Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Immunity ; 54(6): 1276-1289.e6, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33836142

RESUMO

Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Epitopos/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , COVID-19/diagnóstico , Reações Cruzadas/imunologia , Epitopos/química , Epitopos/genética , Humanos , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica/imunologia , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Relação Estrutura-Atividade
2.
BMC Vet Res ; 20(1): 301, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971791

RESUMO

BACKGROUND: Foot-and-mouth disease (FMD) is a devastating disease affecting cloven-hoofed animals, that leads to significant economic losses in affected countries and regions. Currently, there is an evident inclination towards the utilization of nanoparticles as powerful platforms for innovative vaccine development. Therefore, this study developed a ferritin-based nanoparticle (FNP) vaccine that displays a neutralizing epitope of foot-and-mouth disease virus (FMDV) VP1 (aa 140-158) on the surface of FNP, and evaluated the immunogenicity and protective efficacy of these FNPs in mouse and guinea pig models to provide a strategy for developing potential FMD vaccines. RESULTS: This study expressed the recombinant proteins Hpf, HPF-NE and HPF-T34E via an E. coli expression system. The results showed that the recombinant proteins Hpf, Hpf-NE and Hpf-T34E could be effectively assembled into nanoparticles. Subsequently, we evaluated the immunogenicity of the Hpf, Hpf-NE and Hpf-T34E proteins in mice, as well as the immunogenicity and protectiveness of the Hpf-T34E protein in guinea pigs. The results of the mouse experiment showed that the immune efficacy in the Hpf-T34E group was greater than the Hpf-NE group. The results from guinea pigs immunized with Hpf-T34E showed that the immune efficacy was largely consistent with the immunogenicity of the FMD inactivated vaccine (IV) and could confer partial protection against FMDV challenge in guinea pigs. CONCLUSIONS: The Hpf-T34E nanoparticles stand out as a superior choice for a subunit vaccine candidate against FMD, offering effective protection in FMDV-infected model animals. FNP-based vaccines exhibit excellent safety and immunogenicity, thus representing a promising strategy for the continued development of highly efficient and safe FMD vaccines.


Assuntos
Epitopos , Ferritinas , Vírus da Febre Aftosa , Febre Aftosa , Nanopartículas , Vacinas Virais , Animais , Cobaias , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Vírus da Febre Aftosa/imunologia , Ferritinas/imunologia , Vacinas Virais/imunologia , Epitopos/imunologia , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Proteínas do Capsídeo
3.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801017

RESUMO

Identification of B-cell epitopes facilitates the development of vaccines, therapeutic antibodies and diagnostic tools. Previously, the binding site of the bank vole monoclonal antibody (mAb) 4G2 against Puumala virus (PUUV, an orthohantavirus in the Hantaviridae family of the Bunyavirales order) was predicted using a combination of methods, including pepscan, phage-display, and site-directed mutagenesis of vesicular stomatitis virus (VSV) particles pseudotyped with Gn and Gc glycoproteins from PUUV. These techniques led to the identification of the neutralization escape mutation F915A. To our surprise, a recent crystal structure of PUUV Gc in complex with Fab 4G2 revealed that residue F915 is distal from epitope of mAb 4G2. To clarify this issue and explore potential explanations for the inconsistency, we designed a mutagenesis experiment to probe the 4G2 epitope, with three PUUV pseudoviruses carrying amino acid changes E725A, S944F, and S946F, located within the structure-based 4G2 epitope on the Gc. These amino acid changes were able to convey neutralization escape from 4G2, and S944F and S946F also conveyed escape from neutralization by human mAb 1C9. Furthermore, our mapping of all the known neutralization evasion sites from hantaviral Gcs onto PUUV Gc revealed that over 60 % of these sites reside within or close to the epitope of mAb 4G2, indicating that this region may represent a crucial area targeted by neutralizing antibodies against PUUV, and to a lesser extent, other hantaviruses. The identification of this site of vulnerability could guide the creation of subunit vaccines against PUUV and other hantaviruses in the future.


Assuntos
Orthohantavírus , Virus Puumala , Humanos , Virus Puumala/genética , Virus Puumala/química , Anticorpos Monoclonais , Anticorpos Neutralizantes , Epitopos de Linfócito B , Aminoácidos , Anticorpos Antivirais , Testes de Neutralização
4.
J Biomed Sci ; 30(1): 41, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316861

RESUMO

BACKGROUND: Flavivirus causes many serious public health problems worldwide. However, licensed DENV vaccine has restrictions on its use, and there is currently no approved ZIKV vaccine. Development of a potent and safe flavivirus vaccine is urgently needed. As a previous study revealed the epitope, RCPTQGE, located on the bc loop in the E protein domain II of DENV, in this study, we rationally designed and synthesized a series of peptides based on the sequence of JEV epitope RCPTTGE and DENV/ZIKV epitope RCPTQGE. METHODS: Immune sera were generated by immunization with the peptides which were synthesized by using five copies of RCPTTGE or RCPTQGE and named as JEV-NTE and DV/ZV-NTE. Immunogenicity and neutralizing abilities of JEV-NTE or DV/ZV-NTE-immune sera against flavivirus were evaluated by ELISA and neutralization tests, respectively. Protective efficacy in vivo were determined by passive transfer the immune sera into JEV-infected ICR or DENV- and ZIKV-challenged AG129 mice. In vitro and in vivo ADE assays were used to examine whether JEV-NTE or DV/ZV-NTE-immune sera would induce ADE. RESULTS: Passive immunization with JEV-NTE-immunized sera or DV/ZV-NTE-immunized sera could increase the survival rate or prolong the survival time in JEV-challenged ICR mice and reduce the viremia levels significantly in DENV- or ZIKV-infected AG129 mice. Furthermore, neither JEV -NTE- nor DV/ZV-NTE-immune sera induced antibody-dependent enhancement (ADE) as compared with the control mAb 4G2 both in vitro and in vivo. CONCLUSIONS: We showed for the first time that novel bc loop epitope RCPTQGE located on the amino acids 73 to 79 of DENV/ZIKV E protein could elicit cross-neutralizing antibodies and reduced the viremia level in DENV- and ZIKV-challenged AG129 mice. Our results highlighted that the bc loop epitope could be a promising target for flavivirus vaccine development.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Camundongos Endogâmicos ICR , Anticorpos Neutralizantes , Viremia , Soros Imunes , Epitopos , Fatores de Transcrição
5.
Virol J ; 20(1): 13, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670408

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) variant strains cause great economic losses to the global swine industry. However, vaccines do not provide sufficient protection against currently circulating strains due to viral mutations. This study traced the molecular characteristics of the most recent isolates in China and aimed to provide a basis for the prevention and treatment of PEDV. METHODS: We obtained samples from a Chinese diarrheal swine farm in 2022. Reverse transcription polymerase chain reaction and immunofluorescence were used to determine the etiology, and the full-length PEDV genome was sequenced. Nucleotide similarity was calculated using MEGA to construct a phylogenetic tree and DNASTAR. Mutant amino acids were aligned using DNAMAN and modeled by SWISS-MODEL, Phyre2 and FirstGlance in JMOL for protein tertiary structure simulation. Additionally, TMHMM was used for protein function prediction. RESULTS: A PEDV virulent strain CH/HLJJS/2022 was successfully isolated in China. A genome-wide based phylogenetic analysis suggests that it belongs to the GII subtype, and 96.1-98.9% homology existed in the whole genomes of other strains. For the first time, simultaneous mutations of four amino acids were found in the highly conserved membrane (M) and nucleocapsid (N) proteins, as well as eight amino acid mutations that differed from the vast majority of strains in the spike (S) protein. Three of the mutations alter the S-protein spatial structure. In addition, typing markers exist during strain evolution, but isolates are using the fusion of specific amino acids from multiple variant strains to add additional features, as also demonstrated by protein alignments and 3D models of numerous subtype strains. CONCLUSION: The newly isolated prevalent strain CH/HLJJS/2022 belonged to the GII subtype, and thirteen mutations different from other strains were found, including mutations in the highly conserved m and N proteins, and in the S1° and COE neutralizing epitopes of the S protein. PEDV is breaking through original cognitions and moving on a more complex path. Surveillance for PEDV now and in the future and improvements derived from mutant strain vaccines are highly warranted.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Filogenia , Mutação , Vacinas Virais/genética , Aminoácidos/genética , China/epidemiologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Doenças dos Suínos/epidemiologia
6.
Virol J ; 19(1): 65, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410270

RESUMO

BACKGROUND: Seneca Valley virus (SVV) is a picornavirus that causes vesicular disease in swine. Clinical characteristics of the disease are similar to common viral diseases such as foot-and-mouth disease virus, porcine vesicular disease virus, and vesicular stomatitis virus, which can cause vesicles in the nose or hoof of pigs. Therefore, developing tools for detecting SVV infection is critical and urgent. METHODS: The neutralizing antibodies were produced to detect the neutralizing epitope. RESULTS: Five SVV neutralizing monoclonal antibodies (mAb), named 2C8, 3E4, 4C3, 6D7, and 7C11, were generated by immunizing mouses with ultra-purified SVV-LNSY01-2017. All five monoclonal antibodies exhibited high neutralizing titers to SVV. The epitopes targeted by these mAbs were further identified by peptide scanning using GST fusion peptides. The peptide 153QELNEE158 is defined as the smallest linear neutralizing epitope. The antibodies showed no reactivity to VP2 single mutants E157A. Furthermore, the antibodies showed no neutralizing activity with the recombinant virus (SVV-E157A). CONCLUSIONS: The five monoclonal antibodies and identified epitopes may contribute to further research on the structure and function of VP2 and the development of diagnostic methods for detecting different SVV strains. Additionally, the epitope recognized by monoclonal antibodies against VP2 protein may provide insights for novel SVV vaccines and oncolytic viruses development.


Assuntos
Anticorpos Monoclonais , Vacinas , Animais , Epitopos , Camundongos , Peptídeos , Picornaviridae , Suínos
7.
Appl Microbiol Biotechnol ; 106(24): 8259-8272, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36380192

RESUMO

Enterically transmitted waterborne hepatitis E (HE) caused due to hepatitis E virus (HEV) prevails as a significant public health problem endemic to India. Due to short-term viremia/fecal excretion and poor in vitro transmissibility of HEV, HE diagnosis depends on detection of specific IgM antibodies in serum. Present study evaluated performances of two in-house and six commercial IgM detection enzyme-linked immunosorbent assays (ELISAs) using sera collected from volunteers/acute hepatitis patients (n = 716). The in-house ELISAs were based on complete and truncated open reading frame 2 (ORF2) proteins containing neutralizing epitope/s region of genotype 1 HEV (ORF2p, 1-660 amino acid (a.a.) and T1NEp, 458-607 a.a., respectively). The commercial ELISAs included Wantai (China), MP Diagnostics (MPD) (Singapore), DIA.PRO Diagnostics (Italy), MBS (Italy), abia (Germany), and ImmunoVision (USA). T1NE ELISA showed 97.0% positive percent agreement (PPA), 99.4% negative percent agreement (NPA), and 98.6% concordance (κ = 0.97, P = 0.0000) with ORF2 ELISA. ORF2, T1NE, Wantai, and MPD ELISAs agreed on results for 88% of sera tested. Two percent sera showed reactivity in each combination of three and two of aforementioned four ELISAs. Remaining 8% sera were single ELISA reactive. PPA and NPA value ranges were 76.3-99.0% and 84.8-99.5%, respectively. Pairwise concordances between all the eight ELISAs ranged from 88.0 to 100% (κ: 0.74-1.00). Both the in-house ELISAs agreed better with Wantai over MPD ELISA. In conclusion, both ORF2 and T1NE ELISAs were equally efficient in diagnosing HEV infections. T1NEp proved to be an excellent tool in HE sero-diagnosis and is worth exploring in development of simple rapid tests. KEY POINTS: • In-house ELISA based on bacterially expressed neutralizing epitope/s region protein • In-house ELISA based on complete ORF2 protein expressed in insect cells • Comparison of two in-house and six commercial anti-HEV IgM antibody detection ELISAs.


Assuntos
Hepatite E , Humanos , Hepatite E/diagnóstico , Fases de Leitura Aberta , China , Alemanha , Ensaio de Imunoadsorção Enzimática
8.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32075932

RESUMO

Porcine circovirus type 2 (PCV2) is an important pathogen in swine herds, and its infection of pigs has caused severe economic losses to the pig industry worldwide. The capsid protein of PCV2 is the only structural protein that is associated with PCV2 infection and immunity. Here, we report a neutralizing monoclonal antibody (MAb), MAb 3A5, that binds to intact PCV2 virions of the PCV2a, PCV2b, and PCV2d genotypes. MAb 3A5 neutralized PCV2 by blocking viral attachment to PK15 cells. To further explore the neutralization mechanism, we resolved the structure of the PCV2 virion in complex with MAb 3A5 Fab fragments by using cryo-electron microscopy single-particle analysis. The binding sites were located at the topmost edges around 5-fold icosahedral symmetry axes, with each footprint covering amino acids from two adjacent capsid proteins. Most of the epitope residues (15/18 residues) were conserved among 2,273 PCV2 strains. Mutations of some amino acids within the epitope had significant effects on the neutralizing activity of MAb 3A5. This study reveals the molecular and structural bases of this PCV2-neutralizing antibody and provides new and important information for vaccine design and therapeutic antibody development against PCV2 infections.IMPORTANCE PCV2 is associated with several clinical manifestations collectively known as PCV2-associated diseases (PCVADs). Neutralizing antibodies play a crucial role in the prevention of PCVADs. We demonstrated previously that a MAb, MAb 3A5, neutralizes the PCV2a, PCV2b, and PCV2d genotypes with different degrees of efficiency, but the underlying mechanism remains elusive. Here, we report the neutralization mechanism of this MAb and the structure of the PCV2 virion in complex with MAb 3A5 Fabs, showing a binding mode in which one Fab interacted with more than two loops from two adjacent capsid proteins. This binding mode has not been observed previously for PCV2-neutralizing antibodies. Our work provides new and important information for vaccine design and therapeutic antibody development against PCV2 infections.


Assuntos
Proteínas do Capsídeo/imunologia , Circovirus/imunologia , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Circoviridae/virologia , Circovirus/metabolismo , Circovirus/ultraestrutura , Microscopia Crioeletrônica , Epitopos , Genótipo , Conformação Proteica , Suínos , Doenças dos Suínos/virologia
9.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830420

RESUMO

The broadly neutralizing antibody PG9 recognizes a unique glycopeptide epitope in the V1V2 domain of HIV-1 gp120 envelope glycoprotein. The present study describes the design, synthesis, and antibody-binding analysis of HIV-1 V1V2 glycopeptide-Qß conjugates as a mimic of the proposed neutralizing epitope of PG9. The glycopeptides were synthesized using a highly efficient chemoenzymatic method. The alkyne-tagged glycopeptides were then conjugated to the recombinant bacteriophage (Qß), a virus-like nanoparticle, through a click reaction. Antibody-binding analysis indicated that the synthetic glycoconjugates showed significantly enhanced affinity for antibody PG9 compared with the monomeric glycopeptides. It was also shown that the affinity of the Qß-conjugates for antibody PG9 was dependent on the density of the glycopeptide antigen display. The glycopeptide-Qß conjugates synthesized represent a promising candidate of HIV-1 vaccine.


Assuntos
Allolevivirus/imunologia , Glicopeptídeos/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/uso terapêutico , Anticorpos Neutralizantes/imunologia , Antígenos/imunologia , Epitopos/genética , Epitopos/imunologia , Glicopeptídeos/genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fagocitose/imunologia
10.
J Gen Virol ; 100(2): 145-155, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30624178

RESUMO

Earlier four monoclonal antibodies (MAbs) against surface glycoproteins Gn and Gc of puumala virus (PUUV, genus Orthohantavirus, family Hantaviridae, order Bunyavirales) were generated and for three MAbs with neutralizing capacity the localization of binding epitopes was predicted using pepscan and phage-display techniques. In this work, we produced vesicular stomatitis virus (VSV) particles pseudotyped with the Gn and Gc glycoproteins of PUUV and applied site-directed mutagenesis to dissect the structure of neutralizing epitopes. Replacement of cysteine amino acid (aa) residues with alanines resulted in pseudotype particles with diminished (16 to 18 %) neut-titres; double Cys→Ala mutants, as well as mutants with bulky aromatic and charged residues replaced with alanines, have shown even stronger reduction in neut-titres (from 25 % to the escape phenotype). In silico modelling of the neut-epitopes supported the hypothesis that these critical residues are located on the surface of viral glycoprotein molecules and thus can be recognized by the antibodies indeed. A similar pattern was observed in experiments with mutant pseudotypes and sera collected from patients suggesting that these neut-epitopes are utilized in a course of human PUUV infection. These data will help understanding the mechanisms of hantavirus neutralization and assist construction of vaccine candidates.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Epitopos de Linfócito B/imunologia , Glicoproteínas de Membrana/imunologia , Orthohantavírus/imunologia , Antígenos Virais/genética , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Vetores Genéticos , Humanos , Glicoproteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Vesiculovirus/genética
11.
J Gen Virol ; 100(2): 187-198, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30547855

RESUMO

In this study, ten sites on the N terminus and different surface variable regions (VRs) of the bovine parvovirus (BPV) VP2 capsid protein were selected according to an alignment of its sequence with that of the BPV-1 strain HADEN for insertion of the type O foot-and-mouth disease virus (FMDV) conserved neutralizing epitope 8E8. Ten epitope-chimeric BPV VP2 capsid proteins carrying the 8E8 epitope were expressed in Sf9 cells, and electron micrographs demonstrated that these fusion proteins self-assembled into virus-like particles (VLPs) with properties similar to those of natural BPV virions. Immunofluorescence assay (IFA) and Western blot analysis demonstrated that each of the ten epitope-chimeric VLPs reacted with both anti-BPV serum and anti-type O FMDV mAb 8E8. These results indicated that insertions of the 8E8 epitope at these sites on the BPV VP2 protein did not interfere with the immunoreactivity of VP2 or VLP formation, and that the exogenous epitope 8E8 was correctly expressed in BPV VLPs. In addition, anti-BPV IgG antibodies were induced in mice by intramuscular inoculation with each of the ten chimeric VLPs, indicating that the immunogenicity of the chimeric VLPs was not disrupted. Importantly, potent anti-FMDV viral neutralizing (VN) antibodies, which exhibited the highest titre of 1 : 176, were induced by two chimeric VLPs, rBPV-VLP-8E8(391) and rBPV-VLP-8E8(395), in which the 8E8 epitope was inserted into positions 391/392 and 395/396, respectively, in the VR VIII of BPV VP2. Our results demonstrated that the 391/392 and 395/396 positions in the VR VIII of the BPV VP2 protein can effectively display a foreign epitope, making this an attractive approach for the design of nanoparticle-vectored and epitope-based vaccines.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bocavirus/genética , Epitopos/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Proteínas do Capsídeo/genética , Portadores de Fármacos , Epitopos/genética , Vírus da Febre Aftosa/genética , Imunoglobulina G/sangue , Injeções Intramusculares , Camundongos , Células Sf9 , Spodoptera , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética
12.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30926730

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains that produce immunologically heterogeneous fimbriae and enterotoxins are the primary cause of neonatal diarrhea and postweaning diarrhea in young pigs. A multivalent vaccine inducing protective immunity against ideally all ETEC fimbriae and enterotoxins could be effective against diarrhea in young pigs. However, developing a vaccine to broadly protect against various ETEC virulence determinants has proven challenging. Recently developed structure- and epitope-based multiepitope fusion antigen (MEFA) technology that presents neutralizing epitopes of various virulence determinants at a backbone immunogen and that mimics epitope native immunogenicity suggests the feasibility of developing multivalent vaccines. With neutralizing epitopes from ETEC fimbria F18 and enterotoxins being identified, it becomes urgent to identify protective epitopes of K88 (F4) fimbriae, which play a major role in pig neonatal and postweaning diarrhea. In this study, we identified B-cell immunodominant epitopes in silico from the K88ac fimbrial major subunit (also adhesin) FaeG and embedded each epitope in a heterogeneous carrier for epitope fusions. We then immunized mice with each epitope fusion protein and examined epitope antigenicity and also neutralizing activities of epitope-induced antibodies. Data showed that while all nine FaeG epitope fusions induced antibodies to K88ac fimbria, anti-K88 IgG antibodies derived from epitopes MTGDFNGSVD (ep1), LNDLTNGGTK (ep2), GRTKEAFATP (ep3), ELRKPDGGTN (ep4), PMKNAGGTKVGAVKVN (ep5), and RENMEYTDGT (ep8) significantly inhibited adherence of K88ac fimbrial bacteria to porcine intestinal cell line IPEC-J2, indicating that these peptides were the neutralizing epitopes of K88ac fimbrial major subunit FaeG and suggesting the future application of FaeG epitopes in ETEC vaccine development.IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) strains producing K88ac fimbriae and enterotoxins are a major cause of porcine neonatal diarrhea and postweaning diarrhea in the United States. Currently, there is no vaccine to induce broadly protective antiadhesin and antitoxin immunity against ETEC-associated diarrhea. To develop a broadly effective ETEC vaccine, we need to target the most important if not all ETEC virulence determinants. While conventional vaccinology approaches encounter difficulties at integrating or including heterogeneous ETEC fimbria and toxin antigens into a vaccine product, multiepitope fusion antigen (MEFA) structural vaccinology provides a new platform to combine neutralizing antigenic elements or epitopes from various heterogeneous virulence factors for broad immunity and protection. Identification of the neutralizing epitopes of K88ac fimbria from this study added the last antigens to an MEFA-based multivalent vaccine against ETEC-associated diarrhea in pigs. An effective vaccine against pig diarrhea can significantly improve swine health and well-being and reduce economic losses to the swine industry worldwide.


Assuntos
Adesinas Bacterianas/imunologia , Adesinas de Escherichia coli/imunologia , Anticorpos Neutralizantes/imunologia , Escherichia coli Enterotoxigênica/imunologia , Epitopos/imunologia , Fímbrias Bacterianas/imunologia , Adesinas de Escherichia coli/genética , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/sangue , Antitoxinas/imunologia , Toxinas Bacterianas/imunologia , Diarreia/microbiologia , Escherichia coli Enterotoxigênica/genética , Enterotoxinas/imunologia , Epitopos/genética , Vacinas contra Escherichia coli/imunologia , Feminino , Fímbrias Bacterianas/química , Regulação Bacteriana da Expressão Gênica , Imunogenicidade da Vacina , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Análise de Sequência de Proteína , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle
13.
Avian Pathol ; 47(5): 467-478, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29897786

RESUMO

Newcastle disease virus (NDV) is a major cause of infectious mortality and morbidity in poultry worldwide. It is an enveloped virus with two outer-membrane proteins-haemagglutinin-neuraminidase (HN) and fusion protein (F)-that induce neutralizing antibodies. All NDV strains belong to one serotype. Yet, NDV vaccines, derived from genotype II, do not fully prevent infection or shedding of viruses from other genotypes. The aim of this study was to test if an updated vaccine is required. For this purpose, NDVs isolated from infected, albeit heavily vaccinated, flocks were genetically and immunologically characterized. Amino acid differences in F and HN protein sequences were identified between the vaccine strain and each of the isolates, some specifically at the neutralization sites. Whereas all tested isolates showed similar haemagglutination-inhibition (HI) titres, 100-100,000 times higher antibody-to-virus ratios were needed to neutralize viral propagation in embryos by the field isolates versus the vaccine strain. As a result, a model and an equation were developed to explain the phenomenon of escape in one-serotype viruses and to calculate the HI values needed for protection, depending on variation rate at key positions. In conclusion, to confer full protection against NDVs that differ from the vaccine strain at the neutralizing epitopes, very high levels of antibodies should be raised and maintained to compensate for the reduction in the number of effective epitopes; alternatively, an adjusted attenuated vaccine should be developed-a task made possible in the current era of reverse vaccinology.


Assuntos
Galinhas/virologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/genética , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Embrião de Galinha , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/patogenicidade , Organismos Livres de Patógenos Específicos , Vacinas Atenuadas , Proteínas Virais , Virulência
14.
Intervirology ; 60(5): 190-195, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29510392

RESUMO

AIMS: To confirm the different characteristics of genotype-specific and common neutralizing epitopes of hepatitis E virus (HEV). METHODS: A competitive binding assay was established with known genotype-common neutralizing monoclonal antibodies (mAbs) 3G1 and 5G5 as well as genotype-specific neutralizing mAbs 2B1 and 4C5. HEV ORF2 recombinant p166W01 derived from genotype 1 and p166Chn derived from genotype 4 were used as coated antigens, to determine whether the mAbs recognize independent, similar, or overlapping epitopes. mAbs were produced, purified, and conjugated with horseradish peroxidase (HRP). HRP-conjugated 2B1 could react only with p166W01 but not p166Chn, HRP-conjugated 4C5 could react only with p166Chn but not p166W01, while HRP-conjugated 3G1 and 5G5 could react both with p166W01 and p166Chn. Thus, competitive binding assays were performed successively using p166W01 and p166Chn antigen. RESULTS AND CONCLUSION: The results of competitive binding assays revealed that the binding of HRP-conjugated 2B1 to p166W01 could not be inhibited by 5G5 or 3G1. Similarly, the binding of HRP-conjugated 4C5 to p166Chn could not be inhibited by 5G5 or 3G1. However, the mAbs 5G5 and 3G1 blocked each other's binding to p166W01 and p166Chn, suggesting that common and genotype-specific neutralizing mAbs recognize independent epitopes.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Antígenos Virais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Vírus da Hepatite E/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/genética , Ligação Competitiva , Mapeamento de Epitopos/métodos , Epitopos/genética , Vírus da Hepatite E/genética , Peroxidase do Rábano Silvestre/química , Humanos , Hibridomas/química , Hibridomas/imunologia , Imunoconjugados/química , Camundongos , Camundongos Endogâmicos BALB C
15.
Appl Microbiol Biotechnol ; 101(23-24): 8331-8344, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29063173

RESUMO

Glycoprotein D (gD) of bovine herpesvirus-1 (BoHV-1) is essential for attachment and penetration of cells during infection and is a major target for neutralizing antibodies during an adaptive immune response. Currently there are no recombinant antibodies capable of binding gD epitopes for use in treating BoHV-1 infection. In this study, a bovine scFv gene derived from a hybridoma secreting monoclonal antibodies (McAbs) against the amino acid motif MEESKGYEPP of gD was expressed in E. coli. Molecular modeling, western blot and ELISA analysis showed that this scFv had a high affinity for BoHV-1 gD, with a Kd of 161.2 ± 37.58 nM and for whole BoHV-1 virus, with a Kd of 67.44 ± 16.99 nM. In addition, this scFv displayed a high affinity for BoHV-1 antigen in an ELISA and competed with BoHV-1 anti-serum in a competitive ELISA. Immunofluorescence assay (IFA) and laser confocal microscopy showed that this scFv could efficiently bind to and be internalized by BoHV-1 infected Madin-Darby bovine kidney (MDBK) cells. Importantly, this scFv was shown to inhibit BoHV-1 infectivity and to reduce the number of viral plaques by blocking viral attachment to MDBK cells. Our study suggests that this bovine single-chain antibody could be developed for use as a diagnostic and therapeutic agent against BoHV-1 infection in cattle.


Assuntos
Anticorpos Antivirais/imunologia , Herpesvirus Bovino 1/imunologia , Anticorpos de Cadeia Única/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/química , Western Blotting , Bovinos , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Simulação de Acoplamento Molecular , Testes de Neutralização , Ligação Proteica , Anticorpos de Cadeia Única/química , Ensaio de Placa Viral , Proteínas Virais/química
16.
J Biol Chem ; 290(26): 15985-95, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947373

RESUMO

Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Células Epiteliais/virologia , Epitopos/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Internalização do Vírus , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Cricetinae , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Células Epiteliais/imunologia , Epitopos/genética , Humanos , Glicoproteínas de Membrana/genética , Ligação Proteica , Proteínas do Envelope Viral/genética
17.
Nanomedicine ; 12(3): 759-770, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26656630

RESUMO

A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular head domain as a chimeric hemagglutinin (HA) protein. Immunization of mice with formalin-inactivated recombinant chimeric influenza/RSV F262-276 was able to induce RSV protective neutralizing antibodies and lower lung viral loads after challenge. Formalin-inactivated RSV immune mice showed high levels of pulmonary inflammatory cytokines, macrophages, IL-4-producing T cells, and extensive histopathology. However, RSV-specific T cell responses and enhancement of pulmonary histopathology were not observed after RSV infection of inactivated chimeric influenza/RSV F262-276. This study provides evidence that an inactivated vaccine platform of chimeric influenza/RSV virus can be developed into a safe RSV vaccine candidate without priming RSV-specific T cells and immunopathology. FROM THE CLINICAL EDITOR: Respiratory syncytial virus (RSV) is a major cause of respiratory tract illness and morbidity in children. Hence, there is a need to develop an effective vaccine against this virus. In this article, the authors engineered chimeric influenza virus to express RSV neutralizing epitopes. The positive findings in in-vivo experiments provide a beginning for future clinical trials and perhaps eventual product realization.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Hemaglutininas Virais/imunologia , Orthomyxoviridae/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Linhagem Celular , Epitopos/genética , Epitopos/uso terapêutico , Feminino , Engenharia Genética/métodos , Hemaglutininas Virais/genética , Hemaglutininas Virais/uso terapêutico , Humanos , Imunização , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/uso terapêutico , Vírus Sinciciais Respiratórios/genética
18.
Vet Sci ; 11(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38922011

RESUMO

Porcine circovirus type 3 (PCV3) infection can cause symptoms similar to those of porcine circovirus type 2 (PCV2) infection, and coinfections with both PCV2 and PCV3 are observed in the swine industry. Consequently, developing chimeric vaccines is essential to prevent and control porcine circovirus infections. In this study, we used both E. coli and mammalian expression systems to express PCV3 Cap (Cap3) and a chimeric gene containing the PCV2-neutralizing epitope within the PCV3 Cap (Cap3-Cap2E), which were assembled into virus-like particle (VLP) vaccines. We found that Cap3 lacking nuclear localization signal (NLS) could not form VLPs, while Cap3 with a His-tag successfully assembled into VLPs. Additionally, the chimeric of PCV2-neutralizing epitopes did not interfere with the assembly process of VLPs. Various immunization approaches revealed that pCap3-Cap2E VLP vaccines were capable of activating high PCV3 Cap-specific antibody levels and effectively neutralizing both PCV3 and PCV2. Furthermore, pCap3-Cap2E VLPs demonstrated a potent ability to activate cellular immunity, protecting against PCV3 infection and preventing lung damage in mice. In conclusion, this study successfully developed a PCV3 Cap VLP vaccine incorporating chimeric PCV2-neutralizing epitope genes, providing new perspectives for PCV3 vaccine development.

19.
Poult Sci ; 103(12): 104256, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39288718

RESUMO

Infectious bronchitis virus (IBV) is one of the major avian pathogens plaguing the global poultry industry. Although vaccination is the primary preventive measure for IBV infection, the emergence of virus variants with mutations and recombination has resulted in IBV circulating globally, presenting a challenge for IB control. Here, we isolated 3 IBV strains (CZ200515, CZ210840, and CZ211063) from suspected sick chickens vaccinated with IBV live attenuated vaccines (H120, 4/91, or QXL87). Phylogenetic analysis of the S1 gene sequence of the spike (S) revealed that the 3 isolates belonged to the QX-type (GI-19 lineage). Whole genome sequencing and recombination analysis indicated that CZ200515 and CZ210840 contained genetic material from 4/91 and Scyz3 (QX-type), possibly due to recombination between the circulating strain and the 4/91 vaccine strain, while no evidence of recombination was found in CZ211063. Pathogenicity analysis in 1-day-old specific pathogen-free (SPF) chickens demonstrated that all 3 isolates caused severe tissue damage and varying degrees of mortality. Virus cross-neutralization assay revealed decreased antigen relatedness between the isolates and the QX-type vaccine strain (QXL87). Amino acid sequence homology analysis of S1 revealed 5%-6.5% variances between the isolates and QXL87. Analysis of the S1 subunit structure revealed that mutations of amino acid residues in the hypervariable region (HVR) and the neutralizing epitope region resulted in antigenic variation in isolates by changing the antigen conformation. Our data indicate antigenicity variances between QX isolates and QXL87 vaccine strains, potentially resulting in immune evasion occurrences. Overall, these results offer crucial insights into the epidemiology and pathogenicity of QX-type IBV, facilitating improved selection and formulation of vaccines for disease management.

20.
Vaccines (Basel) ; 12(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38250866

RESUMO

The administration of vaccines using a combination approach ensures better coverage and reduces the number of injections and cost. The present study assessed liposome-complexed DNA-corresponding proteins of hepatitis E and B viruses (HEV and HBV) as combined vaccine candidates in rhesus monkeys. The HEV and HBV components consisted of 450 bps, neutralizing the epitope/s (NE) region, and 685 bps small (S) envelope gene-corresponding proteins, respectively. Three groups (n = 2 monkeys/group) were intramuscularly immunized with a total of three doses of NE Protein (Lipo-NE-P), NE DNA + Protein (Lipo-NE-DP), and each of NE and S DNA + Protein (Lipo-NES-DP), respectively, given one month apart. All immunized monkeys were challenged with 10,000 fifty percent monkey infectious dose of homologous HEV strain. Post-immunization anti-HEV antibody levels in monkeys were 59.4 and 148.4 IU/mL (Lipo-NE-P), 177.0 and 240.8 IU/mL (Lipo-NE-DP), and 240.7 and 164.9 IU/mL (Lipo-NES-DP). Anti-HBV antibody levels in Lipo-NES-DP immunized monkeys were 58,786 and 6213 mIU/mL. None of the challenged monkeys showed viremia and elevation in serum alanine amino transferase levels. Monkeys immunized with Lipo-NE-DP and Lipo-NES-DP exhibited a sterilizing immunity, indicating complete protection, whereas monkeys immunized with Lipo-NE-P showed limited viral replication. In conclusion, the liposome-complexed DNA-corresponding proteins of HEV and HBV induced protective humoral immune responses to both components in monkeys and are worth exploring further.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa