Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(10): e0068523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732772

RESUMO

Salmonella infection significantly increases nitrate levels in the intestine, immune cells, and immune organs of the host, and it can exploit nitrate as an electron acceptor to enhance its growth. In the presence of nitrate or nitrite, NarL, a regulatory protein of the Nar two-component system, is activated and regulates a number of genes involved in nitrate metabolism. However, research on NarL at the post-translational level is limited. In this study, we demonstrate that the DNA-binding sites K188 and 192 of NarL can be acetylated by bacterial metabolite acetyl phosphate and that the degree of acetylation has a considerable influence on the regulatory function of NarL. Specifically, acetylation of NarL negatively regulates the transcription of narG, narK, and napF, which affects the utilization of nitrate in Salmonella. Besides, both cell and mouse models show that acetylated K188 and K192 result in attenuated replication in RAW 264.7 cells, as well as impaired virulence in mouse model. Together, this research identifies a novel NarL acetylation mechanism that regulates Salmonella virulence, providing a new insight and target for salmonellosis treatment.IMPORTANCESalmonella is an important intracellular pathogen that can cause limited gastroenteritis and self-limiting gastroenteritis in immunocompetent humans. Nitrate, the highest oxidation state form of nitrogen, is critical in the formation of systemic infection in Salmonella. It functions as a signaling molecule that influences Salmonella chemotaxis, in addition to acting as a reduced external electron acceptor for Salmonella anaerobic respiration. NarL is an essential regulatory protein involved in nitrate metabolism in Salmonella, and comprehending its regulatory mechanism is necessary. Previous research has linked NarL phosphorylation to the formation of its dimer, which is required for NarL to perform its regulatory functions. Our research demonstrated that acetylation also affects the regulatory function of NarL. We found that acetylation affects Salmonella pathogenicity by weakening the ability of NarL to bind to the target sequence, further refining the mechanism of the anaerobic nitrate respiration pathway.


Assuntos
Proteínas de Escherichia coli , Gastroenterite , Humanos , Animais , Camundongos , Nitratos/metabolismo , Virulência , Proteínas de Escherichia coli/genética , Proteínas de Ligação a DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Acetilação , Fatores de Transcrição/genética , Salmonella/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Appl Microbiol Biotechnol ; 106(21): 7209-7221, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36178515

RESUMO

As a facultative anaerobe, Escherichia coli can activate various respiratory chains during anaerobic growth, among which the mode of anaerobic respiration with nitrate allows good energy conservation. NarL is one of the regulatory proteins in the Nar two-component system that regulates anaerobic respiration in E. coli. Previous studies have shown that NarL activates downstream gene regulation through phosphorylation. However, there are few studies on other protein translational modifications that influence the regulatory function of NarL. Herein, we demonstrate that acetylation modification exists on K188 and K192, the two lysine residues involved in contacting to DNA, and the degree of acetylation has significant effects on DNA-binding abilities, thus affecting the anaerobic growth of E. coli. In addition, NarL is mainly regulated by acetyl phosphate, but not by peptidyl-lysine N-acetyltransferase. These results indicate that non-enzymatic acetylation of NarL by AcP is one of the important mechanisms for the nitrate anaerobic respiratory pathway in response to environmental changes, which extends the idea of the mechanism underlying the response of intestinal flora to changes in the intestinal environment. KEY POINTS: • Acetylation was found in NarL, which was mainly mediated by AcP. • Non-enzymatic acetylation at K188 and K192 affects NarL binding ability. • Acetylation of NarL K188 and K192 regulates anaerobic nitrate growth of E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Acetilação , Acetiltransferases/genética , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Lisina/metabolismo , Nitratos/metabolismo
3.
Biochem J ; 477(15): 2807-2820, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662815

RESUMO

The Escherichia coli NarX/NarL two-component response-regulator system regulates gene expression in response to nitrate ions and the NarL protein is a global transcription factor, which activates transcript initiation at many target promoters. One such target, the E. coli ogt promoter, which controls the expression of an O6-alkylguanine-DNA-alkyltransferase, is dependent on NarL binding to two DNA targets centred at positions -44.5 and -77.5 upstream from the transcript start. Here, we describe ogt promoter derivatives that can be activated solely by NarL binding either at position -44.5 or position -77.5. We show that NarL can also activate the ogt promoter when located at position -67.5. We present data to argue that NarL-dependent activation of transcript initiation at the ogt promoter results from a direct interaction between NarL and a determinant in the C-terminal domain of the RNA polymerase α subunit. Footprinting experiments show that, at the -44.5 promoter, NarL and the C-terminal domain of the RNA polymerase α subunit bind to opposite faces of promoter DNA, suggesting an unusual mechanism of transcription activation. Our work suggests new organisations for activator-dependent transcription at promoters and future applications for biotechnology.


Assuntos
Proteínas de Ligação a DNA/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Metiltransferases/genética , Regiões Promotoras Genéticas , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nitratos/farmacologia , Iniciação da Transcrição Genética
4.
J Biol Chem ; 290(13): 8294-309, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25659431

RESUMO

Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and a ΔnarL mutant strain during exponential growth in broth cultures with or without nitrate defined an ∼30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis ΔdevR, ΔdevSΔdosT, and ΔnarL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR∼P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/metabolismo , Nitratos/metabolismo , Fatores de Transcrição/fisiologia , Aerobiose , Genes Bacterianos , Cinética , Mycobacterium tuberculosis/genética , Nitritos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transcrição Gênica
5.
Biochem Biophys Res Commun ; 473(2): 625-9, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27038544

RESUMO

Spr1814 of Streptococcus pneumoniae is a response regulator (RR) that belongs to the NarL/FixJ subfamily and has a four-helix helix-turn-helix DNA-binding domain. Here, the X-ray crystal structure of the full-length spr1814 in complex with a phosphate analogue beryllium fluoride (BeF3(-)) was determined at 2.0 Å. This allows for a structural comparison with the previously reported full-length unphosphorylated spr1814. The phosphorylation of conserved aspartic acid residue of N-terminal receiver domain triggers a structural perturbation at the α4-ß5-α5 interface, leading to the domain reorganization of spr1814, and this is achieved by a rotational change in the C-terminal DNA-binding domain.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Fosfatos/metabolismo , Streptococcus pneumoniae/química , Proteínas de Bactérias/metabolismo , Berílio/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Fluoretos/metabolismo , Humanos , Modelos Moleculares , Fosforilação , Infecções Pneumocócicas/microbiologia , Conformação Proteica , Multimerização Proteica , Streptococcus pneumoniae/metabolismo
6.
J Biomol Struct Dyn ; 38(11): 3396-3410, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31422761

RESUMO

The nitrate/nitrite response regulatory protein NarL belongs to the two-component regulatory system of Mycobacterium tuberculosis (MTB), plays a crucial role in anaerobic survival of mycobacteria in host. The absence of this protein in humans, makes it an attractive drug target for MTB treatment. However, the specific drug molecules targeting NarL are yet to be identified. In this study, we identified the promising drug candidates using structure based virtual screening of compounds from chemical libraries (ChEMBL and ZINC), followed by the extensive physicochemical properties analyses and molecular dynamics (MD) simulation. As the initial results, we obtained 4,754 bioactive compounds from ChEMBL having anti-tuberculosis activity which is finally narrowed down to the best 10 hits. A similar approach was applied to search for structurally similar compounds from ZINC data, corresponding to the top hits obtained from ChEMBL. Our collective results show that two compounds, ChEMBL509609 (Gscore - 5.054 kcal/mol, Xscore - 6.47 kcal/mol) and ZINC01843143 (Gscore - 5.114 kcal/mol, Xscore - 6.46 kcal/mol) having the best docking score and ADMET profile. The structural stability and dynamics of lead molecules at active site of NarL were examined using MD simulation and the binding free energies were estimated with MM-PBSA. Essential dynamics and MM-PBSA demonstrated that NarL-ChEMBL509609 complex remains the most stable during simulation of 100 ns with the higher binding free energy which may be a suitable candidate for further experimental analysis. AbbreviationsADMEAbsorption, Distribution, Metabolism, And ExcretionBCGBacillus Calmette-GuerinCNSCentral nervous systemDOTSDirectly observed treatment, short courseEDEssential dynamicsHIVHuman immunodeficiency virusHKHistidine kinaseHOAHuman oral absorptionHTVSHigh throughput virtual screeningIRRIIrritationMDMolecular dynamicsMDRMultidrug resistantMTBMycobacterium tuberculosisMUTMutagenicityMWMolecular weightPHOAPercentage of human oral absorptionREPReproductive developmentRgRadius of gyrationRMSDRoot mean square deviationRMSFRoot mean square fluctuationRO5Lipinski's rule of fiveRRResponse regulatorSPStandard precisionSPGStandard precision glideTBTuberculosisTCSTwo-component regulatory systemTDRTotally drug-resistantTUMOTumorigenicityWHOWorld health organizationXDRExtensively drug-resistantXPExtra precisionCommunicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tuberculose/tratamento farmacológico
7.
Protein Sci ; 25(12): 2216-2224, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27670836

RESUMO

RcsB, the transcription-associated response regulator of the Rcs phosphorelay two-component signal transduction system, activates cell stress responses associated with desiccation, cell wall biosynthesis, cell division, virulence, biofilm formation, and antibiotic resistance in enteric bacterial pathogens. RcsB belongs to the FixJ/NarL family of transcriptional regulators, which are characterized by a highly conserved C-terminal DNA-binding domain. The N-terminal domain of RcsB belongs to the family of two-component receiver domains. This receiver domain contains the phosphoacceptor site and participates in RcsB dimer formation; it also contributes to dimer formation with other transcription factor partners. Here, we describe the crystal structure of the Escherichia coli RcsB receiver domain in its nonphosphorylated state. The structure reveals important molecular details of phosphorylation-independent dimerization of RcsB and has implication for the formation of heterodimers.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Multimerização Proteica , Fatores de Transcrição/química , Cristalografia por Raios X , Domínios Proteicos , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa