclídeos/metabolismo , Espermatogônias/citologia , Células-Tronco/citologia , Animais , Proteínas de Peixes/metabolismo , Masculino , Transplante de Células-Tronco , Testículo/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa