RESUMO
Environmental pollution of heavy metal(loid)s (HMs) caused adverse impacts, has become one of the emerging concerns and challenges worldwide. Metal(loid)s can pose significant threats to living organisms even when present in trace levels within environmental matrices. Extended exposure to these substances can lead to adverse health consequences in humans. Removing HM-contaminated water and moving toward sustainable development goals (SDGs) is critical. In this mission, biochar has recently gained attention in the environmental sector as a green and alternative material for wastewater removal. This work provides a comprehensive analysis of the remediation of typical HMs by biochars, associated with an understanding of remediation mechanisms, and gives practical solutions for ecologically sustainable. Applying engineered biochar in various fields, especially with nanoscale biochar-aided wastewater treatment approaches, can eliminate hazardous metal(loid) contaminants, highlighting an environmentally friendly and low-cost method. Surface modification of engineered biochar with nanomaterials is a potential strategy that positively influences its sorption capacity to remove contaminants. The research findings highlighted the biochars' ability to adsorb HM ions based on increased specific surface area (SSA), heightened porosity, and forming inner-sphere complexes with oxygen-rich groups. Utilizing biochar modification emerged as a viable approach for addressing lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), and chromium (Cr) pollution in aqueous environments. Most biochars investigated demonstrated a removal efficiency >90 % (Cd, As, Hg) and can reach an impressive 99 % (Pb and Cr). Furthermore, biochar and advanced engineered applications are also considered alternative solutions based on the circular economy.
Assuntos
Arsênio , Mercúrio , Metais Pesados , Humanos , Águas Residuárias , Cádmio/análise , Desenvolvimento Sustentável , Chumbo/análise , Metais Pesados/análise , Carvão Vegetal , Arsênio/análise , Mercúrio/análise , Cromo/análise , Poluição da Água/análise , SoloRESUMO
Assembly of novel ecofriendly and sustainable (N-PSPB/SHGL) nanosorbent was fabricated based on encapsulation of derived nanoscale spherical biochar from Pisum sativum pods (N-PSPB) with starch hydrogel (SHGL). The mass ratio between starch and N-PSPB was examined and 2% (w/w) was selected as the optimum percentage for fabrication of the assembled hydrogel. High swelling capacity was characterized by N-PSPB/SHGL nanosorbent (500.0%) at room temperature (25 °C), excellent stability for ten cycles with respect to regeneration by 0.1 mol L-1 HCl. Additionally, characterizations of N-PSPB/Starch nanosorbent were established by SEM and BET measurement to characterize surface area (226.94 m2/g) and pore volume (9.88 cm3/g). The N-PSPB/SHGL nanosorbent was subjected to extensive investigations to evaluate its efficiency for removal of naproxen drug (NAP) and chromium (VI). The Cr(VI) and NAP drug adsorptions were fitted to pseudo-second kinetic and correlated with Langmuir isotherm. The adsorption processes were spontaneous and endothermic based on thermodynamic study.